Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(21): e2401748121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739789

RESUMEN

Potyviridae, the largest family of plant RNA viruses, includes many important pathogens that significantly reduce the yields of many crops worldwide. In this study, we report that the 6-kilodalton peptide 1 (6K1), one of the least characterized potyviral proteins, is an endoplasmic reticulum-localized protein. AI-assisted structure modeling and biochemical assays suggest that 6K1 forms pentamers with a central hydrophobic tunnel, can increase the cell membrane permeability of Escherichia coli and Nicotiana benthamiana, and can conduct potassium in Saccharomyces cerevisiae. An infectivity assay showed that viral proliferation is inhibited by mutations that affect 6K1 multimerization. Moreover, the 6K1 or its homologous 7K proteins from other viruses of the Potyviridae family also have the ability to increase cell membrane permeability and transmembrane potassium conductance. Taken together, these data reveal that 6K1 and its homologous 7K proteins function as viroporins in viral infected cells.


Asunto(s)
Nicotiana , Nicotiana/virología , Nicotiana/metabolismo , Potyviridae/genética , Potyviridae/metabolismo , Proteínas Virales/metabolismo , Proteínas Virales/genética , Permeabilidad de la Membrana Celular , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Viroporinas/metabolismo , Proteínas Viroporinas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Virus de Plantas/genética , Virus de Plantas/fisiología , Enfermedades de las Plantas/virología , Potasio/metabolismo
2.
Methods Mol Biol ; 2771: 83-89, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38285394

RESUMEN

Transgenic expression of hairpin RNA or artificial microRNA is widely used for genetic studies in plant science. However, induction of RNA silencing by transgenic method may have a problem when studying essential genes. Here, we provide an in planta transient double-stranded RNA (dsRNA) producing system using a tobacco necrosis virus A (TNV-A)-based replicon for efficiently inducing RNA silencing in plants. In this system, the target sequence is placed between the cauliflower mosaic virus 35S promoter and the 3'-terminal part of viral genomic RNA, while the C-terminal part of TNV-A RNA-dependent RNA polymerase (p82C) is expressed by a different promoter. The endogenous RNA polymerase-synthesized target sequence is recruited by p82C to produce dsRNA to induce RNA silencing.


Asunto(s)
MicroARNs , Tombusviridae , Interferencia de ARN , ARN Bicatenario/genética , Tombusviridae/genética , MicroARNs/genética , ARN Viral/genética
3.
J Virol ; 94(8)2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-31969439

RESUMEN

P3N-PIPO, the only dedicated movement protein (MP) of potyviruses, directs cylindrical inclusion (CI) protein from the cytoplasm to the plasmodesma (PD), where CI forms conical structures for intercellular movement. To better understand potyviral cell-to-cell movement, we further characterized P3N-PIPO using Turnip mosaic virus (TuMV) as a model virus. We found that P3N-PIPO interacts with P3 via the shared P3N domain and that TuMV mutants lacking the P3N domain of either P3N-PIPO or P3 are defective in cell-to-cell movement. Moreover, we found that the PIPO domain of P3N-PIPO is sufficient to direct CI to the PD, whereas the P3N domain is necessary for localization of P3N-PIPO to 6K2-labeled vesicles or aggregates. Finally, we discovered that the interaction between P3 and P3N-PIPO is essential for the recruitment of CI to cytoplasmic 6K2-containing structures and the association of 6K2-containing structures with PD-located CI inclusions. These data suggest that both P3N and PIPO domains are indispensable for potyviral cell-to-cell movement and that the 6K2 vesicles in proximity to PDs resulting from multipartite interactions among 6K2, P3, P3N-PIPO, and CI may also play an essential role in this process.IMPORTANCE Potyviruses include numerous economically important viruses that represent approximately 30% of known plant viruses. However, there is still limited information about the mechanism of potyviral cell-to-cell movement. Here, we show that P3N-PIPO interacts with and recruits CI to the PD via the PIPO domain and interacts with P3 via the shared P3N domain. We further report that the interaction of P3N-PIPO and P3 is associated with 6K2 vesicles and brings the 6K2 vesicles into proximity with PD-located CI structures. These results support the notion that the replication and cell-to-cell movement of potyviruses are processes coupled by anchoring viral replication complexes at the entrance of PDs, which greatly increase our knowledge of the intercellular movement of potyviruses.


Asunto(s)
Movimiento Celular/fisiología , Potyvirus/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Replicación Viral/fisiología , Enfermedades de las Plantas/virología , Plasmodesmos , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Nicotiana/virología
4.
J Virol ; 93(5)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30541845

RESUMEN

Plant viruses usually encode one or more movement proteins (MP) to accomplish their intercellular movement. A group of positive-strand RNA plant viruses requires three viral proteins (TGBp1, TGBp2, and TGBp3) that are encoded by an evolutionarily conserved genetic module of three partially overlapping open reading frames (ORFs), termed the triple gene block (TGB). However, how these three viral movement proteins function cooperatively in viral intercellular movement is still elusive. Using a novel in vivo double-stranded RNA (dsRNA) labeling system, we showed that the dsRNAs generated by potato virus X (PVX) RNA-dependent RNA polymerase (RdRp) are colocalized with viral RdRp, which are further tightly covered by "chain mail"-like TGBp2 aggregates and localizes alongside TGBp3 aggregates. We also discovered that TGBp2 interacts with the C-terminal domain of PVX RdRp, and this interaction is required for the localization of TGBp3 and itself to the RdRp/dsRNA bodies. Moreover, we reveal that the central and C-terminal hydrophilic domains of TGBp2 are required to interact with viral RdRp. Finally, we demonstrate that knockout of the entire TGBp2 or the domain involved in interacting with viral RdRp attenuates both PVX replication and movement. Collectively, these findings suggest that TGBp2 plays dual functional roles in PVX replication and intercellular movement.IMPORTANCE Many plant viruses contain three partially overlapping open reading frames (ORFs), termed the triple gene block (TGB), for intercellular movement. However, how the corresponding three proteins coordinate their functions remains obscure. In the present study, we provided multiple lines of evidence supporting the notion that PVX TGBp2 functions as the molecular adaptor bridging the interaction between the RdRp/dsRNA body and TGBp3 by forming "chain mail"-like structures in the RdRp/dsRNA body, which can also enhance viral replication. Taken together, our results provide new insights into the replication and movement of PVX and possibly also other TGB-containing plant viruses.


Asunto(s)
Nicotiana/virología , Proteínas de Movimiento Viral en Plantas/metabolismo , Potexvirus/metabolismo , Replicación Viral/fisiología , Retículo Endoplásmico/metabolismo , Enfermedades de las Plantas/virología , Dominios Proteicos/genética , ARN Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA