Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Diabetes Metab J ; 48(1): 1-18, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38173375

RESUMEN

Mitochondrial stress and the dysregulated mitochondrial unfolded protein response (UPRmt) are linked to various diseases, including metabolic disorders, neurodegenerative diseases, and cancer. Mitokines, signaling molecules released by mitochondrial stress response and UPRmt, are crucial mediators of inter-organ communication and influence systemic metabolic and physiological processes. In this review, we provide a comprehensive overview of mitokines, including their regulation by exercise and lifestyle interventions and their implications for various diseases. The endocrine actions of mitokines related to mitochondrial stress and adaptations are highlighted, specifically the broad functions of fibroblast growth factor 21 and growth differentiation factor 15, as well as their specific actions in regulating inter-tissue communication and metabolic homeostasis. Finally, we discuss the potential of physiological and genetic interventions to reduce the hazards associated with dysregulated mitokine signaling and preserve an equilibrium in mitochondrial stress-induced responses. This review provides valuable insights into the mechanisms underlying mitochondrial regulation of health and disease by exploring mitokine interactions and their regulation, which will facilitate the development of targeted therapies and personalized interventions to improve health outcomes and quality of life.


Asunto(s)
Enfermedades Metabólicas , Calidad de Vida , Humanos , Mitocondrias/metabolismo , Enfermedades Metabólicas/terapia , Enfermedades Metabólicas/metabolismo , Transducción de Señal
2.
Am J Case Rep ; 23: e937902, 2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36435962

RESUMEN

BACKGROUND Splenosis refers to autotransplantation of splenic tissue after splenic injury or splenectomy, most frequently occurring in the abdominal and pelvic cavities. Thoracic splenosis is a rare condition associated with a history of simultaneous rupture of the spleen and diaphragm resulting from trauma. To the best of our knowledge, only a limited number of cases have been reported for combined intrathoracic and abdominal splenosis. CASE REPORT We present a case of a 50-year-old man with a history of splenectomy and left nephrectomy 15 years ago due to an accident, who had experienced chest pain for the past month. A 1-cm focal pleural thickening in the left posterior pleura was revealed on the chest computed tomography (CT) scan. We found this to be suspicious for a solitary fibrous tumor. Based on this information, surgery was performed for tumor removal, and the pathologic examination confirmed splenic tissues. The patient was then discharged without any complications. Further abdominopelvic CT showed several contrast-enhanced lesions, suggestive of intraperitoneal splenosis. CONCLUSIONS We would like to emphasize the importance of thorough history-taking to avoid misdiagnosis and unnecessary procedures with respect to the rarity of splenosis. Moreover, appropriate use of diagnostic tools, including radionuclide imaging studies, is recommended to establish an accurate diagnosis of thoracic splenosis.


Asunto(s)
Esplenosis , Masculino , Humanos , Persona de Mediana Edad , Esplenosis/diagnóstico por imagen , Esplenosis/cirugía , Abdomen , Tórax/diagnóstico por imagen , Tórax/patología , Esplenectomía/efectos adversos
3.
J Cachexia Sarcopenia Muscle ; 13(3): 1785-1799, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35306755

RESUMEN

BACKGROUND: Mitochondrial oxidative phosphorylation (OxPhos) is a critical regulator of skeletal muscle mass and function. Although muscle atrophy due to mitochondrial dysfunction is closely associated with bone loss, the biological characteristics of the relationship between muscle and bone remain obscure. We showed that muscle atrophy caused by skeletal muscle-specific CR6-interacting factor 1 knockout (MKO) modulates the bone marrow (BM) inflammatory response, leading to low bone mass. METHODS: MKO mice with lower muscle OxPhos were fed a normal chow or high-fat diet and then evaluated for muscle mass and function, and bone mineral density. Immunophenotyping of BM immune cells was also performed. BM transcriptomic analysis was used to identify key factors regulating bone mass in MKO mice. To determine the effects of BM-derived CXCL12 (C-X-C motif chemokine ligand 12) on regulation of bone homeostasis, a variety of BM niche-resident cells were treated with recombinant CXCL12. Vastus lateralis muscle and BM immune cell samples from 14 patients with hip fracture were investigated to examine the association between muscle function and BM inflammation. RESULTS: MKO mice exhibited significant reductions in both muscle mass and expression of OxPhos subunits but increased transcription of mitochondrial stress response-related genes in the extensor digitorum longus (P < 0.01). MKO mice showed a decline in grip strength and a higher drop rate in the wire hanging test (P < 0.01). Micro-computed tomography and von Kossa staining revealed that MKO mice developed a low mass phenotype in cortical and trabecular bone (P < 0.01). Transcriptomic analysis of the BM revealed that mitochondrial stress responses in skeletal muscles induce an inflammatory response and adipogenesis in the BM and that the CXCL12-CXCR4 (C-X-C chemokine receptor 4) axis is important for T-cell homing to the BM. Antagonism of CXCR4 attenuated BM inflammation and increased bone mass in MKO mice. In humans, patients with low body mass index (BMI = 17.2 ± 0.42 kg/m2 ) harboured a larger population of proinflammatory and cytotoxic senescent T-cells in the BMI (P < 0.05) and showed reduced expression of OxPhos subunits in the vastus lateralis, compared with controls with a normal BMI (23.7 ± 0.88 kg/m2 ) (P < 0.01). CONCLUSIONS: Defects in muscle mitochondrial OxPhos promote BM inflammation in mice, leading to decreased bone mass. Muscle mitochondrial dysfunction is linked to BM inflammatory cytokine secretion via the CXCL12-CXCR4 signalling axis, which is critical for inducing low bone mass.


Asunto(s)
Médula Ósea , Músculo Esquelético , Animales , Médula Ósea/patología , Humanos , Inflamación/metabolismo , Masculino , Ratones , Músculo Esquelético/patología , Atrofia Muscular/patología , Microtomografía por Rayos X
4.
Front Endocrinol (Lausanne) ; 12: 700083, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34552555

RESUMEN

Primary cilia are sensory organelles with a variety of receptors and channels on their membranes. Recently, primary cilia were proposed to be crucial sites for exocytosis and endocytosis of vesicles associated with endocytic control of various ciliary signaling pathways. Thyroglobulin (Tg) synthesis and Tg exocytosis/endocytosis are critical for the functions of thyroid follicular cells, where primary cilia are relatively well preserved. LRP2/megalin has been detected on the apical surface of absorptive epithelial cells, including thyrocytes. LRP2/megalin on thyrocytes serves as a Tg receptor and can mediate Tg endocytosis. In this study, we investigated the role of primary cilia in LRP2/megalin expression in thyroid gland stimulated with endogenous TSH using MMI-treated and Tg-Cre;Ift88flox/flox mice. LRP2/megalin expression in thyroid follicles was higher in MMI-treated mice than in untreated control mice. MMI-treated mice exhibited a significant increase in ciliogenesis in thyroid follicular cells relative to untreated controls. Furthermore, MMI-induced ciliogenesis accompanied increases in LRP2/megalin expression in thyroid follicular cells, in which LRP2/megalin was localized to the primary cilium. By contrast, in Tg-Cre;Ift88flox/flox mice, thyroid with defective primary cilia expressed markedly lower levels of LRP2/megalin. Serum Tg levels were elevated in MMI-treated mice and reduced in Tg-Cre;Ift88flox/flox mice. Taken together, these results indicate that defective ciliogenesis in murine thyroid follicular cells is associated with impaired LRP2/megalin expression and reduced serum Tg levels. Our results strongly suggest that primary cilia harbors LRP2/megalin, and are involved in TSH-mediated endocytosis of Tg in murine thyroid follicles.


Asunto(s)
Cilios/fisiología , Endocitosis , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Tiroglobulina/metabolismo , Glándula Tiroides/metabolismo , Tirotropina/farmacología , Proteínas Supresoras de Tumor/fisiología , Animales , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Glándula Tiroides/efectos de los fármacos
5.
Diabetes Metab J ; 44(3): 363-371, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32613776

RESUMEN

Growth differentiation factor 15 (GDF15) is receiving great interest beyond its role as an aging and disease-related biomarker. Recent discovery of its receptor, glial cell line-derived neurotrophic factor (GDNF) family receptor α-like (GFRAL), suggests a central role in appetite regulation. However, there is also considerable evidence that GDF15 may have peripheral activity through an as-of-yet undiscovered mode of action. This raises the question as to whether increased GDF15 induction during pathophysiologic conditions also suppresses appetite. The present review will briefly introduce the discovery of GDF15 and describe the different contexts under which GDF15 is induced, focusing on its induction during mitochondrial dysfunction. We will further discuss the metabolic role of GDF15 under various pathophysiological conditions and conclude with possible therapeutic applications.


Asunto(s)
Metabolismo Energético , Factor 15 de Diferenciación de Crecimiento/sangre , Envejecimiento/sangre , Animales , Biomarcadores de Tumor/sangre , Enfermedades Cardiovasculares/sangre , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Humanos , Inflamación/sangre , Mitocondrias/metabolismo , Neoplasias/sangre , Transducción de Señal
6.
Mol Cells ; 42(2): 113-122, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30622229

RESUMEN

Communications at the interface between the apical membrane of follicular cells and the follicular lumen are critical for the homeostasis of thyroid gland. Primary cilia at the apical membrane of thyroid follicular cells may sense follicular luminal environment and regulate follicular homeostasis, although their role in vivo remains to be determined. Here, mice devoid of primary cilia were generated by thyroid follicular epithelial cell-specific deletion of the gene encoding intraflagellar transport protein 88 (Ift88 ). Thyroid follicular cell-specific Ift88-deficient mice showed normal folliculogenesis and hormonogenesis; however, those older than 7 weeks showed irregularly dilated and destroyed follicles in the thyroid gland. With increasing age, follicular cells with malignant properties showing the characteristic nuclear features of human thyroid carcinomas formed papillary and solid proliferative nodules from degenerated thyroid follicles. Furthermore, malignant tumor cells manifested as tumor emboli in thyroid vessels. These findings suggest that loss-of-function of Ift88/primary cilia results in malignant transformation from degenerated thyroid follicles.


Asunto(s)
Carcinogénesis/patología , Cilios/metabolismo , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Animales , Línea Celular Tumoral , Proliferación Celular , Cilios/patología , Eliminación de Gen , Integrasas/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Epiteliales Tiroideas/metabolismo , Células Epiteliales Tiroideas/patología , Glándula Tiroides/crecimiento & desarrollo , Glándula Tiroides/metabolismo , Glándula Tiroides/patología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
7.
Oncogene ; 37(32): 4455-4474, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29743590

RESUMEN

Primary cilia are microtubule-based, dynamic organelles characterized by continuous assembly and disassembly. The intraflagellar transport (IFT) machinery, including IFT88 in cilia, is involved in the maintenance of bidirectional motility along the axonemes, which is required for ciliogenesis and functional competence. Cancer cells are frequently associated with loss of primary cilia and IFT functions. However, there is little information on the role of IFT88 or primary cilia in the metabolic remodeling of cancer cells. Therefore, we investigated the cellular and metabolic effects of the loss-of-function (LOF) mutations of IFT88/primary cilia in thyroid cancer cells. IFT88-deficient 8505C thyroid cancer cells were generated using the CRISPR/Cas9 system, and RNA-sequencing analysis was performed. LOF of the IFT88 gene resulted in a marked defect in ciliogenesis and mitochondrial oxidative function. Gene expression patterns in IFT88-deficient thyroid cancer cells favored glycolysis and lipid biosynthesis. However, LOF of IFT88/primary cilia did not promote thyroid cancer cell proliferation, migration, and invasion. The results suggest that IFT88/primary cilia play a role in metabolic reprogramming in thyroid cancer cells.


Asunto(s)
Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Animales , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Células Cultivadas , Cilios/genética , Cilios/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Fenotipo
8.
Nat Commun ; 9(1): 1551, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29674655

RESUMEN

Oxidative functions of adipose tissue macrophages control the polarization of M1-like and M2-like phenotypes, but whether reduced macrophage oxidative function causes systemic insulin resistance in vivo is not clear. Here, we show that mice with reduced mitochondrial oxidative phosphorylation (OxPhos) due to myeloid-specific deletion of CR6-interacting factor 1 (Crif1), an essential mitoribosomal factor involved in biogenesis of OxPhos subunits, have M1-like polarization of macrophages and systemic insulin resistance with adipose inflammation. Macrophage GDF15 expression is reduced in mice with impaired oxidative function, but induced upon stimulation with rosiglitazone and IL-4. GDF15 upregulates the oxidative function of macrophages, leading to M2-like polarization, and reverses insulin resistance in ob/ob mice and HFD-fed mice with myeloid-specific deletion of Crif1. Thus, reduced macrophage oxidative function controls systemic insulin resistance and adipose inflammation, which can be reversed with GDF15 and leads to improved oxidative function of macrophages.


Asunto(s)
Resistencia a la Insulina , Macrófagos/metabolismo , Obesidad/metabolismo , Fosforilación Oxidativa , Tejido Adiposo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Factor 15 de Diferenciación de Crecimiento/genética , Factor 15 de Diferenciación de Crecimiento/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Obesidad/genética , Estrés Oxidativo
9.
Korean J Intern Med ; 32(5): 780-789, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28823142

RESUMEN

Thyroid cancer is one of the most common malignancies of endocrine organs, and its incidence rate has increased steadily over the past several decades. Most differentiated thyroid tumors derived from thyroid epithelial cells exhibit slow-growing cancers, and patients with these tumors can achieve a good prognosis with surgical removal and radioiodine treatment. However, a small proportion of patients present with advanced thyroid cancer and are unusually resistant to current drug treatment modalities. Thyroid tumorigenesis is a complex process that is regulated by the activation of oncogenes, inactivation of tumor suppressors, and alterations in programmed cell death. Mitochondria play an essential role during tumor formation, progression, and metastasis of thyroid cancer. Recent studies have successfully observed the mitochondrial etiology of thyroid carcinogenesis. This review focuses on the recent progress in understanding the molecular mechanisms of thyroid cancer relating to altered mitochondrial metabolism.


Asunto(s)
Diferenciación Celular , Transformación Celular Neoplásica , Metabolismo Energético , Mitocondrias , Oncogenes , Glándula Tiroides , Neoplasias de la Tiroides , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Mitofagia , Transducción de Señal , Glándula Tiroides/metabolismo , Glándula Tiroides/patología , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/terapia
10.
Lab Invest ; 97(4): 478-489, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28112758

RESUMEN

The functional unit of the thyroid gland, the thyroid follicle, dynamically responds to various stimuli to maintain thyroid hormone homeostasis. However, thyroid follicles in the adult human thyroid gland have a very limited regenerative capacity following partial resection of the thyroid gland. To gain insight into follicle regeneration in the adult thyroid gland, we observed the regeneration processes of murine thyroid follicles after partial resection of the lower third of the thyroid gland in 10-week-old male C57BL/6 mice. Based on sequential observation of the partially resected thyroid lobe, we found primitive follicles forming in the area corresponding to the central zone of the intact lateral thyroid lobe. The primitive thyroid follicles were multiciliated and had coarsely vacuolated cytoplasm and large vesicular nuclei. Consistently, these primitive follicular cells did not express the differentiation markers paired box gene-8 and thyroid transcription factor-1 (clone SPT24), but were positive for forkhead box protein A2 and leucine-rich repeat-containing G-protein-coupled receptor 4/GPR48. Follicles newly generated from the primitive follicles had clear or vacuolar cytoplasm with dense, darkly stained nuclei. At day 21 after partial thyroidectomy, the tall cuboidal follicular epithelial cells had clear or vacuolar cytoplasm, and the intraluminal colloid displayed pale staining. Smaller activated follicles were found in the central zone of the lateral lobe, whereas larger mature follicles were located in the peripheral zone. Based on these observations, we propose that the follicle regeneration process in the partially resected adult murine thyroid gland associated with the appearance of primitive follicular cells may be a platform for the budding of differentiated follicles in mice.


Asunto(s)
Regeneración , Glándula Tiroides/citología , Glándula Tiroides/fisiología , Tiroidectomía , Adulto , Animales , Cilios/fisiología , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Factor Nuclear 3-beta del Hepatocito/metabolismo , Humanos , Inmunohistoquímica , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Receptores Acoplados a Proteínas G/metabolismo , Glándula Tiroides/cirugía , Hormonas Tiroideas/sangre , Factores de Tiempo
11.
Biochim Biophys Acta Bioenerg ; 1858(8): 633-640, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28017650

RESUMEN

The mitochondrial role in carcinogenesis and cancer progression is an area of active research, with many unresolved questions. Various aspects of altered mitochondrial function have been implicated in tumorigenesis and tumor progression, including mitochondrial dysfunction, a metabolic switch to aerobic glycolysis, and dysregulation of mitophagy. Mitophagy is a highly specific quality control process which eliminates dysfunctional mitochondria and promotes mitochondrial turnover, and is involved in the adaptation to nutrient stress by controlling mitochondrial mass. The dysregulation of mitochondrial turnover has both a positive and negative role in cancer. This review will begin with a basic overview of the molecular mechanisms of mitophagy, and highlight recent trends in mitophagy from cancer studies. We will conclude this review by discussing areas of research in normal mitophagy that have yet to be explored in the context of cancer such as mitochondrial proteases, the mitochondrial unfolded protein response, and mitokine action. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.


Asunto(s)
Transformación Celular Neoplásica , Mitofagia , Neoplasias/metabolismo , Animales , Proteínas de Caenorhabditis elegans/fisiología , Progresión de la Enfermedad , Humanos , Dinámicas Mitocondriales , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/fisiología , Mitofagia/fisiología , Modelos Biológicos , Mutación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiología , Neoplasias/etiología , Neoplasias/patología , Péptido Hidrolasas/fisiología , Isoformas de Proteínas/fisiología , Respuesta de Proteína Desplegada
12.
Oncotarget ; 8(70): 114980-114994, 2017 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-29383135

RESUMEN

The signaling pathway involving the R-spondins and its cognate receptor, GPR48/LGR4, is crucial in development and carcinogenesis. However, the functional implications of the R-spondin-GPR48/LGR4 pathway in thyroid remain to be identified. The aim of this study was to investigate the role of R-spondin-GPR48/LGR4 signaling in papillary thyroid carcinomas. We retrospectively reviewed a total of 214 patients who underwent total thyroidectomy and cervical lymph node dissection for papillary thyroid carcinoma. The role of GPR48/LGR4 in proliferation and migration was examined in thyroid cancer cell lines. R-spondin 2, and GPR48/LGR4 were expressed at significantly higher levels in thyroid cancer than in normal controls. Elevated GPR48/LGR4 expression was significantly associated with tumor size (P=0.049), lymph node metastasis (P=0.004), recurrence (P=0.037), and the BRAFV600E mutation (P=0.003). Moreover, high GPR48/LGR4 expression was an independent risk factor for lymph node metastasis (P=0.027) and the BRAFV600E mutation (P=0.009). in vitro assays demonstrated that elevated expression of GPR48/LGR4 promoted proliferation and migration of thyroid cancer cells, whereas downregulation of GPR48/LGR4 decreased proliferation and migration by inhibition of the ß-catenin pathway. Moreover, treatment of thyroid cancer cells with exogenous R-spondin 2 induced activation of the ß-catenin pathway through GPR48/LGR4. The R-spondin 2-GPR48/LGR4 signaling axis also induced the phosphorylation of ERK, as well as phosphorylation of LRP6 and serine 9 of GSK3ß. Our findings demonstrate that upregulation of the R-spondin 2-GPR48/LGR4 pathway contributes to tumor aggressiveness in papillary thyroid carcinoma by promoting ERK phosphorylation, suggesting that this pathway represents a novel therapeutic target for treatment of differentiated thyroid cancer.

13.
Oncotarget ; 7(48): 79117-79130, 2016 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-27816963

RESUMEN

Primary cilia are found in the apical membrane of thyrocytes, where they may play a role in the maintenance of follicular homeostasis. In this study, we examined the distribution of primary cilia in the human thyroid cancer to address the involvement of abnormal ciliogenesis in different thyroid cancers. We examined 92 human thyroid tissues, including nodular hyperplasia, Hashimoto's thyroiditis, follicular tumor, Hürthle cell tumor, and papillary carcinoma to observe the distribution of primary cilia. The distribution and length of primary cilia facing the follicular lumen were uniform across variable-sized follicles in the normal thyroid gland. However, most Hürthle cells found in benign and malignant thyroid diseases were devoid of primary cilia. Conventional variant of papillary carcinoma (PTC) displayed longer primary cilia than those of healthy tissue, whereas both the frequency and length of primary cilia were decreased in oncocytic variant of PTC. In addition, ciliogenesis was markedly defective in primary Hürthle cell tumors, including Hürthle cell adenomas and carcinomas, which showed higher level of autophagosome biogenesis. Remarkably, inhibition of autophagosome formation by Atg5 silencing or treatment with pharmacological inhibitors of autophagosome formation restored ciliogenesis in the Hürthle cell carcinoma cell line XTC.UC1 which exhibits a high basal autophagic flux. Moreover, the inhibition of autophagy promoted the accumulation of two factors critical for ciliogenesis, IFT88 and ARL13B. These results suggest that abnormal ciliogenesis, a common feature of Hürthle cells in diseased thyroid glands, is associated with increased basal autophagy.


Asunto(s)
Adenoma Oxifílico/patología , Autofagosomas/metabolismo , Células Epiteliales Tiroideas/citología , Glándula Tiroides/anatomía & histología , Neoplasias de la Tiroides/patología , Factores de Ribosilacion-ADP/metabolismo , Adenoma Oxifílico/metabolismo , Adulto , Anciano , Autofagia , Proteína 5 Relacionada con la Autofagia/genética , Carcinoma Papilar/metabolismo , Carcinoma Papilar/patología , Línea Celular Tumoral , Cilios , Femenino , Enfermedad de Hashimoto/metabolismo , Enfermedad de Hashimoto/patología , Humanos , Hiperplasia , Masculino , Persona de Mediana Edad , Células Epiteliales Tiroideas/metabolismo , Células Epiteliales Tiroideas/patología , Glándula Tiroides/metabolismo , Neoplasias de la Tiroides/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Adulto Joven
14.
Carcinogenesis ; 36(11): 1407-18, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26354775

RESUMEN

Abnormal accumulation of defective mitochondria is the hallmark of oncocytes, which are frequently observed in thyroid Hürthle cell lesions. Autophagy is an essential cellular catabolic mechanism for the degradation of dysfunctional organelles and has been implicated in several human diseases. It is yet unknown how autophagic turnover of defective mitochondria in Hürthle cell tumors is regulated. We characterized the expression patterns of molecular markers including Beclin1, LC3, PINK1 and Parkin, which are required for autophagy or mitophagy, in human oncocytic lesions of the thyroid. To undertake mechanistic studies, we investigated autophagy and mitophagy using XTC.UC1 cells, the only in vitro model of Hürthle cell tumors. Beclin1 and LC3 were highly expressed in oncocytes of Hürthle cell tumors. XTC.UC1 showed autophagic responses to starvation and rapamycin treatment, whereas they displayed ineffective activation of mitophagy, which is triggered by the coordinated action of PINK1 and Parkin in response to CCCP. This resulted in a decreased turnover of abnormal mitochondria. The mechanisms underlying defective mitophagy and mitochondrial turnover were investigated by genetic analysis of the PARK2 gene in XTC.UC1 and Hürthle cell tumor tissues. XTC.UC1 and several tumors harbored the V380L mutation, resulting in dysfunctional autoubiquitination and decreased E3 ligase activity. Consistently, oncocytes in Hürthle cell tumors displayed comparable expression of PINK1 but decreased Parkin expression in comparison to normal thyrocytes. The introduction of wild-type Parkin sensitized XTC.UC1 to death induced by CCCP. This study provides a possible etiological basis for oncocytic formation in heterogeneous Hürthle cell tumors through insufficient mitophagy leading to ineffective turnover of aberrant mitochondria caused by dysfunctional Parkin-mediated pathways of mitochondria quality control.


Asunto(s)
Mitofagia , Neoplasias de la Tiroides/enzimología , Ubiquitina-Proteína Ligasas/genética , Adenoma Oxifílico , Adulto , Anciano , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia , Beclina-1 , Línea Celular Tumoral , Análisis Mutacional de ADN , Femenino , Expresión Génica , Regulación Neoplásica de la Expresión Génica , Estudios de Asociación Genética , Células HEK293 , Humanos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Persona de Mediana Edad , Mutación Missense , Consumo de Oxígeno , Estudios Retrospectivos , Glándula Tiroides/metabolismo , Glándula Tiroides/patología , Neoplasias de la Tiroides/genética , Ubiquitina-Proteína Ligasas/metabolismo , Adulto Joven
15.
Endocrinol Metab (Seoul) ; 30(2): 117-23, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26194071

RESUMEN

Primary thyroid cancers including papillary, follicular, poorly differentiated, and anaplastic carcinomas show substantial differences in biological and clinical behaviors. Even in the same pathological type, there is wide variability in the clinical course of disease progression. The molecular carcinogenesis of thyroid cancer has advanced tremendously in the last decade. However, specific inhibition of oncogenic pathways did not provide a significant survival benefit in advanced progressive thyroid cancer that is resistant to radioactive iodine therapy. Accumulating evidence clearly shows that cellular energy metabolism, which is controlled by oncogenes and other tumor-related factors, is a critical factor determining the clinical phenotypes of cancer. However, the role and nature of energy metabolism in thyroid cancer remain unclear. In this article, we discuss the role of cellular energy metabolism, particularly mitochondrial energy metabolism, in thyroid cancer. Determining the molecular nature of metabolic remodeling in thyroid cancer may provide new biomarkers and therapeutic targets that may be useful in the management of refractory thyroid cancers.

16.
Diabetologia ; 58(4): 771-80, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25660120

RESUMEN

AIM/HYPOTHESIS: Although mitochondrial oxidative phosphorylation (OxPhos) dysfunction is believed to be responsible for beta cell dysfunction in insulin resistance and mitochondrial diabetes, the mechanisms underlying progressive beta cell failure caused by defective mitochondrial OxPhos are largely unknown. METHODS: We examined the in vivo phenotypes of beta cell dysfunction in beta cell-specific Crif1 (also known as Gadd45gip1)-deficient mice. CR6-interacting factor-1 (CRIF1) is a mitochondrial protein essential for the synthesis and formation of the OxPhos complex in the inner mitochondrial membrane. RESULTS: Crif1(beta-/-) mice exhibited impaired glucose tolerance with defective insulin secretion as early as 4 weeks of age without defects in islet structure. At 11 weeks of age, Crif1(beta-/-) mice displayed characteristic ultrastructural mitochondrial abnormalities as well as severe glucose intolerance. Furthermore, islet area and insulin content was decreased by approximately 50% compared with wild-type mice. Treatment with the glucoregulatory drug exenatide, a glucagon-like peptide-1 (GLP-1) agonist, was not sufficient to preserve beta cell function in Crif1(beta-/-) mice. CONCLUSIONS/INTERPRETATION: Our results indicate that mitochondrial OxPhos dysfunction triggers progressive beta cell failure that is not halted by treatment with a GLP-1 agonist. The Crif1(beta-/-) mouse is a useful model for the study of beta cell failure caused by mitochondrial OxPhos dysfunction.


Asunto(s)
Proteínas de Ciclo Celular/deficiencia , Diabetes Mellitus/metabolismo , Células Secretoras de Insulina/metabolismo , Mitocondrias/metabolismo , Fosforilación Oxidativa , Factores de Edad , Animales , Autofagia , Glucemia/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/genética , Diabetes Mellitus/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Exenatida , Genotipo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Hipoglucemiantes/farmacología , Incretinas/farmacología , Insulina/sangre , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/ultraestructura , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Péptidos/farmacología , Fenotipo , Factores de Tiempo , Ponzoñas/farmacología
17.
Liver Int ; 35(4): 1341-53, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25443620

RESUMEN

BACKGROUND & AIMS: Nonalcoholic steatohepatitis (NASH) is associated with cirrhosis and hepatocellular carcinoma. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play key roles in the development of the disease. However, the therapeutic target of NASH has not been fully defined and new treatments are needed. We investigated the protective effects of the antioxidant indole-derived NecroX-7 in a NASH mouse model using leptin-deficient ob/ob and methionine- and choline-deficient (MCD) diet-fed ob/ob mice. METHODS: Six-week-old male mice were divided into three groups: ob/+ mice, ob/ob mice treated with vehicle and ob/ob mice treated daily with NecroX-7 (20 mg/kg) for 4 weeks. To study the effects of NecroX-7 in a fibrosis model, NASH was induced by feeding ob/ob mice an MCD diet. The effects of NecroX-7 on NASH progression were evaluated using biochemical, histological and molecular markers. RESULTS: NecroX-7-treated ob/ob mice had a marked decrease in serum aspartate aminotransferase and alanine transaminase compared with vehicle-treated controls. Interestingly, hepatic steatosis and lipid peroxidation were significantly improved by NecroX-7 treatment. NecroX-7 inhibited tert-butylhydroperoxide- and H2 O2 -induced mitochondrial ROS/RNS in primary hepatocytes and attenuated mitochondrial dysfunction in vitro and in vivo. Furthermore, NecroX-7-treated mice exhibited fewer infiltrating macrophages and reduced hepatic tumour necrosis factor-alpha expression. Hepatic fibrosis in MCD-fed ob/ob mice was significantly decreased by NecroX-7 treatment. CONCLUSIONS: NecroX-7 treatment improved hepatic steatosis and fibrosis in murine NASH models. These effects occurred through the suppression of whole-cell ROS/RNS and inflammatory responses and suggest that NecroX-7 has a potential therapeutic benefit in steatohepatitis.


Asunto(s)
Antioxidantes/farmacología , Inflamación/tratamiento farmacológico , Hígado/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Compuestos Orgánicos/farmacología , Estrés Oxidativo/efectos de los fármacos , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Citoprotección , Metabolismo Energético/efectos de los fármacos , Células Hep G2 , Humanos , Inflamación/metabolismo , Inflamación/patología , Mediadores de Inflamación/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática Experimental/tratamiento farmacológico , Cirrosis Hepática Experimental/metabolismo , Cirrosis Hepática Experimental/patología , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Obesos , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/patología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
18.
Biochem Biophys Res Commun ; 328(1): 227-34, 2005 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-15670774

RESUMEN

Dysregulation of Wnt/beta-catenin pathway plays a central role in early events in colorectal carcinogenesis. We examined the effect of quercetin, a famous anti-tumor agent, against beta-catenin/Tcf signaling in SW480 cells. Quercetin inhibited the transcriptional activity of beta-catenin/Tcf in SW480 and also in HEK293 cells transiently transfected with constitutively active mutant beta-catenin gene, whose product is not induced to be degraded by APC-Axin-GSK3beta complex, so we concluded that its inhibitory mechanism was related to beta-catenin itself or downstream components. To investigate the precise inhibitory mechanism, we performed EMSA showing that binding of the Tcf complexes to its specific DNA-binding sites was strongly suppressed by quercetin. Immunoprecipitation analysis also showed that the binding of beta-catenin to Tcf-4 was also disrupted by quercetin. Western blot analysis proved these decreased bindings resulted from decreased level of beta-catenin and Tcf-4 product in nucleus caused by quercetin. Together, we suggest that quercetin is an excellent inhibitor of beta-catenin/Tcf signaling in SW480 cell lines, and the reduced beta-catenin/Tcf transcriptional activity is due to the decreased nuclear beta-catenin and Tcf-4 proteins.


Asunto(s)
Núcleo Celular/metabolismo , Neoplasias del Colon/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas de Unión al ADN/metabolismo , Quercetina/farmacología , Transducción de Señal/efectos de los fármacos , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Factores de Transcripción TCF , Proteína 2 Similar al Factor de Transcripción 7 , beta Catenina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA