Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
Metabolism ; 67: 26-30, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28081775

RESUMEN

BACKGROUND: Skeletal muscle extracellular matrix (ECM) remodeling has been proposed as a feature of the pathogenic milieu associated with obesity and metabolic dysfunction. The aim of the current study was to examine the timeline of this response and determine whether 3 and 28days of overfeeding alters markers of ECM turnover. METHODS: Forty healthy individuals were overfed by 1250kcal/day for 28days. Hyperinsulinemic-euglycemic clamps and abdominal fat distribution were performed at baseline and day 28 of overfeeding and skeletal muscle biopsies taken at baseline, day 3 and day 28. mRNA expression (COL1a1, COL3a1, MMP2, MMP9, TIMP1, CD68, Integrin) was performed in 19 subjects that consented to having all biopsies performed and microarray analysis was performed in 8 participants at baseline and day 28. RESULTS: In the whole cohort, body weight increased by 0.6±0.1 and 2.7±0.3kg at days 3 and 28 (both P<0.001), respectively. Glucose infusion rate during the hyperinsulinemic-euglycemic clamp decreased from 54.8±2.8 at baseline to 50.3±2.5µmol/min/kg FFM at day 28 of overfeeding (P=0.03). Muscle COL1 and COL3 and MMP2 mRNA levels were significantly higher 28days after overfeeding (all P<0.05), with no significant changes in MMP9, TIMP1, CD68 and integrin expression. Microarray based gene set tests revealed that pathways related to ECM receptor interaction, focal adhesion and adherens junction were differentially altered. CONCLUSIONS: Skeletal muscle ECM remodeling occurs early in response to over-nutrition with as little as 3% body weight gain. Our findings contribute to the growing evidence linking muscle ECM remodeling and accumulation as another sequela of obesity-related insulin resistance.


Asunto(s)
Matriz Extracelular/metabolismo , Hiperfagia/metabolismo , Músculo Esquelético/metabolismo , Grasa Abdominal , Uniones Adherentes/metabolismo , Adulto , Composición Corporal , Peso Corporal , Estudios de Cohortes , Femenino , Adhesiones Focales/metabolismo , Expresión Génica , Técnica de Clampeo de la Glucosa , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Proteínas Musculares/biosíntesis , Proteínas Musculares/genética , ARN Mensajero/biosíntesis , Aumento de Peso , Adulto Joven
2.
J Biol Chem ; 290(43): 25834-46, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26342081

RESUMEN

The insulin/insulin-like growth factor (IGF)-1 signaling pathway (ISP) plays a fundamental role in long term health in a range of organisms. Protein kinases including Akt and ERK are intimately involved in the ISP. To identify other kinases that may participate in this pathway or intersect with it in a regulatory manner, we performed a whole kinome (779 kinases) siRNA screen for positive or negative regulators of the ISP, using GLUT4 translocation to the cell surface as an output for pathway activity. We identified PFKFB3, a positive regulator of glycolysis that is highly expressed in cancer cells and adipocytes, as a positive ISP regulator. Pharmacological inhibition of PFKFB3 suppressed insulin-stimulated glucose uptake, GLUT4 translocation, and Akt signaling in 3T3-L1 adipocytes. In contrast, overexpression of PFKFB3 in HEK293 cells potentiated insulin-dependent phosphorylation of Akt and Akt substrates. Furthermore, pharmacological modulation of glycolysis in 3T3-L1 adipocytes affected Akt phosphorylation. These data add to an emerging body of evidence that metabolism plays a central role in regulating numerous biological processes including the ISP. Our findings have important implications for diseases such as type 2 diabetes and cancer that are characterized by marked disruption of both metabolism and growth factor signaling.


Asunto(s)
Glucosa/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Insulina/metabolismo , Fosfofructoquinasa-2/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal , Células 3T3-L1 , Animales , Transportador de Glucosa de Tipo 4/metabolismo , Células HeLa , Humanos , Ratones , ARN Interferente Pequeño/genética
3.
J Biol Chem ; 290(39): 23528-42, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26240143

RESUMEN

Insulin signaling augments glucose transport by regulating glucose transporter 4 (GLUT4) trafficking from specialized intracellular compartments, termed GLUT4 storage vesicles (GSVs), to the plasma membrane. Proteomic analysis of GSVs by mass spectrometry revealed enrichment of 59 proteins in these vesicles. We measured reduced abundance of 23 of these proteins following insulin stimulation and assigned these as high confidence GSV proteins. These included established GSV proteins such as GLUT4 and insulin-responsive aminopeptidase, as well as six proteins not previously reported to be localized to GSVs. Tumor suppressor candidate 5 (TUSC5) was shown to be a novel GSV protein that underwent a 3.7-fold increase in abundance at the plasma membrane in response to insulin. siRNA-mediated knockdown of TUSC5 decreased insulin-stimulated glucose uptake, although overexpression of TUSC5 had the opposite effect, implicating TUSC5 as a positive regulator of insulin-stimulated glucose transport in adipocytes. Incubation of adipocytes with TNFα caused insulin resistance and a concomitant reduction in TUSC5. Consistent with previous studies, peroxisome proliferator-activated receptor (PPAR) γ agonism reversed TNFα-induced insulin resistance. TUSC5 expression was necessary but insufficient for PPARγ-mediated reversal of insulin resistance. These findings functionally link TUSC5 to GLUT4 trafficking, insulin action, insulin resistance, and PPARγ action in the adipocyte. Further studies are required to establish the exact role of TUSC5 in adipocytes.


Asunto(s)
Adipocitos/fisiología , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/fisiología , Proteómica , Proteínas Supresoras de Tumor/fisiología , Células 3T3-L1 , Animales , Masculino , Ratones , Ratas , Ratas Wistar , Proteínas Supresoras de Tumor/genética
4.
Sci Signal ; 8(380): rs6, 2015 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-26060331

RESUMEN

A major goal in signaling biology is the establishment of high-throughput quantitative methods for measuring changes in protein phosphorylation of entire signal transduction pathways across many different samples comprising temporal or dose data or patient samples. Data-independent acquisition (DIA) mass spectrometry (MS) methods, which involve tandem MS scans that are collected independently of precursor ion information and then are followed by targeted searching for known peptides, may achieve this goal. We applied DIA-MS to systematically quantify phosphorylation of components in the insulin signaling network in response to insulin as well as in stimulated cells exposed to a panel of kinase inhibitors targeting key downstream effectors in the network. We accurately quantified the effect of insulin on phosphorylation of 86 protein targets in the insulin signaling network using either stable isotope standards (SIS) or label-free quantification (LFQ) and mapped signal transmission through this network. By matching kinases to specific phosphorylation events (based on linear consensus motifs and temporal phosphorylation) to the quantitative phosphoproteomic data from cells exposed to inhibitors, we investigated predicted kinase-substrate relationships of AKT and mTOR in a targeted fashion. Furthermore, we applied this approach to show that AKT2-dependent phosphorylation of GAB2 promoted insulin signaling but inhibited epidermal growth factor (EGF) signaling in a manner dependent on 14-3-3 binding. Because DIA-MS can increase throughput and improve the reproducibility of peptide detection across multiple samples, this approach should facilitate more accurate, comprehensive, and quantitative assessment of signaling networks under various experimental conditions than are possible using other MS proteomic methods.


Asunto(s)
Insulina/metabolismo , Fosfoproteínas/metabolismo , Proteómica/métodos , Transducción de Señal , Espectrometría de Masas en Tándem/métodos , Proteínas 14-3-3/metabolismo , Células 3T3-L1 , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Western Blotting , Inhibidores Enzimáticos/farmacología , Factor de Crecimiento Epidérmico/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Células HEK293 , Humanos , Insulina/farmacología , Ratones , Fosfopéptidos/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Treonina/metabolismo
5.
Anal Biochem ; 423(1): 46-53, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22310499

RESUMEN

High-throughput screening (HTS) of large compound libraries has become a commonly used method for the identification of drug leads, and nonphysiological reducing agents have been widely used for HTS. However, a comparison of the difference in the HTS results based on the choice of reducing agent used and potency comparisons of selected inhibitors has not been done with the physiological reducing agent reduced glutathione (GSH). Here, we compared the effects of three reducing agents-dithiothreitol (DTT), ß-mercaptoethanol (ß-MCE), and tris(2-carboxyethyl)phosphine (TCEP)-as well as GSH against three drug target proteins. Approximately 100,000 compounds were computationally screened for each target protein, and experimental testing of high-scoring compounds (~560 compounds) with the four reducing agents surprisingly produced many nonoverlapping hits. More importantly, we found that various reducing agents altered inhibitor potency (IC(50)) from approximately 10 µM with one reducing agent to complete loss (IC(50)>200 µM) of inhibitory activity with another reducing agent. Therefore, the choice of reducing agent in an HTS is critical because this may lead to the pursuit of falsely identified active compounds or failure to identify the true active compounds. We demonstrate the feasibility of using GSH for in vitro HTS assays with these three target enzymes.


Asunto(s)
Ditiotreitol/química , Glutatión/química , Ensayos Analíticos de Alto Rendimiento , Mercaptoetanol/química , Fosfinas/química , Inhibidores de Proteasas/química , Hepacivirus/enzimología , Cinética , Péptido Hidrolasas/química , Péptido Hidrolasas/metabolismo , Proteínas/antagonistas & inhibidores , Proteínas/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/metabolismo
6.
J Mol Biol ; 414(2): 272-88, 2011 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-22004941

RESUMEN

The human severe acute respiratory syndrome coronavirus (SARS-CoV) and the NL63 coronaviruses are human respiratory pathogens for which no effective antiviral treatment exists. The papain-like cysteine proteases encoded by the coronavirus (SARS-CoV: PLpro; NL63: PLP1 and PLP2) represent potential targets for antiviral drug development. Three recent inhibitor-bound PLpro structures highlight the role of an extremely flexible six-residue loop in inhibitor binding. The high binding site plasticity is a major challenge in computational drug discovery/design efforts. From conventional molecular dynamics and accelerated molecular dynamics (aMD) simulations, we find that with conventional molecular dynamics simulation, PLpro translationally samples the open and closed conformation of BL2 loop on a picosecond-nanosecond timescale but does not reproduce the peptide bond inversion between loop residues Tyr269 and Gln270 that is observed on inhibitor GRL0617 binding. Only aMD simulation, starting from the closed loop conformation, reproduced the 180° ϕ-ψ dihedral rotation back to the open loop state. The Tyr-Gln peptide bond inversion appears to involve a progressive conformational change of the full loop, starting at one side, and progressing to the other. We used the SARS-CoV apo X-ray structure to develop a model of the NL63-PLP2 catalytic site. Superimposition of the PLP2 model on the PLpro X-ray structure identifies binding site residues in PLP2 that contribute to the distinct substrate cleavage site specificities between the two proteases. The topological and electrostatic differences between the two protease binding sites also help explain the selectivity of non-covalent PLpro inhibitors.


Asunto(s)
Coronavirus Humano NL63/enzimología , Péptido Hidrolasas/metabolismo , Inhibidores de Proteasas/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Diseño de Fármacos , Modelos Moleculares , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Péptido Hidrolasas/química , Inhibidores de Proteasas/farmacología , Homología de Secuencia de Aminoácido , Electricidad Estática
7.
J Med Chem ; 53(13): 4968-79, 2010 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-20527968

RESUMEN

The design, synthesis, X-ray crystal structure, molecular modeling, and biological evaluation of a series of new generation SARS-CoV PLpro inhibitors are described. A new lead compound 3 (6577871) was identified via high-throughput screening of a diverse chemical library. Subsequently, we carried out lead optimization and structure-activity studies to provide a series of improved inhibitors that show potent PLpro inhibition and antiviral activity against SARS-CoV infected Vero E6 cells. Interestingly, the (S)-Me inhibitor 15 h (enzyme IC(50) = 0.56 microM; antiviral EC(50) = 9.1 microM) and the corresponding (R)-Me 15 g (IC(50) = 0.32 microM; antiviral EC(50) = 9.1 microM) are the most potent compounds in this series, with nearly equivalent enzymatic inhibition and antiviral activity. A protein-ligand X-ray structure of 15 g-bound SARS-CoV PLpro and a corresponding model of 15 h docked to PLpro provide intriguing molecular insight into the ligand-binding site interactions.


Asunto(s)
Antivirales/química , Inhibidores Enzimáticos/química , Piperidinas/química , Síndrome Respiratorio Agudo Grave/tratamiento farmacológico , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Proteínas Virales/antagonistas & inhibidores , Animales , Antivirales/síntesis química , Antivirales/metabolismo , Antivirales/farmacología , Chlorocebus aethiops , Proteasas 3C de Coronavirus , Cristalografía por Rayos X , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Concentración 50 Inhibidora , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Modelos Moleculares , Piperidinas/síntesis química , Piperidinas/metabolismo , Piperidinas/farmacología , Síndrome Respiratorio Agudo Grave/virología , Relación Estructura-Actividad , Células Vero , Proteínas Virales/química , Proteínas Virales/metabolismo , Replicación Viral/efectos de los fármacos
8.
J Med Chem ; 52(16): 5228-40, 2009 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-19645480

RESUMEN

We describe here the design, synthesis, molecular modeling, and biological evaluation of a series of small molecule, nonpeptide inhibitors of SARS-CoV PLpro. Our initial lead compound was identified via high-throughput screening of a diverse chemical library. We subsequently carried out structure-activity relationship studies and optimized the lead structure to potent inhibitors that have shown antiviral activity against SARS-CoV infected Vero E6 cells. Upon the basis of the X-ray crystal structure of inhibitor 24-bound to SARS-CoV PLpro, a drug design template was created. Our structure-based modification led to the design of a more potent inhibitor, 2 (enzyme IC(50) = 0.46 microM; antiviral EC(50) = 6 microM). Interestingly, its methylamine derivative, 49, displayed good enzyme inhibitory potency (IC(50) = 1.3 microM) and the most potent SARS antiviral activity (EC(50) = 5.2 microM) in the series. We have carried out computational docking studies and generated a predictive 3D-QSAR model for SARS-CoV PLpro inhibitors.


Asunto(s)
Antivirales/síntesis química , Benzamidas/síntesis química , Naftalenos/síntesis química , Inhibidores de Proteasas/síntesis química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Proteínas Virales/antagonistas & inhibidores , Animales , Antivirales/química , Antivirales/farmacología , Benzamidas/química , Benzamidas/farmacología , Chlorocebus aethiops , Proteasas 3C de Coronavirus , Cristalografía por Rayos X , Cisteína Endopeptidasas , Diseño de Fármacos , Modelos Moleculares , Naftalenos/química , Naftalenos/farmacología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Relación Estructura-Actividad Cuantitativa , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Células Vero
9.
Proc Natl Acad Sci U S A ; 105(42): 16119-24, 2008 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-18852458

RESUMEN

We report the discovery and optimization of a potent inhibitor against the papain-like protease (PLpro) from the coronavirus that causes severe acute respiratory syndrome (SARS-CoV). This unique protease is not only responsible for processing the viral polyprotein into its functional units but is also capable of cleaving ubiquitin and ISG15 conjugates and plays a significant role in helping SARS-CoV evade the human immune system. We screened a structurally diverse library of 50,080 compounds for inhibitors of PLpro and discovered a noncovalent lead inhibitor with an IC(50) value of 20 microM, which was improved to 600 nM via synthetic optimization. The resulting compound, GRL0617, inhibited SARS-CoV viral replication in Vero E6 cells with an EC(50) of 15 microM and had no associated cytotoxicity. The X-ray structure of PLpro in complex with GRL0617 indicates that the compound has a unique mode of inhibition whereby it binds within the S4-S3 subsites of the enzyme and induces a loop closure that shuts down catalysis at the active site. These findings provide proof-of-principle that PLpro is a viable target for development of antivirals directed against SARS-CoV, and that potent noncovalent cysteine protease inhibitors can be developed with specificity directed toward pathogenic deubiquitinating enzymes without inhibiting host DUBs.


Asunto(s)
Endopeptidasas , Inhibidores Enzimáticos/farmacología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Proteínas Virales/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Antivirales/química , Antivirales/clasificación , Antivirales/metabolismo , Antivirales/farmacología , Proteasas 3C de Coronavirus , Cristalografía por Rayos X , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , Endopeptidasas/química , Endopeptidasas/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/clasificación , Inhibidores Enzimáticos/metabolismo , Modelos Moleculares , Unión Proteica , Especificidad por Sustrato , Proteínas Virales/química , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA