Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Clin Sci (Lond) ; 135(3): 429-446, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33458750

RESUMEN

Kallistatin is a multiple functional serine protease inhibitor that protects against vascular injury, organ damage and tumor progression. Kallistatin treatment reduces inflammation and fibrosis in the progression of chronic kidney disease (CKD), but the molecular mechanisms underlying this protective process and whether kallistatin plays an endogenous role are incompletely understood. In the present study, we observed that renal kallistatin levels were significantly lower in patients with CKD. It was also positively correlated with estimated glomerular filtration rate (eGFR) and negatively correlated with serum creatinine level. Unilateral ureteral obstruction (UUO) in animals also led to down-regulation of kallistatin protein in the kidney, and depletion of endogenous kallistatin by antibody injection resulted in aggravated renal fibrosis, which was accompanied by enhanced Wnt/ß-catenin activation. Conversely, overexpression of kallistatin attenuated renal inflammation, interstitial fibroblast activation and tubular injury in UUO mice. The protective effect of kallistatin was due to the suppression of TGF-ß and ß-catenin signaling pathways and subsequent inhibition of epithelial-to-mesenchymal transition (EMT) in cultured tubular cells. In addition, kallistatin could inhibit TGF-ß-mediated fibroblast activation via modulation of Wnt4/ß-catenin signaling pathway. Therefore, endogenous kallistatin protects against renal fibrosis by modulating Wnt/ß-catenin-mediated EMT and fibroblast activation. Down-regulation of kallistatin in the progression of renal fibrosis underlies its potential as a valuable clinical biomarker and therapeutic target in CKD.


Asunto(s)
Insuficiencia Renal Crónica/patología , Serpinas/metabolismo , Obstrucción Ureteral/patología , Vía de Señalización Wnt , Adulto , Anciano , Animales , Modelos Animales de Enfermedad , Femenino , Fibrosis/patología , Humanos , Riñón/patología , Masculino , Ratones Endogámicos BALB C , Persona de Mediana Edad , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta/metabolismo , beta Catenina/metabolismo
2.
J Am Heart Assoc ; 7(21): e009562, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30554563

RESUMEN

Background Kallistatin exerts beneficial effects on organ injury by inhibiting oxidative stress and inflammation. However, the role of kallistatin in atherosclerosis is largely unknown. Here, we investigated the role and mechanisms of kallistatin in patients with coronary artery disease ( CAD ), atherosclerotic plaques of apoE-/- mice, and endothelial activation. Methods and Results Plasma kallistatin levels were analyzed in 453 patients at different stages of CAD . Kallistatin levels were significantly lower in patients with CAD and negatively associated with CAD severity and oxidative stress. Human kallistatin cDNA in an adenoviral vector was injected intravenously into apoE-/- mice after partial carotid ligation, with or without nitric oxide synthase inhibitor (Nω-nitro-L-arginine methyl ester) or sirtuin 1 inhibitor (nicotinamide). Kallistatin gene delivery significantly reduced macrophage deposition, oxidative stress, and plaque volume in the carotid artery, compared with control adenoviral injection. Kallistatin administration increased endothelial nitrous oxide synthase, sirtuin 1, interleukin-10, superoxide dismutase 2, and catalase expression in carotid plaques. The beneficial effects of kallistatin in mice were mitigated by Nω-nitro-L-arginine methyl ester or nicotinamide. Furthermore, human kallistatin protein suppressed tumor necrosis factor-α-induced NADPH oxidase activity and increased endothelial nitrous oxide synthase and sirtuin 1 expression in cultured human endothelial cells. These effects were also abolished by Nω-nitro-L-arginine methyl ester or nicotinamide. Conclusions This was the first study to demonstrate that reduced plasma kallistatin levels in patients are associated with CAD severity and oxidative stress. Kallistatin treatment prevents carotid atherosclerotic plaque formation in mice by stimulating the sirtuin 1/endothelial nitrous oxide synthase pathway. These findings indicate the potential protective effects of kallistatin on atherosclerosis in human subjects and mouse models.


Asunto(s)
Enfermedad de la Arteria Coronaria/sangre , Placa Aterosclerótica/tratamiento farmacológico , Serpinas/sangre , Serpinas/uso terapéutico , Anciano , Animales , Endotelio Vascular/efectos de los fármacos , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Serpinas/farmacología , Índice de Severidad de la Enfermedad
3.
J Cell Mol Med ; 22(9): 4387-4398, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29992759

RESUMEN

Kallistatin, a plasma protein, protects against vascular and organ injury. This study is aimed to investigate the role and mechanism of kallistatin in endothelial senescence. Kallistatin inhibited H2 O2 -induced senescence in human endothelial cells, as indicated by reduced senescence-associated-ß-galactosidase activity, p16INK4a and plasminogen activator inhibitor-1 expression, and elevated telomerase activity. Kallistatin blocked H2 O2 -induced superoxide formation, NADPH oxidase levels and VCAM-1, ICAM-1, IL-6 and miR-34a synthesis. Kallistatin reversed H2 O2 -mediated inhibition of endothelial nitric oxide synthase (eNOS), SIRT1, catalase and superoxide dismutase (SOD)-2 expression, and kallistatin alone stimulated the synthesis of these antioxidant enzymes. Moreover, kallistatin's anti-senescence and anti-oxidant effects were attributed to SIRT1-mediated eNOS pathway. Kallistatin, via interaction with tyrosine kinase, up-regulated Let-7g, whereas Let-7g inhibitor abolished kallistatin's effects on miR-34a and SIRT1/eNOS synthesis, leading to inhibition of senescence, oxidative stress and inflammation. Furthermore, lung endothelial cells isolated from endothelium-specific kallistatin knockout mice displayed marked reduction in mouse kallistatin levels. Kallistatin deficiency in mouse endothelial cells exacerbated senescence, oxidative stress and inflammation compared to wild-type mouse endothelial cells, and H2 O2 treatment further magnified these effects. Kallistatin deficiency caused marked reduction in Let-7g, SIRT1, eNOS, catalase and SOD-1 mRNA levels, and elevated miR-34a synthesis in mouse endothelial cells. These findings indicate that endogenous kallistatin through novel mechanisms protects against endothelial senescence by modulating Let-7g-mediated miR-34a-SIRT1-eNOS pathway.


Asunto(s)
Células Endoteliales/metabolismo , MicroARNs/genética , Óxido Nítrico Sintasa de Tipo III/genética , Serpinas/genética , Sirtuina 1/genética , Animales , Catalasa/genética , Catalasa/metabolismo , Senescencia Celular/efectos de los fármacos , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Regulación de la Expresión Génica , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Pulmón/citología , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Cultivo Primario de Células , Serpina E2/genética , Serpina E2/metabolismo , Serpinas/deficiencia , Serpinas/farmacología , Transducción de Señal , Sirtuina 1/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
4.
Oxid Med Cell Longev ; 2018: 4138560, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30622668

RESUMEN

Kallistatin was identified in human plasma as a tissue kallikrein-binding protein and a serine proteinase inhibitor. Kallistatin exerts pleiotropic effects on angiogenesis, oxidative stress, inflammation, apoptosis, fibrosis, and tumor growth. Kallistatin levels are markedly reduced in patients with coronary artery disease, sepsis, diabetic retinopathy, inflammatory bowel disease, pneumonia, and cancer. Moreover, plasma kallistatin levels are positively associated with leukocyte telomere length in young African Americans, indicating the involvement of kallistatin in aging. In addition, kallistatin treatment promotes vascular repair by increasing the migration and function of endothelial progenitor cells (EPCs). Kallistatin via its heparin-binding site antagonizes TNF-α-induced senescence and superoxide formation, while kallistatin's active site is essential for inhibiting miR-34a synthesis, thus elevating sirtuin 1 (SIRT1)/eNOS synthesis in EPCs. Kallistatin inhibits oxidative stress-induced cellular senescence by upregulating Let-7g synthesis, leading to modulate Let-7g-mediated miR-34a-SIRT1-eNOS signaling pathway in human endothelial cells. Exogenous kallistatin administration attenuates vascular injury and senescence in association with increased SIRT1 and eNOS levels and reduced miR-34a synthesis and NADPH oxidase activity, as well as TNF-α and ICAM-1 expression in the aortas of streptozotocin- (STZ-) induced diabetic mice. Conversely, endothelial-specific depletion of kallistatin aggravates vascular senescence, oxidative stress, and inflammation, with further reduction of Let-7g, SIRT1, and eNOS and elevation of miR-34a in mouse lung endothelial cells. Furthermore, systemic depletion of kallistatin exacerbates aortic injury, senescence, NADPH oxidase activity, and inflammatory gene expression in STZ-induced diabetic mice. These findings indicate that endogenous kallistatin displays a novel role in protection against vascular injury and senescence by inhibiting oxidative stress and inflammation.


Asunto(s)
Inflamación/metabolismo , Estrés Oxidativo/efectos de los fármacos , Serpinas/uso terapéutico , Lesiones del Sistema Vascular/tratamiento farmacológico , Envejecimiento , Animales , Senescencia Celular , Humanos , Ratones , Serpinas/farmacología , Lesiones del Sistema Vascular/patología
5.
Oxid Med Cell Longev ; 2017: 5025610, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28744338

RESUMEN

Kallistatin is an endogenous protein that regulates differential signaling pathways and a wide spectrum of biological activities via its two structural elements: an active site and a heparin-binding domain. Kallistatin via its heparin-binding site inhibits vascular inflammation and oxidative stress by antagonizing TNF-α-induced NADPH oxidase activity, NF-κB activation, and inflammatory gene expression in endothelial cells. Moreover, kallistatin via its active site inhibits microRNA-34a (miR-34a) synthesis and stimulates eNOS and SIRT1 expression in endothelial progenitor cells, whereas its heparin-binding site is crucial for blocking TNF-α-induced miR-21 expression and oxidative stress, thus reducing cellular senescence. By downregulating miR-34a and miR-21 expression, kallistatin treatment attenuates oxidative damage and aortic senescence in streptozotocin-induced diabetic mice and extends Caenorhabditis elegans lifespan under stress conditions. Likewise, kallistatin through the heparin-binding site inhibits TGF-ß-induced miR-21 synthesis and oxidative stress in endothelial cells, resulting in inhibition of endothelial-mesenchymal transition, a process contributing to fibrosis and cancer. Furthermore, kallistatin's active site is essential for stimulating miR-34a and p53 expression and inhibiting the miR-21-Akt-Bcl-2 signaling pathway, thus inducing apoptosis in breast cancer cells. These findings reveal novel mechanisms of kallistatin in protection against senescence, aging, and cancer development by modulating miR-34a and miR-21 levels and inhibiting oxidative stress.


Asunto(s)
Envejecimiento/metabolismo , MicroARNs/metabolismo , Neoplasias/metabolismo , ARN Neoplásico/metabolismo , Serpinas/metabolismo , Envejecimiento/efectos de los fármacos , Envejecimiento/patología , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Humanos , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Estrés Oxidativo/efectos de los fármacos , ARN de Helminto/metabolismo , Serpinas/uso terapéutico
6.
Biol Chem ; 398(12): 1309-1317, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-28742513

RESUMEN

Kallistatin, via its two structural elements - an active site and a heparin-binding domain - displays a double-edged function in angiogenesis, apoptosis and oxidative stress. First, kallistatin has both anti-angiogenic and pro-angiogenic effects. Kallistatin treatment attenuates angiogenesis and tumor growth in cancer-bearing mice. Kallistatin via its heparin-binding site inhibits angiogenesis by blocking vascular endothelial growth factor (VEGF)-induced growth, migration and adhesion of endothelial cells. Conversely, kallistatin via the active site promotes neovascularization by stimulating VEGF levels in endothelial progenitor cells. Second, kallistatin inhibits or induces apoptosis depending on cell types. Kallistatin attenuates organ injury and apoptosis in animal models, and its heparin-binding site is essential for blocking tumor necrosis factor (TNF)-α-induced apoptosis in endothelial cells. However, kallistatin via its active site induces apoptosis in breast cancer cells by up-regulating miR-34a and down-regulating miR-21 and miR-203 synthesis. Third, kallistatin can act as an antioxidant or pro-oxidant. Kallistatin treatment inhibits oxidative stress and tissue damage in animal models and cultured cells. Kallistatin via the heparin-binding domain antagonizes TNF-α-induced oxidative stress, whereas its active site is crucial for stimulating antioxidant enzyme expression. In contrast, kallistatin provokes oxidant formation, leading to blood pressure reduction and bacterial killing. Kallistatin-mediated vasodilation is partly mediated by H2O2, as the effect is abolished by the antioxidant enzyme catalase. Moreover, kallistatin exerts a bactericidal effect by stimulating superoxide production in neutrophils of mice with microbial infection as well as in cultured immune cells. Thus, kallistatin's dual roles in angiogenesis, apoptosis and oxidative stress contribute to its beneficial effects in various diseases.


Asunto(s)
Apoptosis , Neovascularización Patológica/metabolismo , Estrés Oxidativo , Serpinas/metabolismo , Animales , Humanos
7.
Aging Cell ; 16(4): 837-846, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28544111

RESUMEN

Kallistatin, an endogenous protein, protects against vascular injury by inhibiting oxidative stress and inflammation in hypertensive rats and enhancing the mobility and function of endothelial progenitor cells (EPCs). We aimed to determine the role and mechanism of kallistatin in vascular senescence and aging using cultured EPCs, streptozotocin (STZ)-induced diabetic mice, and Caenorhabditis elegans (C. elegans). Human kallistatin significantly decreased TNF-α-induced cellular senescence in EPCs, as indicated by reduced senescence-associated ß-galactosidase activity and plasminogen activator inhibitor-1 expression, and elevated telomerase activity. Kallistatin blocked TNF-α-induced superoxide levels, NADPH oxidase activity, and microRNA-21 (miR-21) and p16INK4a synthesis. Kallistatin prevented TNF-α-mediated inhibition of SIRT1, eNOS, and catalase, and directly stimulated the expression of these antioxidant enzymes. Moreover, kallistatin inhibited miR-34a synthesis, whereas miR-34a overexpression abolished kallistatin-induced antioxidant gene expression and antisenescence activity. Kallistatin via its active site inhibited miR-34a, and stimulated SIRT1 and eNOS synthesis in EPCs, which was abolished by genistein, indicating an event mediated by tyrosine kinase. Moreover, kallistatin administration attenuated STZ-induced aortic senescence, oxidative stress, and miR-34a and miR-21 synthesis, and increased SIRT1, eNOS, and catalase levels in diabetic mice. Furthermore, kallistatin treatment reduced superoxide formation and prolonged wild-type C. elegans lifespan under oxidative or heat stress, although kallistatin's protective effect was abolished in miR-34 or sir-2.1 (SIRT1 homolog) mutant C. elegans. Kallistatin inhibited miR-34, but stimulated sir-2.1 and sod-3 synthesis in C. elegans. These in vitro and in vivo studies provide significant insights into the role and mechanism of kallistatin in vascular senescence and aging by regulating miR-34a-SIRT1 pathway.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Células Progenitoras Endoteliales/efectos de los fármacos , MicroARNs/genética , Serpinas/farmacología , Sirtuina 1/genética , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Catalasa/genética , Catalasa/metabolismo , Células Cultivadas , Senescencia Celular/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Células Progenitoras Endoteliales/citología , Células Progenitoras Endoteliales/metabolismo , Genisteína/farmacología , Humanos , Masculino , Ratones , MicroARNs/antagonistas & inhibidores , MicroARNs/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Inhibidor 1 de Activador Plasminogénico/genética , Inhibidor 1 de Activador Plasminogénico/metabolismo , Sirtuina 1/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo , Estreptozocina , Superóxidos/antagonistas & inhibidores , Superóxidos/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/farmacología , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
8.
PLoS One ; 12(5): e0178387, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28542440

RESUMEN

Kallistatin, an endogenous serine proteinase inhibitor, is protective against sepsis in animal models. The aim of this study was to determine the plasma concentration of kallistatin in intensive care unit (ICU) patients with severe sepsis and septic shock and to determine their potential correlation with disease severity and outcomes. We enrolled 86 ICU patients with severe sepsis and septic shock. Their plasma concentrations of kallistatin, kallikrein, tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, and IL-8 were measured by enzyme-linked immunosorbent assay. The association of kallistatin levels with disease severity and patient outcomes was evaluated. The relationship between kallistatin and other biomarkers was also analyzed. Plasma kallistatin levels on day 1 of ICU admission were lower in patients with septic shock compared with patients with severe sepsis (p = 0.004). Twenty-nine patients who died in the hospital had significantly lower day 1 kallistatin levels than patients who survived (p = 0.031). Using the optimal cutoff value (4 µg/ml) of day 1 plasma kallistatin determined by receiver operating characteristic curves for 60-day mortality, we found that high kallistatin levels were associated with a preferable 60-day survival (p = 0.012) by Kaplan-Meier analysis and lower Sequential Organ Failure Assessment (SOFA) scores over the first 5 days in the ICU (p = 0.001). High kallistatin levels were also independently associated with a decreased risk of septic shock, the development of acute respiratory distress syndrome, and positive blood cultures. In addition, there were inverse correlations between day 1 kallistatin levels and the levels of TNF-α, IL-1ß, IL-6, and C-reactive protein, and SOFA scores on day 1. Our results indicate that during severe sepsis and septic shock, a decrease in plasma concentrations of kallistatin reflects increased severity and poorer outcome of disease.


Asunto(s)
Sepsis/sangre , Serpinas/sangre , Choque Séptico/sangre , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Enfermedad Crítica , Femenino , Humanos , Unidades de Cuidados Intensivos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Pronóstico , Modelos de Riesgos Proporcionales , Estudios Prospectivos , Sepsis/mortalidad , Índice de Severidad de la Enfermedad , Choque Séptico/mortalidad , Taiwán/epidemiología
9.
Crit Rev Oncol Hematol ; 113: 71-78, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28427524

RESUMEN

Kallistatin was first identified in human plasma as a tissue kallikrein-binding protein and a serine proteinase inhibitor. Kallistatin via its two structural elements regulates differential signaling cascades, and thus a wide spectrum of biological functions. Kallistatin's active site is essential for: inhibiting tissue kallikrein's activity; stimulating endothelial nitric oxide synthase and sirtuin 1 expression and activation; and modulating the synthesis of the microRNAs, miR-34a, miR-21 and miR-203. Kallistatin's heparin-binding site is crucial for antagonizing the signaling pathways of vascular endothelial growth factor, tumor necrosis factor-α, Wnt, transforming growth factor-ß and epidermal growth factor. Circulating kallistatin levels are markedly reduced in patients with prostate and colon cancer. Kallistatin administration attenuates angiogenesis, inflammation, tumor growth and invasion in animal models and cultured cells. Therefore, tumor progression may be substantially suppressed by kallistatin's pleiotropic activities. In this review, we will discuss the role and mechanisms of kallistatin in the regulation of cancer development.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Serpinas/uso terapéutico , Antineoplásicos/farmacología , Progresión de la Enfermedad , Femenino , Humanos , Inflamación/tratamiento farmacológico , Masculino , MicroARNs/efectos de los fármacos , Neoplasias/metabolismo , Neoplasias/patología , Neovascularización Patológica/tratamiento farmacológico , Serpinas/farmacología , Transducción de Señal/efectos de los fármacos
10.
Oxid Med Cell Longev ; 2017: 5262958, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29387292

RESUMEN

Oxidative stress has both detrimental and beneficial effects. Kallistatin, a key component of circulation, protects against vascular and organ injury. Serum kallistatin levels are reduced in patients and animal models with hypertension, diabetes, obesity, and cancer. Reduction of kallistatin levels is inversely associated with elevated thiobarbituric acid-reactive substance. Kallistatin therapy attenuates oxidative stress and increases endothelial nitric oxide synthase (eNOS) and NO levels in animal models. However, kallistatin administration increases reactive oxygen species formation in immune cells and bacterial killing activity in septic mice. High oxygen inhibits kallistatin expression via activating the JNK-FOXO1 pathway in endothelial cells. Conversely, mild oxygen/hyperoxia stimulates kallistatin, eNOS, and hypoxia-inducible factor-1 (HIF-1) expression in endothelial cells and in the kidney of normal mice. Likewise, kallistatin stimulates eNOS and HIF-1, and kallistatin antisense RNA abolishes oxygen-induced eNOS and HIF-1 expression, indicating a role of kallistatin in mediating mild oxygen's stimulation on antioxidant genes. Protein kinase C (PKC) activation mediates HIF-1-induced eNOS synthesis in response to hyperoxia/exercise; thus, mild oxygen through PKC activation stimulates kallistatin-mediated HIF-1 and eNOS synthesis. In summary, oxidative stress induces down- or upregulation of kallistatin expression, depending on oxygen concentration, and kallistatin plays a novel role in mediating oxygen/exercise-induced HIF-1-eNOS-NO pathway.


Asunto(s)
Regulación de la Expresión Génica , Factor 1 Inducible por Hipoxia/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/metabolismo , Oxígeno/metabolismo , Serpinas/biosíntesis , Transducción de Señal , Animales , Humanos , Estrés Oxidativo
11.
Exp Cell Res ; 340(2): 305-14, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26790955

RESUMEN

Kallistatin is an endogenous protein that regulates differential signaling pathways and biological functions. Our previous studies showed that kallistatin gene therapy inhibited angiogenesis, tumor growth and metastasis in mice, and kallistatin protein suppressed Wnt-mediated growth, migration and invasion by blocking Wnt/ß-catenin signaling pathway in breast cancer cells. In this study, we show that kallistatin reduced cell viability, and increased apoptotic cell death and caspase-3 activity in MDA-MB-231 breast cancer cells. Kallistatin also induced cancer cell autophagy, as evidenced by increased LC3B levels and elevated Atg5 and Beclin-1 expression; however, co-administration of Wnt or PPARγ antagonist GW9662 abolished these effects. Moreover, kallistatin via its heparin-binding site antagonized Wnt3a-induced cancer cell proliferation and increased PPARγ expression. Kallistatin inhibited oncogenic miR-21 synthesis associated with reduced Akt phosphorylation and Bcl-2 synthesis, but increased BAX expression. Kallistatin via PKC-ERK activation reduced miR-203 levels, leading to increased expression of suppressor of cytokine signaling 3 (SOCS3), a tumor suppressor. Conversely, kallistatin stimulated expression of the tumorigenic suppressors miR-34a and p53. Kallistatin's active site is essential for suppressing miR-21 and miR-203, and stimulating miR-34a and SOCS3 expression. This is the first study to demonstrate that kallistatin's heparin-binding site is essential for inhibiting Wnt-mediated effects, and its active site plays a key role in regulating miR-21, miR-203, miR-34a and SOCS3 synthesis in breast cancer cells. These findings reveal novel mechanisms of kallistatin in inducing apoptosis and autophagy in breast cancer cells, thus inhibiting tumor progression by regulation of Wnt/PPARγ signaling, as well as miR-21, miR-203 and miR-34a synthesis.


Asunto(s)
Apoptosis/genética , Autofagia/genética , Neoplasias de la Mama/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , MicroARNs/genética , Serpinas/metabolismo , Vía de Señalización Wnt/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/fisiología , Humanos , MicroARNs/biosíntesis
12.
Sci Rep ; 5: 12463, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26198099

RESUMEN

Kallistatin, an endogenous plasma protein, exhibits pleiotropic properties in inhibiting inflammation, oxidative stress and apoptosis, as evidenced in various animal models and cultured cells. Here, we demonstrate that kallistatin levels were positively correlated with the concentration of total protein in bronchoalveolar lavage fluids (BALF) from patients with sepsis-related acute respiratory distress syndrome (ARDS), indicating a compensatory mechanism. Lower ratio of kallistatin to total protein in BALF showed a significant trend toward elevated neutrophil counts (P = 0.002) in BALF and increased mortality (P = 0.046). In lipopolysaccharide (LPS)-treated mice, expression of human kallistatin in lung by gene transfer with human kallistatin-encoding plasmid ameliorated acute lung injury (ALI) and reduced cytokine/chemokine levels in BALF. These mice exhibited attenuated lung epithelial apoptosis and decreased Fas/FasL expression compared to the control mice. Mouse survival was improved by kallistatin gene transfer or recombinant human kallistatin treatment after LPS challenge. In LPS-stimulated A549 human lung epithelial cells, kallistatin attenuated apoptosis, down-regulated Fas/FasL signaling, suppressed intracellular reactive oxygen species (ROS) and inhibited ROS-mediated NF-κB activation and inflammation. Furthermore, LPS-induced apoptosis was blocked by antioxidant N-acetylcysteine or NF-κB inhibitor via down-regulating Fas expression. These findings suggest the therapeutic potential of kallistatin for sepsis-related ALI/ARDS.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/etiología , Apoptosis/efectos de los fármacos , Inflamación/tratamiento farmacológico , Sepsis/complicaciones , Serpinas/farmacología , Acetilcisteína/metabolismo , Animales , Líquido del Lavado Bronquioalveolar , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Proteína Ligando Fas/metabolismo , Humanos , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Ratones , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/metabolismo , Transducción de Señal/efectos de los fármacos , Receptor fas/metabolismo
13.
Exp Cell Res ; 337(1): 103-10, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26156753

RESUMEN

Kallistatin, an endogenous protein, consists of two structural elements: active site and heparin-binding domain. Kallistatin exerts beneficial effects on fibrosis by suppressing transforming growth factor (TGF)-ß synthesis in animal models. TGF-ß is the most potent inducer of endothelial-mesenchymal transition (EndMT), which contributes to fibrosis and cancer. MicroRNA (miR)-21 is an important player in organ fibrosis and tumor invasion. Here we investigated the potential role of kallistatin in EndMT via modulation of miR-21 in endothelial cells. Human kallistatin treatment blocked TGF-ß-induced EndMT, as evidenced by morphological changes as well as increased endothelial and reduced mesenchymal marker expression. Kallistatin also inhibited TGF-ß-mediated reactive oxygen species (ROS) formation and NADPH oxidase expression and activity. Moreover, kallistatin antagonized TGF-ß-induced miR-21 and Snail1 synthesis, Akt phosphorylation, NF-κB activation, and matrix metalloproteinase 2 (MMP2) synthesis and activation. Kallistatin via its heparin-binding site blocked TGF-ß-induced miR-21, Snail1 expression, and ROS formation, as wild-type kallistatin, but not heparin-binding site mutant kallistatin, exerted the effect. Conversely, kallistatin through its active site stimulated the synthesis of endothelial nitric oxide synthase (eNOS), sirtuin 1 (Sirt1) and forkhead box O1 (FoxO1); however, these effects were blocked by genistein, a tyrosine kinase inhibitor. This is the first study to demonstrate that kallistatin's heparin-binding site is crucial for preventing TGF-ß-induced miR-21 and oxidative stress, while its active site is key for stimulating the expression of antioxidant genes via interaction with an endothelial surface tyrosine kinase. These findings reveal novel mechanisms of kallistatin in protection against fibrosis and cancer by suppressing EndMT.


Asunto(s)
Células Endoteliales/fisiología , Transición Epitelial-Mesenquimal , MicroARNs/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Serpinas/fisiología , Factor de Crecimiento Transformador beta/fisiología , Dominio Catalítico , Expresión Génica , Regulación Enzimológica de la Expresión Génica , Células HEK293 , Humanos , MicroARNs/genética , NADPH Oxidasas/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción de la Familia Snail , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Crit Care ; 19: 200, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25930108

RESUMEN

INTRODUCTION: Kallistatin levels in the circulation are reduced in patients with sepsis and liver disease. Transgenic mice expressing kallistatin are resistant to lipopolysaccharide (LPS)-induced mortality. Here, we investigated the effect of kallistatin on survival and organ damage in mouse models of established sepsis. METHODS: Mice were rendered septic by cecal ligation and puncture (CLP), or endotoxemic by LPS injection. Recombinant human kallistatin was administered intravenously six hours after CLP, or intraperitoneally four hours after LPS challenge. The effect of kallistatin treatment on organ damage was examined one day after sepsis initiation, and mouse survival was monitored for four to six days. RESULTS: Human kallistatin was detected in mouse serum of kallistatin-treated mice. Kallistatin significantly reduced CLP-induced renal injury as well as blood urea nitrogen, serum creatinine, interleukin-6 (IL-6), and high mobility group box-1 (HMGB1) levels. In the lung, kallistatin decreased malondialdehyde levels and HMGB1 and toll-like receptor-4 (TLR4) synthesis, but increased suppressor of cytokine signaling-3 (SOCS3) expression. Moreover, kallistatin attenuated liver injury, serum alanine transaminase (ALT) levels and hepatic tumor necrosis factor-α (TNF-α) synthesis. Furthermore, delayed kallistatin administration improved survival in CLP mice by 38%, and LPS-treated mice by 42%. In LPS-induced endotoxemic mice, kallistatin attenuated kidney damage in association with reduced serum creatinine, IL-6 and HMGB1 levels, and increased renal SOCS3 expression. Kallistatin also decreased liver injury in conjunction with diminished serum ALT levels and hepatic TNF-α and TLR4 expression. In cultured macrophages, kallistatin through its active site increased SOCS3 expression, but this effect was blocked by inhibitors of tyrosine kinase, protein kinase C and extracellular signal-regulated kinase (ERK), indicating that kallistatin stimulates a tyrosine-kinase-protein kinase C-ERK signaling pathway. CONCLUSIONS: This is the first study to demonstrate that delayed human kallistatin administration is effective in attenuating multi-organ injury, inflammation and mortality in mouse models of polymicrobial infection and endotoxemia. Thus, kallistatin therapy may provide a promising approach for the treatment of sepsis in humans.


Asunto(s)
Lesión Renal Aguda/prevención & control , Hígado/efectos de los fármacos , Proteínas Recombinantes/farmacología , Sepsis/tratamiento farmacológico , Serpinas/farmacología , Alanina Transaminasa/sangre , Animales , Nitrógeno de la Urea Sanguínea , Células Cultivadas , Creatinina/sangre , Modelos Animales de Enfermedad , Endotoxemia/metabolismo , Proteína HMGB1/metabolismo , Humanos , Interleucina-6/sangre , Hígado/metabolismo , Pulmón/metabolismo , Macrófagos/metabolismo , Malondialdehído/metabolismo , Ratones , Sepsis/metabolismo , Serpinas/sangre , Proteína 3 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
15.
J Am Heart Assoc ; 3(5): e001194, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25237049

RESUMEN

BACKGROUND: Kallistatin exerts pleiotropic activities in inhibiting inflammation, apoptosis, and oxidative stress in endothelial cells. Because endothelial progenitor cells (EPCs) play a significant role in vascular repair, we investigated whether kallistatin contributes to vascular regeneration by enhancing EPC migration and function. METHODS AND RESULTS: We examined the effect of endogenous kallistatin on circulating EPCs in a rat model of vascular injury and the mechanisms of kallistatin on EPC mobility and function in vitro. In deoxycorticosterone acetate-salt hypertensive rats, we found that kallistatin depletion augmented glomerular endothelial cell loss and diminished circulating EPC number, whereas kallistatin gene delivery increased EPC levels. In cultured EPCs, kallistatin significantly reduced tumor necrosis factor-α-induced apoptosis and caspase-3 activity, but kallistatin's effects were blocked by phosphoinositide 3-kinase inhibitor (LY294002) and nitric oxide (NO) synthase inhibitor (l-NAME). Kallistatin stimulated the proliferation, migration, adhesion and tube formation of EPCs; however, kallistatin's actions were abolished by LY294002, l-NAME, endothelial NO synthase-small interfering RNA, constitutively active glycogen synthase kinase-3ß, or vascular endothelial growth factor antibody. Kallistatin also increased Akt, glycogen synthase kinase-3ß, and endothelial NO synthase phosphorylation; endothelial NO synthase, vascular endothelial growth factor, and matrix metalloproteinase-2 synthesis and activity; and NO and vascular endothelial growth factor levels. Kallistatin's actions on phosphoinositide 3-kinase-Akt signaling were blocked by LY294002, l-NAME, and anti-vascular endothelial growth factor antibody. CONCLUSIONS: Endogenous kallistatin plays a novel role in protection against vascular injury in hypertensive rats by promoting the mobility, viability, and vasculogenic capacity of EPCs via enhancing NO and vascular endothelial growth factor levels through activation of phosphoinositide 3-kinase-Akt signaling. Kallistatin therapy may be a promising approach in the treatment of vascular diseases.


Asunto(s)
Apoptosis/fisiología , Células Progenitoras Endoteliales/metabolismo , Endotelio Vascular/fisiología , Neovascularización Fisiológica/fisiología , Serpinas/metabolismo , Análisis de Varianza , Animales , Biomarcadores/metabolismo , Movimiento Celular/fisiología , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Modelos Animales de Enfermedad , Células Progenitoras Endoteliales/fisiología , Citometría de Flujo , Técnicas In Vitro , Masculino , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Sensibilidad y Especificidad
16.
PLoS One ; 9(3): e93304, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24667691

RESUMEN

Hepatic ischemia/reperfusion (l/R) injury continues to be a critical problem. The role of nitric oxide in liver I/R injury is still controversial. This study examines the effect of endothelial nitric oxide synthase (eNOS) over-expression on hepatic function following I/R. Adenovirus expressing human eNOS (Ad-eNOS) was administered by tail vein injection into C57BL/6 mice. Control mice received either adenovirus expressing LacZ or vehicle only. Sixty minutes of total hepatic ischemia was performed 3 days after adenovirus treatment, and mice were sacrificed after 6 or 24 hrs of reperfusion to assess hepatic injury. eNOS over expression caused increased liver injury as evidenced by elevated AST and ALT levels and decreased hepatic ATP content. While necrosis was not pervasive in any group, TUNEL demonstrated significantly increased apoptosis in Ad-eNOS infected livers. Western blotting demonstrated increased levels of protein nitration and upregulation of the pro-apoptotic proteins bax and p53. Our data suggest that over-expression of eNOS is detrimental in the setting of hepatic I/R.


Asunto(s)
Adenoviridae/genética , Hígado/enzimología , Hígado/lesiones , Óxido Nítrico Sintasa de Tipo III/genética , Daño por Reperfusión/enzimología , Adenosina Trifosfato/metabolismo , Alanina Transaminasa/sangre , Animales , Apoptosis , Aspartato Aminotransferasas/sangre , Expresión Génica , Humanos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología
17.
Immunology ; 142(2): 216-26, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24467264

RESUMEN

Kallistatin, a plasma protein, has been shown to exert multi-factorial functions including inhibition of inflammation, oxidative stress and apoptosis in animal models and cultured cells. Kallistatin levels are reduced in patients with sepsis and in lipopolysaccharide (LPS)-induced septic mice. Moreover, transgenic mice expressing kallistatin are more resistant to LPS-induced mortality. Here, we investigated the effects of human kallistatin on organ injury and survival in a mouse model of polymicrobial sepsis. In this study, mice were injected intravenously with recombinant kallistatin (KS3, 3 mg/kg; or KS10, 10 mg/kg body weight) and then rendered septic by caecal ligation and puncture 30 min later. Kallistatin administration resulted in a > 10-fold reduction of peritoneal bacterial counts, and significantly decreased serum tumour necrosis factor-α, interleukin-6 and high mobility group box-1 (HMGB1) levels. Kallistatin also inhibited HMGB1 and toll-like receptor-4 gene expression in the lung and kidney. Administration of kallistatin attenuated renal damage and decreased blood urea nitrogen and serum creatinine levels, but increased endothelial nitric oxide synthase and nitric oxide levels in the kidney. In cultured endothelial cells, human kallistatin via its heparin-binding site inhibited HMGB1-induced nuclear factor-κB activation and inflammatory gene expression. Moreover, kallistatin significantly reduced apoptosis and caspase-3 activity in the spleen. Furthermore, kallistatin treatment markedly improved the survival of septic mice by 23% (KS3) and 41% (KS10). These results indicate that kallistatin is a unique protecting agent in sepsis-induced organ damage and mortality by inhibiting inflammation and apoptosis, as well as enhancing bacterial clearance in a mouse model of polymicrobial sepsis.


Asunto(s)
Modelos Animales de Enfermedad , Riñón/efectos de los fármacos , Riñón/patología , Sepsis/tratamiento farmacológico , Sepsis/patología , Serpinas/farmacología , Serpinas/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Nitrógeno de la Urea Sanguínea , Caspasa 3/metabolismo , Creatina/sangre , Proteína HMGB1/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Inflamación/patología , Inyecciones Intravenosas , Interleucina-6/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Ratones , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Serpinas/administración & dosificación , Bazo/efectos de los fármacos , Bazo/metabolismo , Tasa de Supervivencia , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
18.
Antimicrob Agents Chemother ; 57(11): 5366-72, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23959316

RESUMEN

Group A streptococcus (GAS) infection may cause severe life-threatening diseases, including necrotizing fasciitis and streptococcal toxic shock syndrome. Despite the availability of effective antimicrobial agents, there has been a worldwide increase in the incidence of invasive GAS infection. Kallistatin (KS), originally found to be a tissue kallikrein-binding protein, has recently been shown to possess anti-inflammatory properties. However, its efficacy in microbial infection has not been explored. In this study, we transiently expressed the human KS gene by hydrodynamic injection and investigated its anti-inflammatory and protective effects in mice via air pouch inoculation of GAS. The results showed that KS significantly increased the survival rate of GAS-infected mice. KS treatment reduced local skin damage and bacterial counts compared with those in mice infected with GAS and treated with a control plasmid or saline. While there was a decrease in immune cell infiltration of the local infection site, cell viability and antimicrobial factors such as reactive oxygen species actually increased after KS treatment. The efficiency of intracellular bacterial killing in neutrophils was directly enhanced by KS administration. Several inflammatory cytokines, including tumor necrosis factor alpha, interleukin 1ß, and interleukin 6, in local infection sites were reduced by KS. In addition, KS treatment reduced vessel leakage, bacteremia, and liver damage after local infection. Therefore, our study demonstrates that KS provides protection in GAS-infected mice by enhancing bacterial clearance, as well as reducing inflammatory responses and organ damage.


Asunto(s)
Inmunomodulación , Neutrófilos/inmunología , Serpinas/inmunología , Infecciones Estreptocócicas/inmunología , Streptococcus pyogenes/inmunología , Animales , Expresión Génica , Humanos , Interleucina-1beta/antagonistas & inhibidores , Interleucina-1beta/biosíntesis , Interleucina-6/antagonistas & inhibidores , Interleucina-6/biosíntesis , Ratones , Neutrófilos/microbiología , Serpinas/genética , Serpinas/metabolismo , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/mortalidad , Streptococcus pyogenes/patogenicidad , Análisis de Supervivencia , Transgenes , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/biosíntesis
19.
Clin Chim Acta ; 423: 90-8, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-23639635

RESUMEN

BACKGROUND: The impairment of the tissue kallikrein (KLK1)-kinin system (KKS) may result in atheroma development. However, it remains unclear if the KKS correlates with coronary artery disease (CAD). METHODS: KLK1, VEGF and hs-CRP plasma levels were measured in 100 patients newly diagnosed with CAD and 33 CAD-free controls. Patients were followed-up for the incidence of major adverse cardiovascular events (MACE) for 8months to 2y. Gene expression of KLK1, CD105 and CD68 was assessed in human coronary endarterectomy specimens. RESULTS: Patients with CAD and acute coronary syndrome (ACS) had significantly elevated KLK1 levels. In addition, the concentration of hs-CRP was increased in ACS patients. A strong positive correlation between plasma KLK1 and the severity of CAD was also demonstrated, suggesting that high KLK1 levels are an independent predictor for CAD. MACE during follow-up significantly correlated with KLK1 levels in the ACS group. Unstable coronary plaques demonstrated markedly increased KLK1 levels, macrophage infiltration and high microvessel density. Additionally, KLK1 staining primarily colocalized with macrophages. CONCLUSIONS: In the present study, plasma KLK1 levels were a useful predictor for the presence and extent of CAD. More extensive studies are, however, necessary in order to validate these findings.


Asunto(s)
Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/patología , Calicreínas de Tejido/sangre , Anciano , Proteína C-Reactiva/análisis , Femenino , Regulación de la Expresión Génica , Humanos , Inmunohistoquímica , Macrófagos/metabolismo , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Índice de Severidad de la Enfermedad , Calicreínas de Tejido/genética , Calicreínas de Tejido/metabolismo , Factor A de Crecimiento Endotelial Vascular/sangre
20.
Circ J ; 77(8): 2134-44, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23697984

RESUMEN

BACKGROUND: Genetically modified mesenchymal stem cells (MSCs) are a promising approach to the treatment of cardiac injury after myocardial infarction (MI). METHODS AND RESULTS: Rat MSCs were transduced with adenovirus containing human tissue kallikrein (TK) gene (TK-MSCs), and they secreted human TK into culture medium. Cultured TK-MSCs were more resistant to hypoxia-induced apoptosis and exhibited reduced caspase-3 activity compared to control GFP-MSCs. The effect of TK-MSC injection on cardiac injury was evaluated in rats at 1 and 14 days after MI. At 1 day after MI, human TK expression in the myocardium was associated with improved cardiac function and decreased inflammatory cell accumulation, proinflammatory gene expression and apoptosis. The beneficial effect of TK-MSCs against apoptosis was verified in cultured cardiomyocytes, as TK-MSC-conditioned medium suppressed hypoxia-induced apoptosis and caspase-3 activity, and increased Akt phosphorylation. At 2 weeks after MI, TK-MSCs improved cardiac function, decreased infarct size, attenuated cardiac remodeling, and promoted neovascularization, as compared to GFP-MSCs. Furthermore, the TK-MSC-conditioned medium, containing elevated vascular endothelial growth factor levels, stimulated the proliferation, migration and tube formation of cultured human endothelial cells. CONCLUSIONS: Our results indicate that TK-modified MSCs provide enhanced protection against cardiac injury, apoptosis and inflammation, and promote neovascularization after MI, leading to cardiac function improvement.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Infarto del Miocardio/terapia , Isquemia Miocárdica/prevención & control , Neovascularización Fisiológica , Calicreínas de Tejido/biosíntesis , Adenoviridae , Animales , Apoptosis/genética , Caspasa 3/genética , Caspasa 3/metabolismo , Humanos , Células Madre Mesenquimatosas/patología , Infarto del Miocardio/complicaciones , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Isquemia Miocárdica/etiología , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Isquemia Miocárdica/fisiopatología , Ratas , Ratas Sprague-Dawley , Calicreínas de Tejido/genética , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA