Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Clin Transplant ; 36(12): e14802, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36069577

RESUMEN

BACKGROUND: Allograft biopsies with lesions of Antibody-Mediated Rejection (ABMR) with Microvascular Inflammation (MVI) have shown heterogeneous etiologies and outcomes. METHODS: To examine factors associated with outcomes in biopsies that meet histologic ABMR criteria, we retrospectively evaluated for-cause biopsies at our center between 2011 and 2017. We included biopsies that met the diagnosis of ABMR by histology, along with simultaneous evaluation for anti-Human Leukocyte Antigen (HLA) donor-specific antibodies (DSA). We evaluated death-censored graft loss (DCGL) and used a principal component analysis (PCA) approach to identify key predictors of outcomes. RESULTS: Out of the histologic ABMR cohort (n = 118), 70 were DSA-positive ABMR, while 48 had no DSA. DSA(+)ABMR were younger and more often female recipients. DSA(+)ABMR occurred significantly later post-transplant than DSA(-)ABMR suggesting time-dependence. DSA(+)ABMR had higher inflammatory scores (i,t), chronicity scores (ci, ct) and tended to have higher MVI scores. Immunodominance of DQ-DSA in DSA(+)ABMR was associated with higher i+t scores. Clinical/histologic factors significantly associated with DCGL after biopsy were inputted into the PCA. Principal component-1 (PC-1), which contributed 34.8% of the variance, significantly correlated with time from transplantation to biopsy, ci/ct scores and DCGL. In the PCA analyses, i, t scores, DQ-DSA, and creatinine at biopsy retained significant correlations with GL-associated PCs. CONCLUSIONS: Time from transplantation to biopsy plays a major role in the prognosis of biopsies with histologic ABMR and MVI, likely due to ongoing chronic allograft injury over time.


Asunto(s)
Trasplante de Riñón , Humanos , Femenino , Estudios Retrospectivos , Trasplante de Riñón/efectos adversos , Anticuerpos , Pronóstico , Inflamación , Biopsia , Rechazo de Injerto/diagnóstico , Rechazo de Injerto/etiología , Isoanticuerpos
2.
Kidney Med ; 3(4): 653-658, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33942030

RESUMEN

Recent case reports suggest that coronavirus disease 2019 (COVID-19) is associated with collapsing glomerulopathy in African Americans with apolipoprotein L1 gene (APOL1) risk alleles; however, it is unclear whether disease pathogenesis is similar to HIV-associated nephropathy. RNA sequencing analysis of a kidney biopsy specimen from a patient with COVID-19-associated collapsing glomerulopathy and APOL1 risk alleles (G1/G1) revealed similar levels of APOL1 and angiotensin-converting enzyme 2 (ACE2) messenger RNA transcripts as compared with 12 control kidney samples downloaded from the GTEx (Genotype-Tissue Expression) Portal. Whole-genome sequencing of the COVID-19-associated collapsing glomerulopathy kidney sample identified 4 indel gene variants, 3 of which are of unknown significance with respect to chronic kidney disease and/or focal segmental glomerulosclerosis. Molecular profiling of the kidney demonstrated activation of COVID-19-associated cell injury pathways such as inflammation and coagulation. Evidence for direct severe acute respiratory syndrome coronavirus 2 infection of kidney cells was lacking, which is consistent with the findings of several recent studies. Interestingly, immunostaining of kidney biopsy sections revealed increased expression of phospho-STAT3 (signal transducer and activator of transcription 3) in both COVID-19-associated collapsing glomerulopathy and HIV-associated nephropathy as compared with control kidney tissue. Importantly, interleukin 6-induced activation of STAT3 may be a targetable mechanism driving COVID-19-associated acute kidney injury.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA