Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Hyperthermia ; 38(1): 1322-1332, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34477032

RESUMEN

INTRODUCTION: The radiofrequency ablation (RFA) of liver cancer is a desirable treatment option, as it is minimally invasive. An accurate numerical simulation can greatly help physicians better plan their surgical protocols. Previously, the displacement current in the RFA process was considered negligible, and therefore RFA simulation was modeled as a direct current (DC) system instead of an alternating current (AC) system. Our study investigated the hypothesis that the displacement current in the RFA process should not always be considered negligible. METHODS: AC measurements of ex vivo bovine liver ablation were performed, and numerical simulations were also conducted to test the hypothesis that the relative permittivity would significantly decrease after the liver tissue reached a high temperature. RESULTS: The displacement current was observed to be a sizable fraction of the conduction current, especially before the onset of the first pause. The simulation results indicated that the relative permittivity is likely to decrease to several hundred or lower at elevated temperatures. CONCLUSIONS: Our study results suggest that the DC model may be inadequate, especially before the first roll-off and that additional information could be available during RFA treatment by considering the AC nature of RFA, which could lead to improved numerical simulation. Additional measurements of tissue parameters are needed to reach the full potential of the AC model for further development of ablation control.


Asunto(s)
Ablación por Catéter , Neoplasias Hepáticas , Ablación por Radiofrecuencia , Animales , Bovinos , Simulación por Computador , Hígado/cirugía , Neoplasias Hepáticas/cirugía
2.
J Biophotonics ; 3(10-11): 678-85, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20583034

RESUMEN

Cancer cells require excessive oxygen and nutrition to support their rapid growth, so angiogenesis and decrease of blood oxygen are often associated with areas of cancer development. Current technologies for blood oxygen measurement, however, do not possess high spatial resolution and therefore cannot be used to detect small tumors in their early stage. In this paper, we studied the third harmonic generation (THG) spectra of oxy- and deoxyhemoglobin in the 1170-1365 nm region, which is strongly influenced by the multi-photon resonance effect, especially around the Soret transition band. Our spectroscopic results thus indicate the high potential of THG spectroscopic microscopy for oxygen depletion level measurement of a single red blood cell in vivo.


Asunto(s)
Hemoglobinas/metabolismo , Oxihemoglobinas/metabolismo , Fotones , Análisis Espectral/métodos , Absorción , Humanos , Oxígeno/sangre , Oxígeno/metabolismo
3.
Opt Express ; 16(13): 9534-48, 2008 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-18575520

RESUMEN

We demonstrated that lipid-enclosed CdSe quantum dots (LEQDs) can function as versatile contrast agents in epi-detection third harmonic generation (THG) microscopy for biological applications in vivo. With epi-THG intensities 20 times stronger than corresponding fluorescence intensities from the same LEQDs under the same conditions of energy absorption, such high brightness LEQDs were proved for the abilities of cell tracking and detection of specific molecular expression in live cancer cells. Using nude mice as an animal model, the distribution of LEQD-loaded tumor cells deep in subcutaneous tissues were imaged with high THG contrast. This is the first demonstration that THG contrast can be manipulated in vivo with nanoparticles. By linking LEQDs with anti-Her2 antibodies, the expression of Her2/neu receptors in live breast cancer cells could also be easily detected through THG. Compared with fluorescence modalities, the THG modality also provides the advantage of no photobleaching and photoblinkin g effects. Combined with a high penetration 1230 nm laser, these novel features make LEQDs excellent THG contrast agents for in vivo deep-tissue imaging in the future.


Asunto(s)
Compuestos de Cadmio , Perfilación de la Expresión Génica/métodos , Aumento de la Imagen/métodos , Lípidos/química , Microscopía Fluorescente/métodos , Neoplasias/patología , Puntos Cuánticos , Compuestos de Selenio , Animales , Compuestos de Cadmio/química , Línea Celular Tumoral , Materiales Biocompatibles Revestidos/química , Medios de Contraste , Portadores de Fármacos/química , Humanos , Ratones , Ratones Desnudos , Técnicas de Sonda Molecular , Compuestos de Selenio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA