Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biotechnol Adv ; 73: 108377, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38763231

RESUMEN

Adenosine triphosphate (ATP) regeneration is a significant step in both living cells and in vitro biotransformation (ivBT). Rotary motor ATP synthases (ATPases), which regenerate ATP in living cells, have been widely assembled in biomimetic structures for in vitro ATP synthesis. In this review, we present a comprehensive overview of ATPases, including the working principle, orientation and distribution density properties of ATPases, as well as the assembly strategies and applications of ATPase-based ATP regeneration modules. The original sources of ATPases for in vitro ATP regeneration include chromatophores, chloroplasts, mitochondria, and inverted Escherichia coli (E. coli) vesicles, which are readily accessible but unstable. Although significant advances have been made in the assembly methods for ATPase-artificial membranes in recent decades, it remains challenging to replicate the high density and orientation of ATPases observed in vivo using in vitro assembly methods. The use of bioproton pumps or chemicals for constructing proton motive forces (PMF) enables the versatility and potential of ATPase-based ATP regeneration modules. Additionally, overall robustness can be achieved via membrane component selection, such as polymers offering great mechanical stability, or by constructing a solid supporting matrix through layer-by-layer assembly techniques. Finally, the prospects of ATPase-based ATP regeneration modules can be expected with the technological development of ATPases and artificial membranes.


Asunto(s)
Adenosina Trifosfatasas , Adenosina Trifosfato , Biotransformación , Adenosina Trifosfato/metabolismo , Adenosina Trifosfatasas/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética
2.
Photosynth Res ; 133(1-3): 201-214, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28405862

RESUMEN

Photosystem I (PSI)-light-harvesting complex I (LHCI) super-complex and its sub-complexes PSI core and LHCI, were purified from a unicellular red alga Cyanidioschyzon merolae and characterized. PSI-LHCI of C. merolae existed as a monomer with a molecular mass of 580 kDa. Mass spectrometry analysis identified 11 subunits (PsaA, B, C, D, E, F, I, J, K, L, O) in the core complex and three LHCI subunits, CMQ142C, CMN234C, and CMN235C in LHCI, indicating that at least three Lhcr subunits associate with the red algal PSI core. PsaG was not found in the red algae PSI-LHCI, and we suggest that the position corresponding to Lhca1 in higher plant PSI-LHCI is empty in the red algal PSI-LHCI. The PSI-LHCI complex was separated into two bands on native PAGE, suggesting that two different complexes may be present with slightly different protein compositions probably with respective to the numbers of Lhcr subunits. Based on the results obtained, a structural model was proposed for the red algal PSI-LHCI. Furthermore, pigment analysis revealed that the C. merolae PSI-LHCI contained a large amount of zeaxanthin, which is mainly associated with the LHCI complex whereas little zeaxanthin was found in the PSI core. This indicates a unique feature of the carotenoid composition of the Lhcr proteins and may suggest an important role of Zea in the light-harvesting and photoprotection of the red algal PSI-LHCI complex.


Asunto(s)
Complejos de Proteína Captadores de Luz/aislamiento & purificación , Complejo de Proteína del Fotosistema I/aislamiento & purificación , Rhodophyta/metabolismo , Secuencia de Aminoácidos , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Modelos Biológicos , Oxígeno/metabolismo , Péptidos/metabolismo , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/metabolismo , Pigmentos Biológicos/metabolismo , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Alineación de Secuencia , Espectrometría de Fluorescencia
3.
Genome Biol ; 18(1): 33, 2017 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-28219438

RESUMEN

BACKGROUND: Cotton has been cultivated and used to make fabrics for at least 7000 years. Two allotetraploid species of great commercial importance, Gossypium hirsutum and Gossypium barbadense, were domesticated after polyploidization and are cultivated worldwide. Although the overall genetic diversity between these two cultivated species has been studied with limited accessions, their population structure and genetic variations remain largely unknown. RESULTS: We resequence the genomes of 147 cotton accessions, including diverse wild relatives, landraces, and modern cultivars, and construct a comprehensive variation map to provide genomic insights into the divergence and dual domestication of these two important cultivated tetraploid cotton species. Phylogenetic analysis shows two divergent groups for G. hirsutum and G. barbadense, suggesting a dual domestication processes in tetraploid cottons. In spite of the strong genetic divergence, a small number of interspecific reciprocal introgression events are found between these species and the introgression pattern is significantly biased towards the gene flow from G. hirsutum into G. barbadense. We identify selective sweeps, some of which are associated with relatively highly expressed genes for fiber development and seed germination. CONCLUSIONS: We report a comprehensive analysis of the evolution and domestication history of allotetraploid cottons based on the whole genomic variation between G. hirsutum and G. barbadense and between wild accessions and modern cultivars. These results provide genomic bases for improving cotton production and for further evolution analysis of polyploid crops.


Asunto(s)
Domesticación , Genoma de Planta , Genómica , Gossypium/genética , Tetraploidía , Adaptación Biológica , Cromosomas de las Plantas , Evolución Molecular , Perfilación de la Expresión Génica , Variación Genética , Genética de Población , Genómica/métodos , Genotipo , Gossypium/clasificación , Mutación INDEL , Filogenia , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable , Selección Genética
4.
Genome Biol ; 16: 108, 2015 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-26003111

RESUMEN

BACKGROUND: SNPs are the most abundant polymorphism type, and have been explored in many crop genomic studies, including rice and maize. SNP discovery in allotetraploid cotton genomes has lagged behind that of other crops due to their complexity and polyploidy. In this study, genome-wide SNPs are detected systematically using next-generation sequencing and efficient SNP genotyping methods, and used to construct a linkage map and characterize the structural variations in polyploid cotton genomes. RESULTS: We construct an ultra-dense inter-specific genetic map comprising 4,999,048 SNP loci distributed unevenly in 26 allotetraploid cotton linkage groups and covering 4,042 cM. The map is used to order tetraploid cotton genome scaffolds for accurate assembly of G. hirsutum acc. TM-1. Recombination rates and hotspots are identified across the cotton genome by comparing the assembled draft sequence and the genetic map. Using this map, genome rearrangements and centromeric regions are identified in tetraploid cotton by combining information from the publicly-available G. raimondii genome with fluorescent in situ hybridization analysis. CONCLUSIONS: We report the genotype-by-sequencing method used to identify millions of SNPs between G. hirsutum and G. barbadense. We construct and use an ultra-dense SNP map to correct sequence mis-assemblies, merge scaffolds into pseudomolecules corresponding to chromosomes, detect genome rearrangements, and identify centromeric regions in allotetraploid cottons. We find that the centromeric retro-element sequence of tetraploid cotton derived from the D subgenome progenitor might have invaded the A subgenome centromeres after allotetrapolyploid formation. This study serves as a valuable genomic resource for genetic research and breeding of cotton.


Asunto(s)
Genoma de Planta , Gossypium/genética , Polimorfismo de Nucleótido Simple , Mapeo Cromosómico , Cromosomas de las Plantas/genética , ADN de Plantas/genética , Bases de Datos Genéticas , Biblioteca de Genes , Ligamiento Genético , Marcadores Genéticos , Genotipo , Gossypium/clasificación , Secuenciación de Nucleótidos de Alto Rendimiento , Hibridación Fluorescente in Situ , Modelos Moleculares , Poliploidía , Análisis de Secuencia de ADN
5.
Nat Biotechnol ; 33(5): 531-7, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25893781

RESUMEN

Upland cotton is a model for polyploid crop domestication and transgenic improvement. Here we sequenced the allotetraploid Gossypium hirsutum L. acc. TM-1 genome by integrating whole-genome shotgun reads, bacterial artificial chromosome (BAC)-end sequences and genotype-by-sequencing genetic maps. We assembled and annotated 32,032 A-subgenome genes and 34,402 D-subgenome genes. Structural rearrangements, gene loss, disrupted genes and sequence divergence were more common in the A subgenome than in the D subgenome, suggesting asymmetric evolution. However, no genome-wide expression dominance was found between the subgenomes. Genomic signatures of selection and domestication are associated with positively selected genes (PSGs) for fiber improvement in the A subgenome and for stress tolerance in the D subgenome. This draft genome sequence provides a resource for engineering superior cotton lines.


Asunto(s)
Fibra de Algodón , Genoma de Planta , Gossypium/genética , Proteínas de Plantas/genética , Secuencia de Bases , Mapeo Cromosómico , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Plantas/biosíntesis , Análisis de Secuencia de ADN , Tetraploidía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA