Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Tipo de estudio
Intervalo de año de publicación
1.
J Immunol Methods ; 493: 113015, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33689807

RESUMEN

BACKGROUND: During eosinophil differentiation, the granule eosinophil major basic protein 1 (eMBP1) is synthesized as a 32-kDa precursor form, referred to as proMBP1, which is processed into the 14-kDa mature form of eMBP1. The prevalence of these two forms of MBP1 in most pathological conditions remains unknown. OBJECTIVE: To develop the immunoassays that differentiate mature eMBP1 and proMBP1 and apply them to analyze their levels in biological fluids from patients with eosinophilia and hematologic disorders. METHODS: We produced a series of monoclonal antibodies and selected pairs capable of discriminating between the two molecular forms of eMBP1. Radioimmunoassay (RIA) was performed to simultaneously quantitate the levels of mature eMBP1 and proMBP1 in secretions from patients with chronic rhinosinusitis (CRS) and sera from patients with hypereosinophilic syndrome (HES) and other myeloproliferative disorders. RESULTS: The novel immunoassays possessed less than 1% crossreactivity between mature eMBP1 and proMBP1. Mature eMBP1, but not proMBP1, was found in nasal secretions of CRS patients. In contrast, elevated serum levels of mature eMBP1 and proMBP1 were observed in approximately 60% and 90% of HES patients, respectively, with proMBP1 present in greater quantities than mature eMBP1. Patients with several myeloproliferative disorders also showed high serum levels of proMBP1 while mature eMBP1 remained at basal levels. CONCLUSION: The novel immunoassays successfully differentiated mature eMBP1 and proMBP1 in human biological fluids. Further studies addressing the clinical correlates of these assays will help to develop biomarkers to diagnose and monitor patients with eosinophilia and myeloproliferative disorders.


Asunto(s)
Proteína Mayor Básica del Eosinófilo/sangre , Eosinofilia/diagnóstico , Inmunoensayo/métodos , Trastornos Mieloproliferativos/diagnóstico , Proteoglicanos/sangre , Anticuerpos Monoclonales/inmunología , Proteína Mayor Básica del Eosinófilo/inmunología , Eosinofilia/inmunología , Humanos , Trastornos Mieloproliferativos/inmunología , Proteoglicanos/inmunología
3.
J Immunol ; 183(10): 6708-16, 2009 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19864598

RESUMEN

Eosinophils are multifunctional leukocytes implicated in the pathogenesis of asthma and in immunity to certain organisms. Associations between exposure to an environmental fungus, such as Alternaria, and asthma have been recognized clinically. Protease-activated receptors (PARs) are G protein-coupled receptors that are cleaved and activated by serine proteases, but their roles in innate immunity remain unknown. We previously found that human eosinophils respond vigorously to Alternaria organisms and to the secretory product(s) of Alternaria with eosinophils releasing their proinflammatory mediators. In this study, we investigated the roles of protease(s) produced by Alternaria and of PARs expressed on eosinophils in their immune responses against fungal organisms. We found that Alternaria alternata produces aspartate protease(s) and that human peripheral blood eosinophils degranulate in response to the cell-free extract of A. alternata. Eosinophils showed an increased intracellular calcium concentration in response to Alternaria that was desensitized by peptide and protease ligands for PAR-2 and inhibited by a PAR-2 antagonistic peptide. Alternaria-derived aspartate protease(s) cleaved PAR-2 to expose neo-ligands; these neo-ligands activated eosinophil degranulation in the absence of proteases. Finally, treatment of Alternaria extract with aspartate protease inhibitors, which are conventionally used for HIV-1 and other microbes, attenuated the eosinophils' responses to Alternaria. Thus, fungal aspartate protease and eosinophil PAR-2 appear critical for the eosinophils' innate immune response to certain fungi, suggesting a novel mechanism for pathologic inflammation in asthma and for host-pathogen interaction.


Asunto(s)
Alternaria/inmunología , Proteasas de Ácido Aspártico/inmunología , Neurotoxina Derivada del Eosinófilo/inmunología , Eosinófilos/inmunología , Proteínas Fúngicas/inmunología , Receptor PAR-2/inmunología , Serina Proteasas/inmunología , Alternaria/enzimología , Alternaria/metabolismo , Proteasas de Ácido Aspártico/metabolismo , Asma/inmunología , Calcio/análisis , Calcio/metabolismo , Degranulación de la Célula/efectos de los fármacos , Degranulación de la Célula/inmunología , Neurotoxina Derivada del Eosinófilo/metabolismo , Eosinófilos/efectos de los fármacos , Eosinófilos/enzimología , Eosinófilos/metabolismo , Proteínas Fúngicas/metabolismo , Humanos , Inmunidad Innata , Péptidos/farmacología , Receptor PAR-2/metabolismo , Serina Proteasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA