Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
Curr Stem Cell Res Ther ; 16(3): 262-276, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32867660

RESUMEN

Stem cells are undifferentiated cells with the ability to proliferate and convert to different types of differentiated cells that make up the various tissues and organs in the body. They exist both in embryos as pluripotent stem cells that can differentiate into the three germ layers and as multipotent or unipotent stem cells in adult tissues to aid in repair and homeostasis. Perturbations in these cells' normal functions can give rise to a wide variety of diseases. In this review, we discuss the origin of different stem cell types, their properties and characteristics, their role in tissue homeostasis, current research, and their potential applications in various life-threatening diseases. We focus on neural stem cells, their role in neurogenesis and how they can be exploited to treat diseases of the brain including neurodegenerative diseases and cancer. Next, we explore current research in Induced Pluripotent Stem Cells (iPSC) techniques and their clinical applications in regenerative and personalized medicine. Lastly, we tackle a special type of stem cells called Cancer Stem Cells (CSCs) and how they can be responsible for therapy resistance and tumor recurrence and explore ways to target them.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células-Madre Neurales , Células Madre Pluripotentes , Medicina Regenerativa , Diferenciación Celular , Humanos , Neoplasias/terapia , Enfermedades Neurodegenerativas/terapia , Neurogénesis , Medicina Regenerativa/tendencias
2.
Pharmacol Rep ; 73(1): 211-226, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33030673

RESUMEN

BACKGROUND: Neuroblastoma (NB) is the most frequently diagnosed extracranial solid tumor among the pediatric population. It is an embryonic tumor with high relapse rates pertaining to the presence of dormant slowly dividing cancer stem cells (CSC) within the tumor bulk that are responsible for therapy resistance. Therefore, there is a dire need to develop new therapeutic approaches that specifically target NB CSCs. Glycogen synthase kinase (GSK)-3ß is a serine/threonine kinase that represents a common signaling node at the intersection of many pathways implicated in NB CSCs. GSK-3ß sustains the survival and maintenance of CSCs and renders them insensitive to chemotherapeutic agents and radiation. METHODS: In our study, we aimed at evaluating the potential anti-tumor effect of Tideglusib (TDG), an irreversible GSK-3ß inhibitor drug, on three human NB cell lines, SK-N-SH, SH-SY5Y, and IMR-32. RESULTS: Our results showed that TDG significantly reduced cell proliferation, viability, and migration of the NB cells, in a dose- and time-dependent manner, and also significantly hindered the neurospheres formation eradicating the self-renewal ability of highly resistant CSCs. Besides, TDG potently reduced CD133 cancer stem cell marker expression in both SH-SY5Y cells and G1 spheres. Lastly, TDG inhibited NB tumor growth and progression in vivo. CONCLUSION: Collectively, we concluded that TDG could serve as an effective treatment capable of targeting the NB CSCs and hence overcoming therapy resistance. Yet, future studies are warranted to further investigate its potential role in NB and decipher the subcellular and molecular mechanisms underlying this role.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Células Madre Neoplásicas/efectos de los fármacos , Neuroblastoma/tratamiento farmacológico , Tiadiazoles/uso terapéutico , Antígeno AC133/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Inhibidores Enzimáticos/uso terapéutico , Humanos , Ratones , Cicatrización de Heridas/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Front Mol Neurosci ; 12: 131, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31191243

RESUMEN

Neuroblastoma (NB) is the most common extracranial solid tumor often diagnosed in childhood. Despite intense efforts to develop a successful treatment, current available therapies are still challenged by high rates of resistance, recurrence and progression, most notably in advanced cases and highly malignant tumors. Emerging evidence proposes that this might be due to a subpopulation of cancer stem cells (CSCs) or tumor-initiating cells (TICs) found in the bulk of the tumor. Therefore, the development of more targeted therapy is highly dependent on the identification of the molecular signatures and genetic aberrations characteristic to this subpopulation of cells. This review aims at providing an overview of the key molecular players involved in NB CSCs and focuses on the experimental evidence from NB cell lines, patient-derived xenografts and primary tumors. It also provides some novel approaches of targeting multiple drivers governing the stemness of CSCs to achieve better anti-tumor effects than the currently used therapeutic agents.

4.
Oncotarget ; 9(71): 33549-33561, 2018 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-30323898

RESUMEN

Nervous system tumors represent some of the highly aggressive cancers in both children and adults, particularly neuroblastoma and glioblastoma. Many studies focused on the pathogenic role of the Akt pathway and the mechanistic target of Rapamycin (mTOR) complex in mediating the progression of various types of cancer, which designates the Akt/mTOR signaling pathway as a master regulator for cancer. Current studies are also elucidating the mechanisms of cancer stem cells (CSCs) in replenishing tumors and explicating the strong correlation between the Akt/mTOR pathway and CSC biology. This instigates the development of novel treatments that target CSCs via inhibiting this pathway to prevent recurrence in various cancer subtypes. In accordance, neuroblastoma and glioblastoma tumors are believed to originate from stem/progenitor cells or dedifferentiated mature neural/glial cells transformed into CSCs, which warrants targeting this subpopulation of CSCs in these tumors. In our study, Triciribine and Rapamycin were used to assess the role of inhibiting two different points of the Akt/mTOR pathway in vitro on U251 (glioblastoma) and SH-SY5Y (neuroblastoma) human cell lines and their CSCs. We showed that both drugs minimally decrease the survival of U251 and SH-SY5Y cells in a 2D model, while this effect was much more pronounced in a 3D culture model. Triciribine and Rapamycin decreased migratory abilities of both cell lines and decreased their sphere-forming units (SFU) by extinguishing their CSC populations. Together, we concluded that Rapamycin and Triciribine proved to be effective in the in vitro treatment of glioblastoma and neuroblastoma, by targeting their CSC population.

5.
Behav Brain Res ; 340: 1-13, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29126932

RESUMEN

Traumatic Brain Injury (TBI) is a major cause of death and disability worldwide with 1.5 million people inflicted yearly. Several neurotherapeutic interventions have been proposed including drug administration as well as cellular therapy involving neural stem cells (NSCs). Among the proposed drugs is docosahexaenoic acid (DHA), a polyunsaturated fatty acid, exhibiting neuroprotective properties. In this study, we utilized an innovative intervention of neonatal NSCs transplantation in combination with DHA injections in order to ameliorate brain damage and promote functional recovery in an experimental model of TBI. Thus, NSCs derived from the subventricular zone of neonatal pups were cultured into neurospheres and transplanted in the cortex of an experimentally controlled cortical impact mouse model of TBI. The effect of NSC transplantation was assessed alone and/or in combination with DHA administration. Motor deficits were evaluated using pole climbing and rotarod tests. Using immunohistochemistry, the effect of transplanted NSCs and DHA treatment was used to assess astrocytic (Glial fibrillary acidic protein, GFAP) and microglial (ionized calcium binding adaptor molecule-1, IBA-1) activity. In addition, we quantified neuroblasts (doublecortin; DCX) and dopaminergic neurons (tyrosine hydroxylase; TH) expression levels. Combined NSC transplantation and DHA injections significantly attenuated TBI-induced motor function deficits (pole climbing test), promoted neurogenesis, coupled with an increase in glial reactivity at the cortical site of injury. In addition, the number of tyrosine hydroxylase positive neurons was found to increase markedly in the ventral tegmental area and substantia nigra in the combination therapy group. Immunoblotting analysis indicated that DHA+NSCs treated animals showed decreased levels of 38kDa GFAP-BDP (breakdown product) and 145kDa αII-spectrin SBDP indicative of attenuated calpain/caspase activation. These data demonstrate that prior treatment with DHA may be a desirable strategy to improve the therapeutic efficacy of NSC transplantation in TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/cirugía , Ácidos Docosahexaenoicos/farmacología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/trasplante , Fármacos Neuroprotectores/farmacología , Animales , Animales Recién Nacidos , Encéfalo/efectos de los fármacos , Encéfalo/patología , Encéfalo/fisiopatología , Encéfalo/cirugía , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/fisiopatología , Células Cultivadas , Terapia Combinada , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Neuronas Dopaminérgicas/fisiología , Proteína Doblecortina , Masculino , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Células-Madre Neurales/patología , Células-Madre Neurales/fisiología , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Neuroglía/efectos de los fármacos , Neuroglía/patología , Neuroglía/fisiología , Distribución Aleatoria , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Nicho de Células Madre , Trasplante de Células Madre/métodos
6.
J Neuroimmunol ; 297: 81-91, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27397080

RESUMEN

Contradictory results have been reported regarding the role of inflammatory mediators in the central nervous system in mediating neuropathic pain and inflammatory hyperalgesia following peripheral nerve injury or localized inflammation. The present study aims to correlate between the mRNA expression and protein secretion of proinflammatory cytokines and nerve growth factor (NGF), in the dorsal root ganglia (DRGs), spinal cord, brainstem and thalamus, and pain-related behavior in animal models of peripheral mononeuropathy and localized inflammation. Different groups of rats (n=8, each) were subjected to either lesion of the nerves of their hindpaws to induce mononeuropathy or intraplantar injection of endotoxin (ET) and were sacrificed at various time intervals. TNF-α, IL-1ß and NGF mRNA expression and protein levels in the various centers involved in processing nociceptive information were determined, by RT-PCR and ELISA. Control groups were either subjected to sham surgery or to saline injection. Mononeuropathy and ET injection produced significant and sustained increases in the mRNA expression and protein levels of TNF-α, IL-1ß and NGF in the ipsilateral and contralateral DRGs, spinal cord, and brainstem. No significant and consistent changes in the mRNA expression of cytokines were noticed in the thalamus, while a downregulation of the NGF-mRNA level was observed. The temporal and spatial patterns of the observed changes in mRNA expression of cytokines and NGF are not closely in phase with the observed allodynia and hyperalgesia in the different models, suggesting that the role of these mediators may not be reduced exclusively to the production and maintenance of pain.


Asunto(s)
Encéfalo/metabolismo , Citocinas/metabolismo , Regulación de la Expresión Génica/fisiología , Inflamación/patología , Mononeuropatías/patología , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Endotoxinas/toxicidad , Hiperalgesia/etiología , Inflamación/inducido químicamente , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Mononeuropatías/complicaciones , Factor de Crecimiento Nervioso/metabolismo , Dimensión del Dolor , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
7.
Oncotarget ; 7(20): 28961-75, 2016 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-27036046

RESUMEN

Cell lines representing the progression of prostate cancer (PC) from an androgen-dependent to an androgen-independent state are scarce. In this study, we used previously characterized prostate luminal epithelial cell line (Plum), under androgen influence, to establish cellular models of PC progression. Cells derived from orthotopic tumors have been isolated to develop an androgen-dependent (PLum-AD) versus an androgen-independent (PLum-AI) model. Upon immunofluorescent, qRT-PCR and Western blot analyses, PLum-AD cells mostly expressed prostate epithelial markers while PLum-AI cells expressed mesenchymal cell markers. Interestingly, both cell lines maintained a population of stem/progenitor cells. Furthermore, our data suggest that both cell lines are tumorigenic; PLum-AD resulted in an adenocarcinoma whereas PLum-AI resulted in a sarcomatoid carcinoma when transplanted subcutaneously in NOD-SCID mice. Finally, gene expression profiles showed enrichment in functions involved in cell migration, apoptosis, as well as neoplasm invasiveness and metastasis in PLum-AI cells. In conclusion, these data suggest that the newly isolated cell lines represent a new in vitro model of androgen-dependent and -independent PC.


Asunto(s)
Línea Celular Tumoral , Modelos Animales de Enfermedad , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata/patología , Animales , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID
8.
Brain Stimul ; 9(1): 101-8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26460201

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) provides clinical benefits for a variety of movement disorders and lately emerged as a potential treatment for cognitive and mood disorders. Modulation of adult hippocampal neurogenesis may play a role in mediating its effects. OBJECTIVE: To investigate the effects of unilateral anteromedial thalamic nucleus (AMN) stimulation on adult hippocampal neurogenesis in awake and unrestrained rats. METHODS: Four groups of adult Sprague-Dawley male and female rats received unilateral stimulation (n = 6 each) or sham surgery (n = 4 each) in the right AMN; another group of males (n = 4) was stimulated in the right ventral posterolateral thalamic nucleus (VPL). A naive group of males and females (n = 4 each) was also included. Rats received 4 injections (50 mg/kg/injection) of 5'-bromo-2'-deoxyuridine (BrdU) 3 days post-surgery and were euthanized 24 h later. The fractionator method was used together with confocal microscopy to count BrdU, GFAP and NeuN positive cells in the dentate gyrus (DG) and hilar zone of the hippocampus. RESULTS: Focal neurogenesis was induced in the ipsilateral DG after AMN but not VPL stimulation. Stimulation-induced effects were sex-independent and translated into a 76% increase in proliferation of neural stem/progenitor cells. Increased neurogenesis was most prominent at the caudal region of the DG, while no effect was detected in the hilar and the subventricular zones. CONCLUSIONS: The exclusive hippocampal neurogenic response to AMN stimulation suggests an involvement of the Papez circuitry in mediating DBS effects and in the treatment of cognitive and behavioral disorders.


Asunto(s)
Estimulación Encefálica Profunda , Hipocampo/fisiología , Neurogénesis , Tálamo/fisiología , Animales , Femenino , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Masculino , Ratas , Ratas Sprague-Dawley , Vigilia
9.
Front Neurosci ; 9: 442, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26635517

RESUMEN

BACKGROUND: Gliomas and neuroblastomas pose a great health burden worldwide with a poor and moderate prognosis, respectively. Many studies have tried to find effective treatments for these primary malignant brain tumors. Of interest, the AMP-activated protein kinase (AMPK) pathway was found to be associated with tumorigenesis and tumor survival, leading to many studies on AMPK drugs, especially Metformin, and their potential role as anti-cancer treatments. Cancer stem cells (CSCs) are a small population of slowly-dividing, treatment-resistant, undifferentiated cancer cells that are being discovered in a multitude of cancers. They are thought to be responsible for replenishing the tumor with highly proliferative cells and increasing the risk of recurrence. METHODS: Metformin and 9-ß-d-Arabinofuranosyl Adenine (Ara-a) were used to study the role of the AMPK pathway in vitro on U251 (glioblastoma) and SH-SY5Y (neuroblastoma) cell lines. RESULTS: We found that both drugs are able to decrease the survival of U251 and SH-SY5Y cell lines in a 2D as well as a 3D culture model. Metformin and Ara-a significantly decreased the invasive ability of these cancer cell lines. Treatment with these drugs decreased the sphere-forming units (SFU) of U251 cells, with Ara-a being more efficient, signifying the extinction of the CSC population. However, if treatment is withdrawn before all SFUs are extinguished, the CSCs regain some of their sphere-forming capabilities in the case of Metformin but not Ara-a treatment. CONCLUSION: Metformin and Ara-a have proved to be effective in the treatment of glioblastomas and neuroblastomas, in vitro, by targeting their cancer stem/progenitor cell population, which prevents recurrence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA