Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Sci Rep ; 14(1): 10957, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740830

RESUMEN

Very high energy electrons (VHEE) are a potential candidate for radiotherapy applications. This includes tumours in inhomogeneous regions such as lung and prostate cancers, due to the insensitivity of VHEE to inhomogeneities. This study explores how electrons in the VHEE range can be used to perform successful in vitro radiobiological studies. The ARES (accelerator research experiment at SINBAD) facility at DESY, Hamburg, Germany was used to deliver 154 MeV electrons to both prostate (PC3) and lung (A549) cancer cells in suspension. Dose was delivered to samples with repeatability and uniformity, quantified with Gafchromic film. Cell survival in response to VHEE was measured using the clonogenic assay to determine the biological effectiveness of VHEE in cancer cells for the first time using this method. Equivalent experiments were performed using 300 kVp X-rays, to enable VHEE irradiated cells to be compared with conventional photons. VHEE irradiated cancer cell survival was fitted to the linear quadratic (LQ) model (R2 = 0.96-0.97). The damage from VHEE and X-ray irradiated cells at doses between 1.41 and 6.33 Gy are comparable, suggesting similar relative biological effectiveness (RBE) between the two modalities. This suggests VHEE is as damaging as photon radiotherapy and therefore could be used to successfully damage cancer cells during radiotherapy. The RBE of VHEE was quantified as the relative doses required for 50% (D0.5) and 10% (D0.1) cell survival. Using these values, VHEE RBE was measured as 0.93 (D0.5) and 0.99 (D0.1) for A549 and 0.74 (D0.5) and 0.93 (D0.1) for PC3 cell lines respectively. For the first time, this study has shown that 154 MeV electrons can be used to effectively kill lung and prostate cancer cells, suggesting that VHEE would be a viable radiotherapy modality. Several studies have shown that VHEE has characteristics that would offer significant improvements over conventional photon radiotherapy for example, electrons are relatively easy to steer and can be used to deliver dose rapidly and with high efficiency. Studies have shown improved dose distribution with VHEE in treatment plans, in comparison to VMAT, indicating that VHEE can offer improved and safer treatment plans with reduced side effects. The biological response of cancer cells to VHEE has not been sufficiently studied as of yet, however this initial study provides some initial insights into cell damage. VHEE offers significant benefits over photon radiotherapy and therefore more studies are required to fully understand the biological effectiveness of VHEE.


Asunto(s)
Supervivencia Celular , Neoplasias Pulmonares , Neoplasias de la Próstata , Efectividad Biológica Relativa , Humanos , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/patología , Masculino , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patología , Supervivencia Celular/efectos de la radiación , Electrones/uso terapéutico , Aceleradores de Partículas , Células PC-3 , Línea Celular Tumoral , Células A549
2.
Sci Rep ; 12(1): 6826, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35474242

RESUMEN

Preclinical radiation research lacks standardized dosimetry procedures that provide traceability to a primary standard. Consequently, ensuring accuracy and reproducibility between studies is challenging. Using 3D printed murine phantoms we undertook a dosimetry audit of Xstrahl Small Animal Radiation Research Platforms (SARRPs) installed at 7 UK centres. The geometrically realistic phantom accommodated alanine pellets and Gafchromic EBT3 film for simultaneous measurement of the dose delivered and the dose distribution within a 2D plane, respectively. Two irradiation scenarios were developed: (1) a 10 × 10 mm2 static field targeting the pelvis, and (2) a 5 × 5 mm2 90° arc targeting the brain. For static fields, the absolute difference between the planned dose and alanine measurement across all centres was 4.1 ± 4.3% (mean ± standard deviation), with an overall range of - 2.3 to 10.5%. For arc fields, the difference was - 1.2% ± 6.1%, with a range of - 13.1 to 7.7%. EBT3 dose measurements were greater than alanine by 2.0 ± 2.5% and 3.5 ± 6.0% (mean ± standard deviation) for the static and arc fields, respectively. 2D dose distributions showed discrepancies to the planned dose at the field edges. The audit demonstrates that further work on preclinical radiotherapy quality assurance processes is merited.


Asunto(s)
Impresión Tridimensional , Radiometría , Alanina , Animales , Ratones , Fantasmas de Imagen , Radiometría/métodos , Reproducibilidad de los Resultados
3.
Mutagenesis ; 37(1): 3-12, 2022 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-35137176

RESUMEN

Micronucleus (MN) formation is routinely used as a biodosimeter for radiation exposures and has historically been used as a measure of DNA damage in cells. Strongly correlating with dose, MN are also suggested to indicate radiation quality, differentiating between particle and photon irradiation. The "gold standard" for measuring MN formation is Fenech's cytokinesis-block micronucleus (CBMN) cytome assay, which uses the cytokinesis blocking agent cytochalasin-B. Here, we present a comprehensive analysis of the literature investigating MN induction trends in vitro, collating 193 publications, with 2476 data points. Data were collected from original studies that used the CBMN assay to quantify MN in response to ionizing radiation in vitro. Overall, the meta-analysis showed that individual studies mostly have a linear increase of MN with dose [85% of MN per cell (MNPC) datasets and 89% of percentage containing MN (PCMN) datasets had an R2 greater than 0.90]. However, there is high variation between studies, resulting in a low R2 when data are combined (0.47 for MNPC datasets and 0.60 for PCMN datasets). Particle type, species, cell type, and cytochalasin-B concentration were suggested to influence MN frequency. However, variation in the data meant that the effects could not be strongly correlated with the experimental parameters investigated. There is less variation between studies when comparing the PCMN rather than the number of MNPC. Deviation from CBMN protocol specified timings did not have a large effect on MN induction. However, further analysis showed less variation between studies following Fenech's protocol closely, which provided more reliable results. By limiting the cell type and species as well as only selecting studies following the Fenech protocol, R2 was increased to 0.64 for both measures. We therefore determine that due to variation between studies, MN are currently a poor predictor of radiation-induced DNA damage and make recommendations for futures studies assessing MN to improve consistency between datasets.


Asunto(s)
Citocinesis , Linfocitos , Daño del ADN , Pruebas de Micronúcleos/métodos , Radiación Ionizante
4.
Phys Med Biol ; 65(10): 10NT02, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32182592

RESUMEN

The lack of rigorous quality standards in pre-clinical radiation dosimetry has renewed interest in the development of anthropomorphic phantoms. Using 3D printing customisable phantoms can be created to assess all parts of pre-clinical radiation research: planning, image guidance and treatment delivery. We present the full methodology, including material development and printing designs, for the production of a high spatial resolution, anatomically realistic heterogeneous small animal phantom. A methodology for creating and validating tissue equivalent materials is presented. The technique is demonstrated through the development of a bone-equivalent material. This material is used together with a soft-tissue mimicking ABS plastic filament to reproduce the corresponding structure geometries captured from a CT scan of a nude mouse. Air gaps are used to represent the lungs. Phantom validation was performed through comparison of the geometry and x-ray attenuation of CT images of the phantom and animal images. A 6.6% difference in the attenuation of the bone-equivalent material compared to the reference standard in softer beams (0.5 mm Cu HVL) rapidly decreases as the beam is hardened. CT imaging shows accurate (sub-millimetre) reproduction of the skeleton (Distance-To-Agreement 0.5 mm ± 0.4 mm) and body surface (0.7 mm ± 0.5 mm). Histograms of the voxel intensity profile of the phantom demonstrate suitable similarity to those of both the original mouse image and that of a different animal. We present an approach for the efficient production of an anthropomorphic phantom suitable for the quality assurance of pre-clinical radiotherapy. Our design and full methodology are provided as open source to encourage the pre-clinical radiobiology community to adopt a common QA standard.


Asunto(s)
Huesos/diagnóstico por imagen , Fantasmas de Imagen , Plásticos , Impresión Tridimensional , Radiometría/instrumentación , Temperatura , Animales , Ratones , Tomografía Computarizada por Rayos X
5.
Br J Radiol ; 93(1107): 20190873, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31860337

RESUMEN

The UK has an important role in the evaluation of proton beam therapy (PBT) and takes its place on the world stage with the opening of the first National Health Service (NHS) PBT centre in Manchester in 2018, and the second in London coming in 2020. Systematic evaluation of the role of PBT is a key objective. By September 2019, 108 patients had started treatment, 60 paediatric, 19 teenagers and young adults and 29 adults. Obtaining robust outcome data is vital, if we are to understand the strengths and weaknesses of current treatment approaches. This is important in demonstrating when PBT will provide an advantage and when it will not, and in quantifying the magnitude of benefit.The UK also has an important part to play in translational PBT research, and building a research capability has always been the vision. We are perfectly placed to perform translational pre-clinical biological and physical experiments in the dedicated research room in Manchester. The nature of DNA damage from proton irradiation is considerably different from X-rays and this needs to be more fully explored. A better understanding is needed of the relative biological effectiveness (RBE) of protons, especially at the end of the Bragg peak, and of the effects on tumour and normal tissue of PBT combined with conventional chemotherapy, targeted drugs and immunomodulatory agents. These experiments can be enhanced by deterministic mathematical models of the molecular and cellular processes of DNA damage response. The fashion of ultra-high dose rate FLASH irradiation also needs to be explored.


Asunto(s)
Instituciones Oncológicas/estadística & datos numéricos , Terapia de Protones/estadística & datos numéricos , Medicina Estatal/estadística & datos numéricos , Adolescente , Adulto , Instituciones Oncológicas/provisión & distribución , Creación de Capacidad , Niño , Ensayos Clínicos como Asunto , Terapia Combinada/métodos , Daño del ADN , Inglaterra , Humanos , Modelos Teóricos , Neoplasias/radioterapia , Órganos en Riesgo/efectos de la radiación , Evaluación de Programas y Proyectos de Salud , Terapia de Protones/efectos adversos , Oncología por Radiación/educación , Planificación de la Radioterapia Asistida por Computador , Efectividad Biológica Relativa , Investigación , Investigación Biomédica Traslacional , Resultado del Tratamiento , Incertidumbre , Adulto Joven
6.
Radiat Oncol ; 14(1): 134, 2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31366364

RESUMEN

Preclinical radiotherapy studies using small animals are an indispensable step in the pathway from in vitro experiments to clinical implementation. As radiotherapy techniques advance in the clinic, it is important that preclinical models evolve to keep in line with these developments. The use of orthotopic tumour sites, the development of tissue-equivalent mice phantoms and the recent introduction of image-guided small animal radiation research platforms has enabled similar precision treatments to be delivered in the laboratory.These technological developments, however, are hindered by a lack of corresponding dosimetry standards and poor reporting of methodologies. Without robust and well documented preclinical radiotherapy quality assurance processes, it is not possible to ensure the accuracy and repeatability of dose measurements between laboratories. As a consequence current RT-based preclinical models are at risk of becoming irrelevant.In this review we explore current standardization initiatives, focusing in particular on recent developments in small animal irradiation equipment, 3D printing technology to create customisable tissue-equivalent dosimetry phantoms and combining these phantoms with commonly used detectors.


Asunto(s)
Fantasmas de Imagen , Impresión Tridimensional/instrumentación , Planificación de la Radioterapia Asistida por Computador/métodos , Animales , Diseño de Equipo , Humanos , Ratones , Dosificación Radioterapéutica
7.
BMC Clin Pathol ; 17: 27, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29299023

RESUMEN

BACKGROUND: Endometrial cancer (EC) is a major health concern due to its rising incidence. Whilst early stage disease is generally cured by surgery, advanced EC has a poor prognosis with limited treatment options. Altered energy metabolism is a hallmark of malignancy. Cancer cells drive tumour growth through aerobic glycolysis and must export lactate to maintain intracellular pH. The aim of this study was to evaluate the expression of the lactate/proton monocarboxylate transporters MCT1 and MCT4 and their chaperone CD147 in EC, with the ultimate aim of directing future drug development. METHODS: MCT1, MCT4 and CD147 expression was examined using immunohistochemical analysis in 90 endometrial tumours and correlated with clinico-pathological characteristics and survival outcomes. RESULTS: MCT1 and MCT4 expression was observed in the cytoplasm, the plasma membrane or both locations. CD147 was detected in the plasma membrane and associated with MCT1 (p = 0.003) but not with MCT4 (p = 0.207) expression. High MCT1 expression was associated with reduced overall survival (p = 0.029) and remained statistically significant after adjustment for survival covariates (p = 0.017). CONCLUSION: Our data suggest that MCT1 expression is an important marker of poor prognosis in EC. MCT1 inhibition may have potential as a treatment for advanced or recurrent EC.

8.
Mol Cancer Ther ; 13(12): 2805-16, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25281618

RESUMEN

Inhibition of the monocarboxylate transporter MCT1 by AZD3965 results in an increase in glycolysis in human tumor cell lines and xenografts. This is indicated by changes in the levels of specific glycolytic metabolites and in changes in glycolytic enzyme kinetics. These drug-induced metabolic changes translate into an inhibition of tumor growth in vivo. Thus, we combined AZD3965 with fractionated radiation to treat small cell lung cancer (SCLC) xenografts and showed that the combination provided a significantly greater therapeutic effect than the use of either modality alone. These results strongly support the notion of combining MCT1 inhibition with radiotherapy in the treatment of SCLC and other solid tumors.


Asunto(s)
Lactatos/metabolismo , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Pirimidinonas/farmacología , Tolerancia a Radiación/efectos de los fármacos , Simportadores/antagonistas & inhibidores , Tiofenos/farmacología , Animales , Transporte Biológico , Línea Celular Tumoral , Análisis por Conglomerados , Modelos Animales de Enfermedad , Femenino , Glucólisis/efectos de los fármacos , Humanos , Metabolómica , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/mortalidad , Neoplasias/patología , Neoplasias/radioterapia , Estrés Oxidativo/efectos de los fármacos , Pirimidinonas/administración & dosificación , Tiofenos/administración & dosificación , Carga Tumoral/efectos de los fármacos , Carga Tumoral/efectos de la radiación , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Cell Cycle ; 13(4): 580-99, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24434780

RESUMEN

Mammography is an important screening modality for the early detection of DCIS and breast cancer lesions. More specifically, high mammographic density is associated with an increased risk of breast cancer. However, the biological processes underlying this phenomenon remain largely unknown. Here, we re-interrogated genome-wide transcriptional profiling data obtained from low-density (LD) mammary fibroblasts (n = 6 patients) and high-density (HD) mammary fibroblasts (n = 7 patients) derived from a series of 13 female patients. We used these raw data to generate a "breast density" gene signature consisting of>1250 transcripts that were significantly increased in HD fibroblasts, relative to LD fibroblasts. We then focused on the genes that were increased by ≥ 1.5-fold (P<0.05) and performed gene set enrichment analysis (GSEA), using the molecular signatures database (MSigDB). Our results indicate that HD fibroblasts show the upregulation and/or hyper-activation of several key cellular processes, including the stress response, inflammation, stemness, and signal transduction. The transcriptional profiles of HD fibroblasts also showed striking similarities to human tumors, including head and neck, liver, thyroid, lung, and breast cancers. This may reflect functional similarities between cancer-associated fibroblasts (CAFs) and HD fibroblasts. This is consistent with the idea that the presence of HD fibroblasts may be a hallmark of a pre-cancerous phenotype. In these biological processes, GSEA predicts that several key signaling pathways may be involved, including JNK1, iNOS, Rho GTPase(s), FGF-R, EGF-R, and PDGF-R-mediated signal transduction, thereby creating a pro-inflammatory, pro-proliferative, cytokine, and chemokine-rich microenvironment. HD fibroblasts also showed significant overlap with gene profiles derived from smooth muscle cells under stress (JNK1) and activated/infected macrophages (iNOS). Thus, HD fibroblasts may behave like activated myofibroblasts and macrophages, to create and maintain a fibrotic and inflammatory microenvironment. Finally, comparisons between the HD fibroblast gene signature and breast cancer tumor stroma revealed that JNK1 stress signaling is the single most significant biological process that is shared between these 2 data sets (with P values between 5.40E-09 and 1.02E-14), and is specifically associated with tumor recurrence. These results implicate "stromal JNK1 signaling" in the pathogenesis of human breast cancers and the transition to malignancy. Augmented TGF-ß signaling also emerged as a common feature linking high breast density with tumor stroma and breast cancer recurrence (P = 5.23E-05). Similarities between the HD fibroblast gene signature, wound healing, and the cancer-associated fibroblast phenotype were also noted. Thus, this unbiased informatics analysis of high breast density provides a novel framework for additional experimental exploration and new hypothesis-driven breast cancer research, with a focus on cancer prevention and personalized medicine.


Asunto(s)
Neoplasias de la Mama/metabolismo , Glándulas Mamarias Humanas/anomalías , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Células Madre Neoplásicas/metabolismo , Densidad de la Mama , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis/genética , Fibrosis/metabolismo , Fibrosis/patología , Humanos , Inflamación/metabolismo , Inflamación/patología , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/patología , Proteína Quinasa 8 Activada por Mitógenos/genética , Células Madre Neoplásicas/patología , Transducción de Señal , Transcriptoma , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA