Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Mol Biol Rep ; 51(1): 449, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38536562

RESUMEN

BACKGROUND: Osteogenesis imperfecta (OI) is a heritable connective tissue disorder characterized by bone deformities, fractures and reduced bone mass. OI can be inherited as a dominant, recessive, or X-linked disorder. The mutational spectrum has shown that autosomal dominant mutations in the type I collagen-encoding genes are responsible for OI in 85% of the cases. Apart from collagen genes, mutations in more than 20 other genes, such as CRTAP, CREB3L1, MBTPS2, P4HB, SEC24D, SPARC, FKBP10, LEPRE1, PLOD2, PPIB, SERPINF1, SERPINH1, SP7, WNT1, BMP1, TMEM38B, and IFITM5 have been reported in OI. METHODS AND RESULTS: To understand the genetic cause of OI in four cases, we conducted whole exome sequencing, followed by Sanger sequencing. In case #1, we identified a novel c.506delG homozygous mutation in the WNT1 gene, resulting in a frameshift and early truncation of the protein at the 197th amino acid. In cases #2, 3 and 4, we identified a heterozygous c.838G > A mutation in the COL1A2 gene, resulting in a p.Gly280Ser substitution. The clinvar frequency of this mutation is 0.000008 (GnomAD-exomes). This mutation has been identified by other studies as well and appears to be a mutational hot spot. These pathogenic mutations were found to be absent in 96 control samples analyzed for these sites. The presence of these mutations in the cases, their absence in controls, their absence or very low frequency in general population, and their evaluation using various in silico prediction tools suggested their pathogenic nature. CONCLUSIONS: Mutations in the WNT1 and COL1A2 genes explain these cases of osteogenesis imperfecta.


Asunto(s)
Colágeno Tipo I , Osteogénesis Imperfecta , Proteína Wnt1 , Humanos , Colágeno Tipo I/genética , Secuenciación del Exoma , Mutación/genética , Osteogénesis Imperfecta/genética , Proteína Wnt1/genética
2.
J Endocrinol ; 261(2)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38492310

RESUMEN

Estrogen deficiency is one of the main causes for postmenopausal osteoporosis. Current osteoporotic therapies are of high cost and associated with serious side effects. So there is an urgent need for cost-effective anti-osteoporotic agents. Anti-osteoporotic activity of Litsea glutinosa extract (LGE) is less explored. Moreover, its role in fracture healing and mechanism of action is still unknown. In the present study we explore the osteoprotective potential of LGE in osteoblast cells and fractured and ovariectomized (Ovx) mice models. Alkaline phosphatase (ALP), MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and mineralization assays revealed that LGE treatment increased osteoblast cell differentiation, viability and mineralization. LGE treatment at 0.01 µg increased the expression of BMP2, PSMAD, RUNX2 and type 1 col. LGE also mitigated RANKL-induced osteoclastogenesis. Next, drill hole injury Balb/C mice model was treated with LGE for 12 days. Micro-CT analysis and Calcein labeling at the fracture site showed that LGE (20 mg/kg) enhanced new bone formation and bone regeneration, also increased expression of BMP2/SMAD1 signaling genes at fracture site. Ovx mice were treated with LGE for 1 month. µCT analysis indicated that the treatment of LGE at 20 mg/kg dose prevented the alteration in bone microarchitecture and maintained bone mineral density and bone mineral content. Treatment also increased bone strength and restored the bone turnover markers. Furthermore, in bone samples, LGE increased osteogenesis by enhancing the expression of BMP2/SMAD1 signaling components and decreased osteoclast number and surface. We conclude that LGE promotes osteogenesis via modulating the BMP2/SMAD1 signaling pathway. The study advocates the therapeutic potential of LGE in osteoporosis treatment.


Asunto(s)
Enfermedades Óseas Metabólicas , Litsea , Ratones , Animales , Femenino , Humanos , Curación de Fractura , Osteogénesis , Enfermedades Óseas Metabólicas/metabolismo , Transducción de Señal , Osteoblastos/metabolismo , Diferenciación Celular , Ovariectomía , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 2/farmacología
3.
J Cell Physiol ; 239(5): e31217, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38327035

RESUMEN

A few ubiquitin ligases have been shown to target Runx2, the key osteogenic transcription factor and thereby regulate bone formation. The regulation of Runx2 expression and function are controlled both at the transcriptional and posttranslational levels. Really interesting new gene (RING) finger ubiquitin ligases of which RNF138 is a member are important players in the ubiquitin-proteasome system, contributing to the regulation of protein turnover and cellular processes. Here, we demonstrated that RNF138 negatively correlated with Runx2 protein levels in osteopenic ovariectomized rats which implied its role in bone loss. Accordingly, RNF138 overexpression potently inhibited osteoblast differentiation of mesenchyme-like C3H10T1/2 as well primary rat calvarial osteoblast (RCO) cells in vitro, whereas overexpression of catalytically inactive mutant RNF138Δ18-58 (lacks RING finger domain) had mild to no effect. Contrarily, RNF138 depletion copiously enhanced endogenous Runx2 levels and augmented osteogenic differentiation of C3H10T1/2 as well as RCOs. Mechanistically, RNF138 physically associates within multiple regions of Runx2 and ubiquitinates it leading to its reduced protein stability in a proteasome-dependent manner. Moreover, catalytically active RNF138 destabilized Runx2 which resulted in inhibition of its transactivation potential and physiological function of promoting osteoblast differentiation leading to bone loss. These findings underscore the functional involvement of RNF138 in bone formation which is primarily achieved through its modulation of Runx2 by stimulating ubiquitin-mediated proteasomal degradation. Thus, our findings indicate that RNF138 could be a promising novel target for therapeutic intervention in postmenopausal osteoporosis.


Asunto(s)
Diferenciación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Osteoblastos , Osteogénesis , Ubiquitina-Proteína Ligasas , Ubiquitinación , Animales , Femenino , Humanos , Ratones , Ratas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Células HEK293 , Osteoblastos/metabolismo , Ovariectomía , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica , Ratas Sprague-Dawley , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética
4.
Endocrine ; 82(3): 513-526, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37733181

RESUMEN

PURPOSE: To understand the pathophysiology of idiopathic osteoporosis (IOP) better, we conducted a systematic review and meta-analysis of bone mineral density (BMD), hormones, and bone turnover markers (BTMs) between IOP patients and healthy controls. METHODS: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, an appropriate search query was created, and three databases, including PubMed, ScienceDirect, and Google Scholar, were searched for screening relevant original articles. Feasible information, both qualitative and quantitative, was extracted and used to conduct meta-analyses. Publication bias and heterogeneity among studies were evaluated using appropriate statistical tools. RESULTS: A total of 21 studies were included in the meta-analysis. There was reduced BMD at the lumbar spine (LS) (pooled: SDM: -2.38, p-value: 0.0001), femoral neck (FN) (pooled: SDM: -1.75 p-value: 0.0001), total hip (TH) (pooled: SDM: -1.825, p-value: 0.0001) and distal radius (DR) (pooled: SDM of -0.476, p-value: 0.0001), of which LS was the most affected site. There was no significant change in BTMs compared with healthy controls. Total estradiol (SDM: -1.357, p-value: 0.003) was reduced, and parathyroid hormone (PTH) (SDM: 1.51, p-value: 0.03) and sex hormone-binding globulin (SHBG) (SDM: 1.454, p-value: 0.0001) were elevated in IOP patients compared with healthy controls. CONCLUSION: Our meta-analysis, the first of its kind on IOP, defines it as showing BMD decline maximally at LS compared with healthy controls without any alterations in the BTMs. Further studies are required to understand gender differences and the significance of altered hormonal profiles in this condition.


Asunto(s)
Osteoporosis , Humanos , Osteoporosis/etiología , Densidad Ósea/fisiología , Hormona Paratiroidea , Estradiol , Cuello Femoral/diagnóstico por imagen
5.
Front Endocrinol (Lausanne) ; 14: 1233613, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37664835

RESUMEN

Introduction: We investigated the effects of hormonal and non-hormonal oral contraceptives (OCs) on bone mass, mineralization, composition, mechanical properties, and metabolites in pubertal female SD rats. Methods: OCs were given for 3-, and 7 months at human equivalent doses. The combined hormonal contraceptive (CHC) was ethinyl estradiol and progestin, whereas the non-hormonal contraceptive (NHC) was ormeloxifene. MicroCT was used to assess bone microarchitecture and BMD. Bone formation and mineralization were assessed by static and dynamic histomorphometry. The 3-point bending test, nanoindentation, FTIR, and cyclic reference point indentation (cRPI) measured the changes in bone strength and material composition. Bone and serum metabolomes were studied to identify potential biomarkers of drug efficacy and safety and gain insight into the underlying mechanisms of action of the OCs. Results: NHC increased bone mass in the femur metaphysis after 3 months, but the gain was lost after 7 months. After 7 months, both OCs decreased bone mass and deteriorated trabecular microarchitecture in the femur metaphysis and lumbar spine. Also, both OCs decreased the mineral: matrix ratio and increased the unmineralized matrix after 7 months. After 3 months, the OCs increased carbonate: phosphate and carbonate: amide I ratios, indicating a disordered hydroxyapatite crystal structure susceptible to resorption, but these changes mostly reversed after 7 months, indicating that the early changes contributed to demineralization at the later time. In the femur 3-point bending test, CHC reduced energy storage, resilience, and ultimate stress, indicating increased susceptibility to micro-damage and fracture, while NHC only decreased energy storage. In the cyclic loading test, both OCs decreased creep indentation distance, but CHC increased the average unloading slope, implying decreased microdamage risk and improved deformation resistance by the OCs. Thus, reduced bone mineralization by the OCs appears to affect bone mechanical properties under static loading, but not its cyclic loading ability. When compared to an age-matched control, after 7 months, CHC affected 24 metabolic pathways in bone and 9 in serum, whereas NHC altered 17 in bone and none in serum. 6 metabolites were common between the serum and bone of CHC rats, suggesting their potential as biomarkers of bone health in women taking CHC. Conclusion: Both OCs have adverse effects on various skeletal parameters, with CHC having a greater negative impact on bone strength.


Asunto(s)
Calcinosis , Fracturas Óseas , Femenino , Animales , Ratas , Humanos , Lactante , Ratas Sprague-Dawley , Densidad Ósea , Metaboloma , Anticonceptivos Orales
6.
Front Endocrinol (Lausanne) ; 14: 1130003, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36926021

RESUMEN

Introduction: In obese humans, Coleus forskohlii root extract (CF) protects against weight gain owing to the presence of forskolin, an adenylate cyclase (AC) activator. As AC increases intracellular cyclic adenosine monophosphate (cAMP) levels in osteoblasts that has an osteogenic effect, we thus tested the skeletal effects of a standardized CF (CFE) in rats. Methods: Concentrations of forskolin and isoforskolin were measured in CFE by HPLC. CFE and forskolin (the most abundant compound present in CFE) were studied for their osteogenic efficacy in vitro by alkaline phosphatase (ALP), cAMP and cyclic guanosine monophosphate (cGMP) assays. Femur osteotomy model was used to determine the osteogenic dose of CFE. In growing rats, CFE was tested for its osteogenic effect in intact bone. In adult ovariectomized (OVX) rats, we assessed the effect of CFE on bone mass, strength and material. The effect of forskolin was assessed in vivo by measuring the expression of osteogenic genes in the calvarium of rat pups. Results: Forskolin content in CFE was 20.969%. CFE increased osteoblast differentiation and intracellular cAMP and cGMP levels in rat calvarial osteoblasts. At 25 mg/kg (half of human equivalent dose), CFE significantly enhanced calcein deposition at the osteotomy site. In growing rats, CFE promoted modeling-directed bone formation. In OVX rats, CFE maintained bone mass and microarchitecture to the level of sham-operated rats. Moreover, surface-referent bone formation in CFE treated rats was significantly increased over the OVX group and was comparable with the sham group. CFE also increased the pro-collagen type-I N-terminal propeptide: cross-linked C-telopeptide of type-I collagen (PINP : CTX-1) ratio over the OVX rats, and maintained it to the sham level. CFE treatment decreased the OVX-induced increases in the carbonate-to-phosphate, and carbonate-to-amide-I ratios. CFE also prevented the OVX-mediated decrease in mineral crystallinity. Nanoindentation parameters, including modulus and hardness, were decreased by OVX but CFE maintained these to the sham levels. Forskolin stimulated ALP, cAMP and cGMP in vitro and upregulated osteogenic genes in vivo. Conclusion: CFE, likely due to the presence of forskolin displayed a bone-conserving effect via osteogenic and anti-resorptive mechanisms resulting in the maintenance of bone mass, microarchitecture, material, and strength.


Asunto(s)
Osteogénesis , Plectranthus , Femenino , Ratas , Humanos , Animales , Colforsina/farmacología , Fosfatasa Alcalina , Ovariectomía/efectos adversos , Colágeno
7.
Biochim Biophys Acta Mol Basis Dis ; 1868(10): 166455, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35680107

RESUMEN

Autophagy inhibition is currently considered a novel therapeutic strategy for cancer treatment. Lipoic acid (LA), a naturally occurring compound found in all prokaryotic and eukaryotic cells, inhibits breast cancer cell growth; however, the effect of LA on autophagy-mediated breast cancer cell death remains unknown. Our study identified that LA blocks autophagic flux by inhibiting autophagosome-lysosome fusion and lysosome activity which increases the accumulation of autophagosomes in MCF-7 and MDA-MB231 cells, leading to cell death of breast cancer cells. Interestingly, autophagic flux blockade limits the recycling of cellular fuels, resulting in insufficient substrates for cellular bioenergetics. Therefore, LA impairs cellular bioenergetics by the inhibition of mitochondrial function and glycolysis. We show that LA-induced ROS generation is responsible for the blockade of autophagic flux and cellular bioenergetics in breast cancer cells. Moreover, LA-mediated blockade of autophagic flux and ROS generation may interfere with the regulation of the BCSCs/progenitor phenotype. Here, we demonstrate that LA inhibits mammosphere formation and subpopulation of BCSCs. Together, these results implicate that LA acts as a prooxidant, potent autophagic flux inhibitor, and causes energetic impairment, which may lead to cell death in breast cancer cells/BCSCs.


Asunto(s)
Neoplasias , Ácido Tióctico , Autofagosomas/metabolismo , Autofagia , Metabolismo Energético , Neoplasias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Tióctico/farmacología , Ácido Tióctico/uso terapéutico
8.
Semin Cancer Biol ; 86(Pt 3): 513-531, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35150864

RESUMEN

Small secretory proteins of immune cells are mostly Cytokines, which include chemokines, interleukins, interferons, lymphokines and tumor necrosis factors but not hormones or growth factors. These secretory proteins are the molecular messengers and primarily involved in autocrine, paracrine and endocrine signaling as immunomodulating agents. Hence, these proteins actually regulate the cells of immune system to communicate with one another to produce a synchronized, robust, still self-regulated response to a specific antigen. Chemokines are smaller secreted proteins that control overall immune cell movement and location; these chemokines are divided into 4 subgroups, namely, CXC, CC, CX3C and C according to the position of 4 conserved cysteine residues. Complete characterization of cytokines and chemokines can exploit their vast signaling networks to develop cancer treatments. These secretory proteins like IL-6, IL-10, IL-12, TNFα, CCL2, CXCL4 & CXCL8 are predominantly expressed in most of the gynecological cancers, which directly stimulate immune effector cells and stromal cells at the tumor site and augment tumor cell recognition by cytotoxic T-cells. Hence; these secretory proteins are the major regulators, which can actually modulate all kinds of gynecological cancers. Furthermore, advancements in adoptive T-cell treatment have relied on the use of multiple cytokines/chemokines to establish a highly regulated environment for anti-tumor T cell growth. A number of in vitro studies as well as animal models and clinical subjects have also shown that cytokines/chemokines have broad antitumor activity, which has been translated into a number of cancer therapy approaches. This review will focus on the foremost cytokines & chemokines involved in the majority of the gynecological malignancies and discuss their basic biology as well as clinical applications.


Asunto(s)
Quimiocinas , Neoplasias , Animales , Humanos , Quimiocinas/metabolismo , Quimiocinas/uso terapéutico , Citocinas/metabolismo , Neoplasias/etiología , Neoplasias/tratamiento farmacológico , Comunicación Celular , Interleucinas
9.
Mol Neurobiol ; 59(5): 2729-2744, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35175559

RESUMEN

We earlier reported that arsenic induced hippocampal neuronal loss, causing cognitive dysfunctions in male rats. This neuronal damage mechanism involved an altered bone morphogenetic protein (BMP2)/Smad and brain-derived neurotrophic factor (BDNF)/TrkB signaling. Susceptibility to toxicants is often sex-dependent, and hence we studied the comparative effects of arsenic in adult male and female rats. We observed that a lower dose of arsenic reduced learning-memory ability, examined through passive avoidance and Y-maze tests, in male but not female rats. Again, male rats exhibited greater learning-memory loss at a higher dose of arsenic. Supporting this, arsenic-treated male rats demonstrated larger reduction in the hippocampal NeuN and %-surviving neurons, together with increased apoptosis and altered BMP2/Smad and BDNF/TrkB pathways compared to their female counterparts. Since the primary female hormone, estrogen (E2), regulates normal brain functions, we next probed whether endogenous E2 levels in females offered resistance against arsenic-induced neurotoxicity. We used ovariectomized (OVX) rat as the model for E2 deficiency. We primarily identified that OVX itself induced hippocampal neuronal damage and cognitive decline, involving an increased BMP2/Smad and reduced BDNF/TrkB. Further, these effects appeared greater in arsenic + OVX compared to arsenic + sham (ovary intact) or OVX rats alone. The OVX-induced adverse effects were significantly reduced by E2 treatment. Overall, our study suggests that adult males could be more susceptible than females to arsenic-induced neurotoxicity. It also indicates that endogenous E2 regulates hippocampal BMP and BDNF signaling and restrains arsenic-induced neuronal dysfunctions in females, which may be inhibited in E2-deficient conditions, such as menopause or ovarian failure.


Asunto(s)
Arsénico , Estrógenos/metabolismo , Síndromes de Neurotoxicidad , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cognición , Estradiol/farmacología , Femenino , Hipocampo/metabolismo , Humanos , Masculino , Aprendizaje por Laberinto , Neuronas/metabolismo , Síndromes de Neurotoxicidad/metabolismo , Ovariectomía , Ratas
10.
Semin Cancer Biol ; 86(Pt 3): 1105-1121, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34979274

RESUMEN

Chemokines are small secretory chemotactic cytokines that control the directed migration of immune cells. Chemokines are involved in both anti-and pro-tumorigenic immune responses. Accumulating evidence suggests that the balance between these responses is influenced by several factors such as the stage of tumorigenesis, immune cell activation, recruitment of immune activating or immunosuppressive cells in the tumor microenvironment (TME), and chemokine receptor expression on effector and regulatory target cells. Cancer cells engage in a complex network with their TME components via several factors including growth factors, cytokines and chemokines that are critical for the growth of primary tumor and metastasis. However, chemokines show a multifaceted role in tumor progression including maintenance of stem-like properties, tumor cell proliferation/survival/senescence, angiogenesis, and metastasis. The heterogeneity of solid tumors in primary and metastatic cancers presents a challenge to the development of successful cancer therapy. Despite extensive research on how solid tumors escape immune cell-mediated anti-tumor response, finding an effective therapy for metastatic cancer still remains a challenge. This review discusses the multifarious roles of chemokines in solid tumors including various chemokine signaling pathways such as CXCL8-CXCR1/2, CXCL9, 10, 11-CXCR3, CXCR4-CXCL12, CCL(X)-CCR(X) in primary and metastatic cancers. We further discuss the novel therapeutic approaches that have been developed by major breakthroughs in chemokine research to treat cancer patients by the strategic blockade/activation of these signaling axes alone or in combination with immunotherapies.


Asunto(s)
Neoplasias , Humanos , Neoplasias/patología , Microambiente Tumoral , Neovascularización Patológica , Inmunoterapia , Biología
11.
Mol Cell Endocrinol ; 540: 111525, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34856343

RESUMEN

Adiponectin and insulin resistance creates a vicious cycle that exacerbates type 2 diabetes. Earlier, we observed that female leptin receptor-deficient BLKS mice (BKS-db/db) were more sensitive to an adiponectin mimetic GTDF than males, which led us to explore if E2 plays a crucial role in modulation of adiponectin-sensitivity. Male but not female BKS-db/db mice were resistant to metabolic effects of globular adiponectin treatment. Male BKS-db/db displayed reduced skeletal muscle AdipoR1 protein expression, which was consequent to elevated polypyrimidine tract binding protein 1 (PTB) and miR-221. E2 treatment in male BKS-db/db, and ovariectomized BALB/c mice rescued AdipoR1 protein expression via downregulation of PTB and miR-221, and also directly increased AdipoR1 mRNA by its classical nuclear receptors. Estrogen receptor regulation via dietary or pharmacological interventions may improve adiponectin resistance and consequently ameliorate insulin resistance in type 2 diabetes.


Asunto(s)
Adiponectina/metabolismo , Diabetes Mellitus Experimental , Estradiol/farmacología , Receptores de Adiponectina/genética , Animales , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Resistencia a Medicamentos/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Músculo Esquelético/metabolismo , Receptores de Adiponectina/metabolismo , Receptores de Leptina/genética , Caracteres Sexuales
12.
Eur J Pharmacol ; 913: 174634, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34785210

RESUMEN

Previously, we established adiponectin receptors (AdipoRs) as osteoanabolic target. To discover small molecule agonists of AdipoRs, we studied apigenin and apigenin-6C-glucopyranose (isovitexin) that induced osteoblast differentiation. In-silico, in vitro and omics-based studies were performed. Molecular docking using the crystal structures of AdipoRs showed different interaction profiles of isovitexin and apigenin. In osteoblasts, isovitexin but not apigenin rapidly phosphorylated AMP-activated protein kinase (pAMPK) which is downstream of AdipoRs and a master regulator of cellular energy metabolism, and upregulated expression of AdipoRs. Blocking AMPK abolished the osteogenic effect of isovitexin and its effect on AdipoR expression. Isovitexin upregulated the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), the mitochondrial biogenesis factor in osteoblasts, and the effect was blocked by AMPK inhibition. Upregulation of PGC-1α by isovitexin was accompanied by increased mitochondrial membrane proteins and mitochondrial DNA (mtDNA). Isovitexin via AdipoRs and PGC-1α induced oxidative phosphorylation (OxPhos) and ATP synthesis that resulted in osteoblast differentiation. Isovitexin had no agonistic/antagonistic activity and stimulatory/inhibitory effect in screening platforms for G protein-coupled receptors and kinases, respectively. In vivo, isovitexin upregulated AdipoRs and osteogenic genes, and increased mtDNA in rat calvarium. We conclude that isovitexin selectively via AdipoRs induced osteoblast differentiation that was fuelled by mitochondrial respiration.


Asunto(s)
Apigenina/farmacología , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Receptores de Adiponectina/agonistas , Adenosina Trifosfato/metabolismo , Animales , Animales Recién Nacidos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Metabolismo Energético/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Osteoblastos/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Cultivo Primario de Células , Receptores de Adiponectina/metabolismo , Regulación hacia Arriba/efectos de los fármacos
13.
Eur J Pharmacol ; 910: 174504, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34520733

RESUMEN

Resveratrol/RES (3,5,4'-trihydroxy-trans-stilbene) is a natural compound found in many food items and red wine, which exhibits pleiotropic biological effects. Several preclinical studies evaluating the efficacy of RES in animal models of rheumatoid arthritis (RA) have been conducted, but the diversity of the experimental conditions and of their outcomes preclude definitive conclusions about RES's efficacy. We, therefore, performed a meta-analysis to assess its efficacy in mitigating experimental RA. We searched three databases until January 2021 and used the random-effects model for drawing inferences. Eighteen studies involving 544 animals were used in this study. Pooled analysis showed that experimental RA causes paw swelling (Hedge's g = 9.823, p = 0.000), increases polyarthritis score and arthritis index, and RES administration reduces paw volume (Hedge's g = -2.550, p = 0.000), polyarthritis score, and arthritis index besides amelioration in the histopathological score and cartilage loss. RA is accompanied by increased oxidative stress due to high malondialdehyde (MDA) level (p < 0.001) and low superoxide dismutase (SOD) activity (p = 0.002), and RES reduced MDA level (p < 0.001) and increased SOD activity (p < 0.001). Experimental RA exhibited an increase in pro-inflammatory cytokines viz. tumor necrosis factor (TNF)-α (p < 0.001), interleukin (IL)-6 (p = 0.002), and IL-1 (p < 0.001); however, insufficient quantitative data precluded us from assessing changes in the anti-inflammatory cytokine, IL-10. In experimental RA, RES decreased TNF-α (p < 0.001), IL-6 (p < 0.001) and IL-1 (p = 0.001) and increased IL-10. This meta-analysis suggests that RES can be a clinically effective therapy for RA, pending clinical trials.


Asunto(s)
Antioxidantes/farmacología , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Resveratrol/farmacología , Animales , Antioxidantes/uso terapéutico , Artritis Experimental/diagnóstico , Artritis Experimental/inmunología , Artritis Experimental/patología , Artritis Reumatoide/diagnóstico , Artritis Reumatoide/inmunología , Artritis Reumatoide/patología , Evaluación Preclínica de Medicamentos , Humanos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/inmunología , Resveratrol/uso terapéutico , Índice de Severidad de la Enfermedad
14.
ACS Appl Mater Interfaces ; 13(15): 17300-17315, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33830736

RESUMEN

A technology for systemic and repeated administration of osteogenic factors for orthopedic use is an unmet medical need. Lactoferrin (∼80 kDa), present in milk, is known to support bone growth. We discovered a lactoferrin-mimetic peptide, LP2 (an 18-residue fragment from the N-terminus of the N-lobe of human lactoferrin), which self-assembles into a nano-globular assembly with a ß-sheet structure in an aqueous environment. LP2 is non-hemolytic and non-cytotoxic against human red blood cells and 3T3 fibroblasts, respectively, and appreciably stable in the human serum. LP2 through the bone morphogenetic protein-dependent mechanism stimulates osteoblast differentiation more potently than the full-length protein as well as the osteoblastic production of osteoprotegerin (an anti-osteoclastogenic factor). Consequently, daily subcutaneous administration of LP2 to rats and rabbits with osteotomy resulted in faster bone healing and stimulated bone formation in rats with a low bone mass more potently than that with teriparatide, the standard-of-care osteogenic peptide for osteoporosis. LP2 has skeletal bioavailability and is safe at the 15× osteogenic dose. Thus, LP2 is a novel peptide that can be administered systemically for the medical management of hard-to-heal fractures.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Lactoferrina/química , Nanoestructuras/química , Procedimientos Ortopédicos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Células 3T3 , Animales , Disponibilidad Biológica , Diferenciación Celular/efectos de los fármacos , Estabilidad de Medicamentos , Humanos , Ratones , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Fragmentos de Péptidos/efectos adversos , Fragmentos de Péptidos/farmacocinética , Seguridad
15.
Sci Rep ; 11(1): 3730, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33580126

RESUMEN

A major limitation in the bio-medical sector is the availability of materials suitable for bone tissue engineering using stem cells and methodology converting the stochastic biological events towards definitive as well as efficient bio-mineralization. We show that osteoblasts and Bone Marrow-derived Mesenchymal Stem Cell Pools (BM-MSCP) express TRPM8, a Ca2+-ion channel critical for bone-mineralization. TRPM8 inhibition triggers up-regulation of key osteogenesis factors; and increases mineralization by osteoblasts. We utilized CMT:HEMA, a carbohydrate polymer-based hydrogel that has nanofiber-like structure suitable for optimum delivery of TRPM8-specific activators or inhibitors. This hydrogel is ideal for proper adhesion, growth, and differentiation of osteoblast cell lines, primary osteoblasts, and BM-MSCP. CMT:HEMA coated with AMTB (TRPM8 inhibitor) induces differentiation of BM-MSCP into osteoblasts and subsequent mineralization in a dose-dependent manner. Prolonged and optimum inhibition of TRPM8 by AMTB released from the gels results in upregulation of osteogenic markers. We propose that AMTB-coated CMT:HEMA can be used as a tunable surface for bone tissue engineering. These findings may have broad implications in different bio-medical sectors.


Asunto(s)
Osteoblastos/metabolismo , Canales Catiónicos TRPM/metabolismo , Ingeniería de Tejidos/métodos , Animales , Benzamidas/metabolismo , Benzamidas/farmacología , Células de la Médula Ósea/citología , Huesos/metabolismo , Diferenciación Celular , Células Cultivadas , Femenino , Hidrogeles/química , Hidrogeles/farmacología , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos BALB C , Osteogénesis , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley , Canales Catiónicos TRPM/antagonistas & inhibidores , Tiofenos/metabolismo , Tiofenos/farmacología
16.
Chem Sci ; 12(48): 16085-16091, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35024130

RESUMEN

The excessive production of endogenous hydrogen sulfide (H2S) in cancer cells leads to enhanced tumor growth and metastasis. On the other hand, decreased endogenous H2S suppresses tumor growth. The reported approaches for inhibiting tumor growth are selective silencing of the tumor-promoting genes and pharmacological inhibition of these proteins. To enhance the antitumor efficacy of frontline chemotherapeutic agents, herein, we synthesized a highly sensitive endogenous H2S responsive fluorescent probe, i.e., a hydrogen sulfide-sensing naphthalimide-based peptide conjugate (HSNPc), which showed selective inhibition of proliferation of cancer cells due to apoptosis induction. Furthermore, HSNPc suppressed the glycolytic reserve, a critical energy source for the proliferation of cancer cells. HSNPc also decreased the Young's modulus of HeLa cells compared to the control cells, which demonstrated a direct relation between cell apoptosis and cell stiffness. Taken together, we demonstrated the dual function of detection and killing of cancer cells by HSNPc that can be likened to a theranostic role.

17.
ACS Biomater Sci Eng ; 6(12): 6710-6725, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33320599

RESUMEN

Repair of critical size bone defects is a clinical challenge that usually necessitates the use of bone substitutes. For successful bone repair, the substitute should possess osteoconductive, osteoinductive, and vascularization potential, with the ability to control post-implantation infection serving as an additional advantage. With an aim to develop one such substitute, we optimized a zinc-doped hydroxyapatite (HapZ) nanocomposite decorated on reduced graphene oxide (rGO), termed as G3HapZ, and demonstrated its potential to augment the bone repair. The biocompatible composite displayed its osteoconductive potential in biomineralization studies, and its osteoinductive property was confirmed by its ability to induce mesenchymal stem cell (MSC) differentiation to osteogenic lineage assessed by in vitro mineralization (Alizarin red staining) and expression of osteogenic markers including runt-related transcription factor 2 (RUNX-2), alkaline phosphatase (ALP), type 1 collagen (COL1), bone morphogenic protein-2 (BMP-2), osteocalcin (OCN), and osteopontin (OPN). While the potential of G3HapZ to support vascularization was displayed by its ability to induce endothelial cell migration, attachment, and proliferation, its antimicrobial activity was confirmed using S. aureus. Biocompatibility of G3HapZ was demonstrated by its ability to induce bone regeneration and neovascularization in vivo. These results suggest that G3HapZ nanocomposites can be exploited for a range of strategies in developing orthopedic bone grafts to accelerate bone regeneration.


Asunto(s)
Células Madre Mesenquimatosas , Nanocompuestos , Óxido de Zinc , Proliferación Celular , Células Cultivadas , Durapatita , Grafito , Staphylococcus aureus , Zinc
18.
Bone ; 141: 115562, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32730922

RESUMEN

Calcipenic rickets is prevalent in underprivileged children in developing countries. Calcipenic rickets resulting from dietary calcium (Ca) deficiency decreases bone mass and deteriorates bone microstructure in humans. The effect of dietary Ca replenishment (CaR) on rachitic bones in animal models depends on the amount, critical period and duration of replenishment, however, the extent of recovery in various bone parameters including bone quality remains unclear. We investigated the effect of CaR in rat skeleton after inducing calcipenic rickets. Female SD rats (postnatal 28 days/P28) were rendered calcipenic by feeding calcium deficient (CaD) diet (0.1% Ca) till P70 while control SD rats were fed Ca sufficient diet (0.8% Ca). At P70, calcipenic rats were switched to 0.8% Ca diet till P150 for one group and P210 for another group (endpoint). The CaD groups received 0.1% Ca diet throughout the study (P210). In the CaD groups, serum Ca and phosphate, and bone mineral density (BMD) were significantly decreased whereas serum alkaline phosphatase (ALP), iPTH and CTX-1 were increased compared to age-matched controls. Moreover, at the endpoint, the CaD group had reduced bone mass, surface referent bone formation parameters, tissue mineralization and strength accompanied by the increased osteoid thickness and microarchitectural decay (measured by trabecular geometric parameters) with poor crystal packing. The CaR group showed complete recovery in serum Ca, iPTH, ALP and CTX-1, and BMD, however, the bone quality parameters including bone strength, microarchitectural decay, tissue mineralization, and crystallinity were incompletely restored. Decreased surface referent bone formation and increased unmineralized bones (osteoid) indicative of osteomalacia were also observed in the CaR group at P210 compared with control despite prolonged replenishment. We conclude that a prolonged Ca repletion following the induction of calcipenic rickets in rats although shows the recovery of biochemical measures of bone metabolism and bone mass, however, the bone quality remains compromised. This suggests that a "memory" of calcipenia occurring at the early growth stage persists in the skeleton of adult rats despite a prolonged Ca replenishment.


Asunto(s)
Calcio de la Dieta , Raquitismo , Animales , Densidad Ósea , Huesos , Calcio , Femenino , Ratas , Ratas Sprague-Dawley , Raquitismo/tratamiento farmacológico
19.
Biomed Pharmacother ; 127: 110207, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32422565

RESUMEN

Anabolic therapies for osteoporosis including dietary polyphenols promote osteoblast function by influencing its energy metabolism. Among the dietary polyphenols, the beneficial skeletal effects of genistein (an isoflavone), kaempferol (a flavone), resveratrol (RES, a stilbenoid) and epigallocatechin gallate (EGCG, a catechin) have been reported in preclinical studies. We studied the action mechanism of these nutraceuticals on osteoblast bioenergetics. All stimulated differentiation of human fetal osteoblasts (hFOB). However, only EGCG and RES stimulated mitochondrial parameters including basal and maximum respiration, spare respiratory capacity and ATP production (a measure of the activity of electron transport chain/ETC). Increases in these parameters were due to increased mitochondrial biogenesis and consequent upregulation of several mitochondrial proteins including those involved in ETC. Rotenone blocked the osteogenic effect of EGCG and RES suggesting the mediatory action of mitochondria. Both compounds rapidly activated AMPK, and dorsomorphin (an AMPK inhibitor) abolished ATP production stimulated by these compounds. Moreover, EGCG and RES upregulated the mitochondrial biogenesis factor, PGC-1α which is downstream of AMPK activation, and silencing PGC-1α blocked their stimulatory effects on ATP production and hFOB differentiation. Adiponectin receptor 1 (AdipoR1) is an upstream regulator of PGC-1α, and both compounds increased the expression of AdipoR1 but not AdipoR2. Silencing AdipoR1 blocked the upregulation of EGCG/RES-induced PGC-1α and hFOB differentiation. In rat calvarium, both compounds increased AdipoR1, PGC-1α, and RunX2 (the osteoblast transcription factor) with a concomitant increase in mitochondrial copy number and ATP levels. We conclude that EGCG and RES display osteogenic effects by reprogramming osteoblastic bioenergetics by acting as the AdipoR1 agonists.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Polifenoles/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Suplementos Dietéticos , Humanos , Mitocondrias/metabolismo , Biogénesis de Organelos , Osteoblastos/citología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Adiponectina/metabolismo
20.
Bone ; 135: 115305, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32126313

RESUMEN

Phosphodiesterases (PDEs) hydrolyze cyclic nucleotides and thereby regulate diverse cellular functions. The reports on the skeletal effects of PDE inhibitors are conflicting. Here, we screened 17 clinically used non-xanthine PDE inhibitors (selective and non-selective) using mouse calvarial osteoblasts (MCO) where the readout was osteoblast differentiation. From this screen, we identified sildenafil and vardenafil (both PDE5 inhibitors) having the least osteogenic EC50. Both drugs significantly increased vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2) expressions in MCO and the nitric oxide synthase inhibitor L-NAME completely blocked VEGF expression induced by these drugs. Sunitinib, a tyrosine receptor kinase inhibitor that also blocks VEGFR2 blocked sildenafil-/vardenafil-induced osteoblast differentiation. At half of their human equivalent doses, i.e. 6.0 mg/kg sildenafil and 2.5 mg/kg vardenafil, the maximum bone marrow level of sildenafil was 32% and vardenafil was 21% of their blood levels. At these doses, both drugs enhanced bone regeneration at the femur osteotomy site and completely restored bone mass, microarchitecture, and strength in OVX mice. Furthermore, both drugs increased surface referent bone formation and serum bone formation marker (P1NP) without affecting the resorption marker (CTX-1). Both drugs increased the expression of VEGF and VEGFR2 in bones and osteoblasts and increased skeletal vascularity. Sunitinib completely blocked the bone restorative and vascular effects of sildenafil and vardenafil in OVX mice. Taken together, our study suggested that sildenafil and vardenafil at half of their adult human doses completely reversed osteopenia in OVX mice by an osteogenic mechanism that was associated with enhanced skeletal vascularity.


Asunto(s)
Inhibidores de Fosfodiesterasa 5 , Factor A de Crecimiento Endotelial Vascular , Animales , Imidazoles/farmacología , Ratones , Inhibidores de Fosfodiesterasa 5/farmacología , Piperazinas/farmacología , Citrato de Sildenafil/farmacología , Citrato de Sildenafil/uso terapéutico , Sulfonas/farmacología , Sunitinib , Triazinas/farmacología , Diclorhidrato de Vardenafil/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA