Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.830
Filtrar
Más filtros











Intervalo de año de publicación
1.
Natl Sci Rev ; 11(6): nwae100, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38707203

RESUMEN

Noise-induced hearing loss (NIHL) is a highly prevalent form of sensorineural hearing damage that has significant negative effects on individuals of all ages and there are no effective drugs approved by the US Food and Drug Administration. In this study, we unveil the potential of superparamagnetic iron oxide nanoparticle assembly (SPIOCA) to reshape the dysbiosis of gut microbiota for treating NIHL. This modulation inhibits intestinal inflammation and oxidative stress responses, protecting the integrity of the intestinal barrier. Consequently, it reduces the transportation of pathogens and inflammatory factors from the bloodstream to the cochlea. Additionally, gut microbiota-modulated SPIOCA-induced metabolic reprogramming in the gut-inner ear axis mainly depends on the regulation of the sphingolipid metabolic pathway, which further contributes to the restoration of hearing function. Our study confirms the role of the microbiota-gut-inner ear axis in NIHL and provides a novel alternative for the treatment of NIHL and other microbiota dysbiosis-related diseases.

2.
Cancer Lett ; : 216991, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38797232

RESUMEN

Genetic interactions (GIs) refer to two altered genes having a combined effect that is not seen individually. They play a crucial role in influencing drug efficacy. We utilized CGIdb 2.0 (http://www.medsysbio.org/CGIdb2/), an updated database of comprehensively published GIs information, encompassing synthetic lethality (SL), synthetic viability (SV), and chemical-genetic interactions. CGIdb 2.0 elucidates GIs relationships between or within protein complex models by integrating protein-protein physical interactions. Additionally, we introduced GENIUS (GENetic Interactions mediated drUg Signature) to leverage GIs for identifying the response signature of immune checkpoint inhibitors (ICIs). GENIUS identified high MAP4K4 expression as a resistance signature and high HERC4 expression as a sensitivity signature for ICIs treatment. Melanoma patients with high expression of MAP4K4 were associated with decreased efficacy and poorer survival following ICIs treatment. Conversely, overexpression of HERC4 in melanoma patients correlated with a positive response to ICIs. Notably, HERC4 enhances sensitivity to immunotherapy by facilitating antigen presentation. Analyses of immune cell infiltration and single-cell data revealed that B cells expressing MAP4K4 may contribute to resistance to ICIs in melanoma. Overall, CGIdb 2.0, provides integrated GIs data, thus serving as a crucial tool for exploring drug effects.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38808719

RESUMEN

BACKGROUND: Bladder cancer metastasis is an essential process in the progression of muscle-invasive bladder cancer. EMT plays a crucial role in facilitating the spread of cancer cells. Identifying compounds that can inhibit these abilities of cancer cells is a significant international endeavor. OBJECTIVE: To explore the migration and invasion effect of Moscatilin on the bladder and clarify the mechanism of action Method: The anti-bladder cancer effect of Moscatilin was observed by a cell proliferation experiment. The migration and invasion of bladder cancer cells inhibited by Moscatilin were detected by Transwell and Wound healing. The effects of Moscatilin on EMT-related proteins E-cadherin, N-cadherin, Snail1, Vimentin, and TGF-ß signaling pathways were detected by Western blot, and nucleic acid levels were verified by qPCR Results: Our study revealed that Moscatilin reduced the viability of bladder cancer cells in vitro and impeded their migration and invasion in experimental settings. Furthermore, we observed that Moscatilin decreased the activation levels of active proteins, specifically Smad3, Samd2, and MMP2. Additionally, we found that moscatilin significantly reduced the expression level of TGF-ß and was also capable of reversing the overexpression effect of TGF-ß. Treatment with Moscatilin also led to significant inhibition of interstitial cell markers Ncadherin and Snail1, which are associated with EMT. CONCLUSION: These findings indicate that Moscatilin impedes the migration and invasion of bladder cancer cells by influencing cell survival, modulating TGF-ß/Smad signaling, and inhibiting EMT.

4.
BMC Geriatr ; 24(1): 442, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773457

RESUMEN

BACKGROUND: The purpose of this study was to evaluate the safety and efficacy of preoperative concurrent chemoradiotherapy (preCRT) for locally advanced rectal cancer in older people who were classified as "fit" by comprehensive geriatric assessment (CGA). METHODS: A single-arm, multicenter, phase II trial was designed. Patients were eligible for this study if they were aged 70 years or above and met the standards of "fit" (SIOG1) as evaluated by CGA and of the locally advanced risk category. The primary endpoint was 2-year disease-free survival (DFS). Patients were scheduled to receive preCRT (50 Gy) with raltitrexed (3 mg/m2 on days 1 and 22). RESULTS: One hundred and nine patients were evaluated by CGA, of whom eighty-six, eleven and twelve were classified into the fit, intermediate and frail category. Sixty-eight fit patients with a median age of 74 years were enrolled. Sixty-four patients (94.1%) finished radiotherapy without dose reduction. Fifty-four (79.3%) patients finished the prescribed raltitrexed therapy as planned. Serious toxicity (grade 3 or above) was observed in twenty-four patients (35.3%), and fourteen patients (20.6%) experienced non-hematological side effects. Within a median follow-up time of 36.0 months (range: 5.9-63.1 months), the 2-year overall survival (OS), cancer-specific survival (CSS) and disease-free survival (DFS) rates were 89.6% (95% CI: 82.3-96.9), 92.4% (95% CI: 85.9-98.9) and 75.6% (95% CI: 65.2-86.0), respectively. Forty-eight patients (70.6%) underwent surgery (R0 resection 95.8%, R1 resection 4.2%), the corresponding R0 resection rate among the patients with positive mesorectal fascia status was 76.6% (36/47). CONCLUSION: This phase II trial suggests that preCRT is efficient with tolerable toxicities in older rectal cancer patients who were evaluated as fit based on CGA. TRIAL REGISTRATION: The registration number on ClinicalTrials.gov was NCT02992886 (14/12/2016).


Asunto(s)
Quimioradioterapia , Evaluación Geriátrica , Neoplasias del Recto , Humanos , Anciano , Masculino , Femenino , Neoplasias del Recto/terapia , Anciano de 80 o más Años , Evaluación Geriátrica/métodos , Quimioradioterapia/métodos , Supervivencia sin Enfermedad , Cuidados Preoperatorios/métodos , Tiofenos/administración & dosificación , Tiofenos/uso terapéutico , Grupo de Atención al Paciente , Quinazolinas/administración & dosificación , Quinazolinas/uso terapéutico
5.
Medicine (Baltimore) ; 103(20): e38261, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758844

RESUMEN

OBJECTIVE: To explore the therapeutic mechanism of Mori Cortex against osteosarcoma (OS), we conducted bioinformatics prediction followed by in vitro experimental validation. METHODS: Gene expression data from normal and OS tissues were obtained from the GEO database and underwent differential analysis. Active Mori Cortex components and target genes were extracted from the Traditional Chinese Medicine System Pharmacology database. By intersecting these targets with differentially expressed genes in OS, we identified potential drug action targets. Using the STRING database, a protein-protein interaction network was constructed. Subsequent analyses of these intersected genes, including Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment, were performed using R software to elucidate biological processes, molecular functions, and cellular components, resulting in the simulation of signaling pathways. Molecular docking assessed the binding capacity of small molecules to signaling pathway targets. In vitro validations were conducted on U-2 OS cells. The CCK8 assay was used to determine drug-induced cytotoxicity in OS cells, and Western Blotting was employed to validate the expression of AKT, extracellular signal-regulated kinases (ERK), Survivin, and Cyclin D1 proteins. RESULTS: Through differential gene expression analysis between normal and OS tissues, we identified 12,364 differentially expressed genes. From the TCSMP database, 39 active components and 185 therapeutic targets related to OS were derived. The protein-protein interaction network indicated that AKT1, IL-6, JUN, VEGFA, and CASP3 might be central targets of Mori Cortex for OS. Molecular docking revealed that the active compound Morusin in Mori Cortex exhibits strong binding affinity to AKT and ERK. The CCK8 assay showed that Morusin significantly inhibits the viability of U-2 OS cells. Western Blot demonstrated a reduction in the p-AKT/AKT ratio, the p-ERK/ERK ratio, Survivin, and Cyclin D1. CONCLUSION: Mori Cortex may exert its therapeutic effects on OS through multiple cellular signaling pathways. Morusin, the active component of Mori Cortex, can inhibit cell cycle regulation and promote cell death in OS cells by targeting AKT/ERK pathway.


Asunto(s)
Neoplasias Óseas , Biología Computacional , Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Morus , Osteosarcoma , Osteosarcoma/genética , Osteosarcoma/metabolismo , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/patología , Humanos , Línea Celular Tumoral , Medicamentos Herbarios Chinos/farmacología , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología , Mapas de Interacción de Proteínas , Transducción de Señal , Regulación Neoplásica de la Expresión Génica , Medicina Tradicional China/métodos , Survivin/metabolismo , Survivin/genética , Ciclina D1/metabolismo , Ciclina D1/genética
6.
Medicine (Baltimore) ; 103(19): e38113, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728495

RESUMEN

To explore the potential mechanism in Cuscuta sinensis on diarrhea-type irritable bowel syndrome using network pharmacology and molecular docking techniques. First, the active components and related targets of Cuscuta were found setting oral utilization >30% and drug-like properties greater than or equal to 0.18 as filter information from TCMSP database. The targets of diarrheal irritable bowel syndrome were compiled by searching DrugBank, GeneCards, OMIM, PharmGkb, and TTD databases. The intersections of drugs and targets related to the disease were taken for gene ontology enrichment and Kyoto encyclopedia of genes and genomes enrichment analyses, to elucidate the potential molecular mechanisms and pathway information of Cuscuta sinensis for the treatment of diarrheal irritable bowel syndrome. The protein-protein interaction network was constructed by using the STRING database and visualized with Cytoscape_v3.10.0 software to find the protein-protein interaction network core At last, molecular docking was performed to validate the combination of active compounds with the core target. The target information of Cuscuta and diarrhea-type irritable bowel syndrome was compiled, which can be resulted in 11 active compounds such as quercetin, kaempferol, isorhamnetin, ß-sitosterol, and another 17 core targets such as TP53, IL6, AKT1, IL1B, TNF, EGFR, etc, whose Kyoto encyclopedia of genes and genomes was enriched in the pathways of lipids and atherosclerosis, chemical carcinogenesis-receptor activation, PI3K-Akt signaling pathway, and fluid shear stress and atherosclerosis, etc. Docking demonstrated that the core targets and the active compounds were able to be better combined. Cuscuta chinensis may exert preventive effects on diarrhea-type irritable bowel syndrome by reducing intestinal inflammation, protecting intestinal mucosa, and playing an important role in antioxidant response through multi-targets and multi-pathways.


Asunto(s)
Cuscuta , Diarrea , Síndrome del Colon Irritable , Simulación del Acoplamiento Molecular , Farmacología en Red , Mapas de Interacción de Proteínas , Síndrome del Colon Irritable/tratamiento farmacológico , Humanos , Diarrea/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
7.
J Vis Exp ; (206)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38738888

RESUMEN

The protocol presented here demonstrates the operation method of ultrasound-guided acupotomy for knee osteoarthritis (KOA), including patient recruitment, preoperative preparation, manual operation, and postoperative care. The purpose of this protocol is to relieve pain and improve knee function in patients with KOA. A total of 60 patients with KOA admitted between June 2022 and June 2023 were treated with ultrasound-guided acupotomy. Pathological changes and knee function scores were compared before and after the treatment. After 1 week of treatment, the synovial thickness of the suprapatellar bursae was significantly lesser than before treatment (p < 0.05), the Hospital for Special Surgery Knee Score (HSS) was significantly higher than before treatment (p < 0.05), the Visual analogue scale (VAS) was significantly lower than those of the control group (p < 0.05) and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) were significantly lower than those of the control group (p < 0.05). Therefore, ultrasound-guided acupotomy for the treatment of KOA can reduce synovial thickness, relieve pain, improve knee joint function, and have a remarkable curative effect.


Asunto(s)
Terapia por Acupuntura , Osteoartritis de la Rodilla , Ultrasonografía Intervencional , Humanos , Osteoartritis de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/terapia , Osteoartritis de la Rodilla/cirugía , Terapia por Acupuntura/métodos , Ultrasonografía Intervencional/métodos , Femenino , Persona de Mediana Edad , Masculino , Anciano
8.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167208, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38701956

RESUMEN

OBJECTIVE: This study aims to investigate the cardiac protective effects and molecular mechanisms of electroacupuncture (EA) pre-treatment in lipopolysaccharide (LPS)-Induced Cardiomyopathy. METHODS AND RESULTS: Pre-treatment with EA was performed 30 min before intraperitoneal injection of LPS. Cardiac function changes in mice of the EA + LPS group were observed using electrocardiography, echocardiography, and enzyme linked immunosorbent assay (ELISA) and compared with the LPS group. The results demonstrated that EA pre-treatment significantly improved the survival rate of septic mice, alleviated the severity of endotoxemia, and exhibited notable cardiac protective effects. These effects were characterized by a reduction in ST-segment elevation on electrocardiography, an increase in ejection fraction (EF) and fraction shortening (FS) on echocardiography and a decrease in the expression of serum cardiac troponin I (cTn-I) levels. Serum exosomes obtained after EA pre-treatment were extracted and administered to septic mice, revealing significant cardiac protective effects of EA-derived exosomes. Furthermore, the antagonism of circulating exosomes in mice markedly suppressed the cardiac protective effects conferred by EA pre-treatment. Analysis of serum exosomes using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed a significant upregulation of miR-381 expression after EA pre-treatment. Inhibition or overexpression of miR-381 through serotype 9 adeno-associated virus (AAV9)-mediated gene delivery demonstrated that overexpression of miR-381 exerted a cardiac protective effect, while inhibition of miR-381 significantly attenuated the cardiac protective effects conferred by EA pre-treatment. CONCLUSIONS: Our research findings have revealed a novel endogenous cardiac protection mechanism, wherein circulating exosomes derived from EA pre-treatment mitigate LPS-induced cardiac dysfunction via miR-381.


Asunto(s)
Cardiomiopatías , Electroacupuntura , Exosomas , Lipopolisacáridos , MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Exosomas/metabolismo , Exosomas/genética , Electroacupuntura/métodos , Ratones , Cardiomiopatías/inducido químicamente , Cardiomiopatías/metabolismo , Cardiomiopatías/terapia , Cardiomiopatías/patología , Cardiomiopatías/genética , Cardiomiopatías/prevención & control , Lipopolisacáridos/toxicidad , Masculino , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
9.
Front Immunol ; 15: 1410457, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38765013

RESUMEN

Introduction: CM313 is currently under clinical investigation for treatments of multiple myeloma, systemic lupus erythematosus, and immune thrombocytopenia. We aimed to report the preclinical profile of the novel therapeutic anti-CD38 monoclonal antibody (mAb) CM313, with an emphasis on the difference with other CD38-targeting mAb. Methods: The binding of CM313 to CD38 recombinant protein across species was assessed using ELISA. The binding of CM313 to CD38-positive (CD38+) cells was detected using flow cytometry assays. CM313-induced complement-dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP) and apoptosis on different CD38+ cells were assessed by LDH release assays or flow cytometry assays. The effect of CM313 on CD38 enzymatic activity was measured using fluorescence spectroscopy. CM313 immunotoxicity in human blood was assessed using flow cytometry assays, ELISA, and LDH release assays. Anti-tumor activity of CM313 was assessed in multiple mouse xenograft models. Safety profile of CM313 were evaluated in cynomolgus monkeys and human CD38 transgenic (B-hCD38) mice. Results: There exist unique sequences at complementarity-determining regions (CDR) of CM313, which facilitates its affinity to CD38 is consistently higher across a spectrum of CD38+ cell lines than daratumumab. In vitro studies showed that CM313 induces comparable killing activity than daratumumab, including ADCC, CDC, ADCP, apoptosis induced by Fc-mediated cross-linking, and effectively inhibited the enzymatic activity of CD38. However, CM313 showed more potent CDC than isatuximab. In vivo, CM313 dose-dependently inhibited xenograft tumor growth, both as a monotherapy and in combination with dexamethasone or lenalidomide. Furthermore, CM313 was well tolerated with no drug-related clinical signs or off-target risks, as evidenced by 4-week repeat-dose toxicology studies in cynomolgus monkeys and B-hCD38 mice, with the later study showing no observed adverse effect level (NOAEL) of 300mg/kg once weekly. Discussion: CM313 is a novel investigational humanized mAb with a distinct CDR sequence, showing comparable killing effects with daratumumab and stronger CDC activity than isatuximab, which supports its clinical development.


Asunto(s)
ADP-Ribosil Ciclasa 1 , Anticuerpos Monoclonales , Citotoxicidad Celular Dependiente de Anticuerpos , Macaca fascicularis , Animales , ADP-Ribosil Ciclasa 1/inmunología , ADP-Ribosil Ciclasa 1/antagonistas & inhibidores , Humanos , Ratones , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino , Ratones Transgénicos , Apoptosis/efectos de los fármacos , Antineoplásicos Inmunológicos/farmacología , Glicoproteínas de Membrana
10.
Heliyon ; 10(8): e29326, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38628712

RESUMEN

Objectives: The impact of N7-methylguanosine (m7G) on tumor progression and the regulatory role of microRNAs (miRNAs) in immune function significantly influence breast cancer (BC) prognosis. Investigating the interplay between m7G modification and miRNAs provides novel insights for assessing prognostics and drug responses in BC. Materials and methods: RNA sequences (miRNA and mRNA profiles) and clinical data for BC were acquired from the Cancer Genome Atlas (TCGA) database. A miRNA signature associated with 15 m7G in this cohort was identified using Cox regression and LASSO. The risk score model was evaluated using Kaplan-Meier and time-dependent ROC analysis, categorizing patients into high-risk and low-risk groups. Functional enrichment analyses were conducted to explore potential pathways. The immune system, including scores, cell infiltration, function, and drug sensitivity, was examined and compared between high-risk and low-risk groups. A nomogram that combines risk scores and clinical factors was developed and validated. Single-sample gene set enrichment analysis (ssGSEA) was employed to explore m7G-related miRNA signatures and immune cell relationships in the tumor microenvironment. Additionally, drug susceptibility was compared between risk groups. Results: Fifteen m7G-related miRNAs were independently correlated with overall survival (OS) in BC patients. Time-dependent ROC analysis yielded area under the curve (AUC) values of 0.742, 0.726, and 0.712 for predicting 3-, 5-, and 10-year survival rates, respectively. The Kaplan-Meier analysis revealed a significant disparity in OS between the high-risk and low-risk groups (p = 1.3e-6). Multiple regression identified the risk score as a significant independent prognostic factor. An excellent calibration nomogram with a C-index of 0.785 (95 % CI: 0.728-0.843) was constructed. In immune analysis, low-risk patients exhibited heightened immune function and increased responsiveness to immunotherapy and chemotherapy compared to high-risk patients. Conclusion: This study systematically analyzed m7G-related miRNAs and revealed their regulatory mechanisms concerning the tumor microenvironment (TME), pathology, and the prognosis of BC patient. Based on these miRNAs, a prognostic model and nomogram were developed for BC patients, facilitating prognostic assessments. These findings can also assist in predicting treatment responses and guiding medication selection.

11.
Free Radic Biol Med ; 218: 1-15, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38574973

RESUMEN

Sjogren's syndrome (SS) is an autoimmune disease characterized by dysfunction of exocrine glands, such as salivary glands. However, the molecular mechanism of salivary secretion dysfunction in SS is still unclear. Given the significance of glutathione peroxidase 4 (GPX4) in cellular redox homeostasis, we hypothesized that dysregulation of GPX4 may play a pivotal role in the pathogenesis of salivary secretion dysfunction observed in SS. The salivary gland of SS patients and the SS mouse model exhibited reduced expression of the ferroptosis inhibitor GPX4 and the important protein aquaporin 5 (AQP5), which is involved in salivary secretion. GPX4 overexpression upregulated and GPX4 knockdown downregulated AQP5 expression in salivary gland epithelial cells (SGECs) and salivary secretion. Bioinformatics analysis of GSE databases from SS patients' salivary glands revealed STAT4 as a key intermediary regulator between GPX4 and AQP5. A higher level of nuclear pSTAT4 was observed in the salivary gland of the SS mouse model. GPX4 overexpression inhibited and GPX4 knockdown promoted STAT4 phosphorylation and nuclear translocation in SGECs. CHIP assay confirmed the binding of pSTAT4 within the promoter of AQP5 inhibiting AQP5 transcription. GPX4 downregulation accumulates intracellular lipid ROS in SGECs. Lipid ROS inhibitor ferrostatin-1 treatment during in vitro and in vivo studies confirmed that lipid ROS activates STAT4 phosphorylation and nuclear translocation in SGECs. In summary, the downregulated GPX4 in SGECs contributes to salivary secretion dysfunction in SS via the lipid ROS/pSTAT4/AQP5 axis. This study unraveled novel targets to revitalize the salivary secretion function in SS patients.


Asunto(s)
Acuaporina 5 , Células Epiteliales , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Especies Reactivas de Oxígeno , Factor de Transcripción STAT4 , Glándulas Salivales , Síndrome de Sjögren , Síndrome de Sjögren/metabolismo , Síndrome de Sjögren/genética , Síndrome de Sjögren/patología , Animales , Humanos , Ratones , Glándulas Salivales/metabolismo , Glándulas Salivales/patología , Acuaporina 5/metabolismo , Acuaporina 5/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT4/metabolismo , Factor de Transcripción STAT4/genética , Modelos Animales de Enfermedad , Femenino , Regulación hacia Abajo , Masculino , Transducción de Señal , Regulación de la Expresión Génica , Ferroptosis/genética , Saliva/metabolismo , Persona de Mediana Edad
12.
Comput Methods Programs Biomed ; 250: 108178, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38652995

RESUMEN

BACKGROUND AND OBJECTIVE: Gland segmentation of pathological images is an essential but challenging step for adenocarcinoma diagnosis. Although deep learning methods have recently made tremendous progress in gland segmentation, they have not given satisfactory boundary and region segmentation results of adjacent glands. These glands usually have a large difference in glandular appearance, and the statistical distribution between the training and test sets in deep learning is inconsistent. These problems make networks not generalize well in the test dataset, bringing difficulties to gland segmentation and early cancer diagnosis. METHODS: To address these problems, we propose a Variational Energy Network named VENet with a traditional variational energy Lv loss for gland segmentation of pathological images and early gastric cancer detection in whole slide images (WSIs). It effectively integrates the variational mathematical model and the data-adaptability of deep learning methods to balance boundary and region segmentation. Furthermore, it can effectively segment and classify glands in large-size WSIs with reliable nucleus width and nucleus-to-cytoplasm ratio features. RESULTS: The VENet was evaluated on the 2015 MICCAI Gland Segmentation challenge (GlaS) dataset, the Colorectal Adenocarcinoma Glands (CRAG) dataset, and the self-collected Nanfang Hospital dataset. Compared with state-of-the-art methods, our method achieved excellent performance for GlaS Test A (object dice 0.9562, object F1 0.9271, object Hausdorff distance 73.13), GlaS Test B (object dice 94.95, object F1 95.60, object Hausdorff distance 59.63), and CRAG (object dice 95.08, object F1 92.94, object Hausdorff distance 28.01). For the Nanfang Hospital dataset, our method achieved a kappa of 0.78, an accuracy of 0.9, a sensitivity of 0.98, and a specificity of 0.80 on the classification task of test 69 WSIs. CONCLUSIONS: The experimental results show that the proposed model accurately predicts boundaries and outperforms state-of-the-art methods. It can be applied to the early diagnosis of gastric cancer by detecting regions of high-grade gastric intraepithelial neoplasia in WSI, which can assist pathologists in analyzing large WSI and making accurate diagnostic decisions.


Asunto(s)
Aprendizaje Profundo , Detección Precoz del Cáncer , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico por imagen , Neoplasias Gástricas/patología , Detección Precoz del Cáncer/métodos , Adenocarcinoma/diagnóstico por imagen , Adenocarcinoma/patología , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Interpretación de Imagen Asistida por Computador/métodos
13.
Int J Biol Macromol ; 267(Pt 2): 131429, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583828

RESUMEN

Herein, a novel chitosan Schiff base (CS-FGA) as a sustainable corrosion inhibitor has been successfully synthesized via a simple amidation reaction by using an imidazolium zwitterion and chitosan (CS). The corrosion inhibition property of CS-FGA for mild steel (MS) in a 1.0 M HCl solution was studied by various electrochemical tests and physical characterization methods. The findings indicate that the maximum inhibition efficiency of CS-FGA as a mixed-type inhibitor for MS in 1.0 M HCl solution with 400 mg L-1 reaches 97.6 %, much much higher than the CS and the recently reported chitosan-based inhibitors. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and water contact angle (WCA) results reveal that the CS-FGA molecules firmly adsorb on the MS surface to form a protective layer. The adsorption of CS-FGA on the MS surface belongs to the Langmuir adsorption isotherm containing both the physisorption and chemisorption. According to the X-ray photoelectron spectroscopy (XPS) and UV-vis spectrum, FeN bonds presented on the MS surface further prove the chemisorption between CS-FGA and Fe to generate the stable protective layer. Additionally, theoretical calculations from quantum chemical calculation (DFT) and molecular simulations (MD) were performed to reveal the inhibition mechanism of CS-FGA.


Asunto(s)
Quitosano , Ácido Clorhídrico , Acero , Quitosano/química , Acero/química , Corrosión , Ácido Clorhídrico/química , Adsorción , Bases de Schiff/química , Soluciones , Espectroscopía de Fotoelectrones , Propiedades de Superficie
14.
J Nucl Med ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38604764

RESUMEN

68Ga-labeled nanobody (68Ga-NC-BCH) is a single-domain antibody-based PET imaging agent. We conducted a first-in-humans study of 68Ga-NC-BCH for PET to determine its in vivo biodistribution, metabolism, radiation dosimetry, safety, and potential for quantifying claudin-18 isoform 2 (CLDN18.2) expression in gastrointestinal cancer patients. Methods: Initially, we synthesized the probe 68Ga-NC-BCH and performed preclinical evaluations on human gastric adenocarcinoma cell lines and xenograft mouse models. Next, we performed a translational study with a pilot cohort of patients with advanced gastrointestinal cancer on a total-body PET/CT scanner. Radiopharmaceutical biodistribution, radiation dosimetry, and the relationship between tumor uptake and CLDN18.2 expression were evaluated. Results: 68Ga-NC-BCH was stably prepared and demonstrated good radiochemical properties. According to preclinical evaluation,68Ga-NC-BCH exhibited rapid blood clearance, high affinity for CLDN18.2, and high specific uptake in CLDN18.2-positive cells and xenograft mouse models. 68Ga-NC-BCH displayed high uptake in the stomach and kidney and slight uptake in the pancreas. Compared with 18F-FDG, 68Ga-NC-BCH showed significant differences in uptake in lesions with different levels of CLDN18.2 expression. Conclusion: A clear correlation was detected between PET SUV and CLDN18.2 expression, suggesting that 68Ga-NC-BCH PET could be used as a companion diagnostic tool for optimizing treatments that target CLDN18.2 in tumors.

15.
Res Sq ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38585965

RESUMEN

Treatment-induced neuroendocrine prostate cancer (t-NEPC) often arises from adenocarcinoma via lineage plasticity in response to androgen receptor signaling inhibitors, such as enzalutamide. However, the specific regulators and targets involved in the transition to NEPC are not well understood. Plexin D1 (PLXND1) is a cellular receptor of the semaphorin (SEMA) family that plays important roles in modulating the cytoskeleton and cell adhesion. Here, we found that PLXND1 is highly expressed and positively correlated with neuroendocrine markers in patients with NEPC. High PLXND1 expression is associated with poorer prognosis in prostate cancer patients. Additionally, PLXND1 was upregulated and negatively regulated by androgen receptor signaling in enzalutamide-resistant cells. Knockdown or knockout of PLXND1 inhibit neural lineage pathways, suppressing NEPC cell proliferation, PDX tumor organoid viability, and xenograft tumor growth. Mechanistically, the chaperone protein HSP70 regulates PLXND1 protein stability through degradation, and inhibition of HSP70 decreases PLXND1 expression and NEPC organoid growth. In summary, our findings suggest that PLXND1 could be a new therapeutic target and molecular indicator for NEPC.

16.
Int J Biol Macromol ; 267(Pt 1): 131436, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593897

RESUMEN

Block polymer micelles have been proven highly biocompatible and effective in improving drug utilization for delivering atorvastatin calcium. Therefore, it is of great significance to measure the stability of drug-loading nano micelles from the perspective of block polymer molecular sequence design, which would provide theoretical guidance for subsequent clinical applications. This study aims to investigate the structural stability of drug-loading micelles formed by two diblock/triblock polymers with various block sequences through coarse-grained dissipative particle dynamics (DPD) simulations. From the perspectives of the binding strength of poly(L-lactic acid) (PLLA) and polyethylene glycol (PEG) in nanoparticles, hydrophilic bead surface coverage, and the morphological alteration of nanoparticles induced by shear force, the ratio of hydrophilic/hydrophobic sequence length has been observed to affect the stability of nanoparticles. We have found that for diblock polymers, PEG3kda-PLLA2kda has the best stability (corresponding hydrophilic coverage ratio is 0.832), while PEG4kda-PLLA5kda has the worst (coverage ratio 0.578). For triblock polymers, PEG4kda-PLLA2kda-PEG4kda has the best stability (0.838), while PEG4kda-PLLA5kda-PEG4kda possesses the worst performance (0.731), and the average performance on stability is better than nanoparticles composed of diblock polymers.


Asunto(s)
Atorvastatina , Interacciones Hidrofóbicas e Hidrofílicas , Lactatos , Nanopartículas , Polietilenglicoles , Atorvastatina/química , Polietilenglicoles/química , Nanopartículas/química , Portadores de Fármacos/química , Micelas , Poliésteres/química , Composición de Medicamentos , Simulación de Dinámica Molecular
17.
Front Immunol ; 15: 1333848, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596683

RESUMEN

Excessive salt intake is a widespread health issue observed in almost every country around the world. A high salt diet (HSD) has a strong correlation with numerous diseases, including hypertension, chronic kidney disease, and autoimmune disorders. However, the mechanisms underlying HSD-promotion of inflammation and exacerbation of these diseases are not fully understood. In this study, we observed that HSD consumption reduced the abundance of the gut microbial metabolite L-fucose, leading to a more substantial inflammatory response in mice. A HSD led to increased peritonitis incidence in mice, as evidenced by the increased accumulation of inflammatory cells and elevated levels of inflammatory cytokines, such as tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and monocyte chemotactic protein-1 (MCP-1, also known as C-C motif chemokine ligand 2 or CCL2), in peritoneal lavage fluid. Following the administration of broad-spectrum antibiotics, HSD-induced inflammation was abolished, indicating that the proinflammatory effects of HSD were not due to the direct effect of sodium, but rather to HSD-induced alterations in the composition of the gut microbiota. By using untargeted metabolomics techniques, we determined that the levels of the gut microbial metabolite L-fucose were reduced by a HSD. Moreover, the administration of L-fucose or fucoidan, a compound derived from brown that is rich in L-fucose, normalized the level of inflammation in mice following HSD induction. In addition, both L-fucose and fucoidan inhibited LPS-induced macrophage activation in vitro. In summary, our research showed that reduced L-fucose levels in the gut contributed to HSD-exacerbated acute inflammation in mice; these results indicate that L-fucose and fucoidan could interfere with HSD-promotion of the inflammatory response.


Asunto(s)
Fucosa , Polisacáridos , Cloruro de Sodio Dietético , Ratones , Animales , Fucosa/farmacología , Inflamación/metabolismo , Dieta
18.
Carbohydr Polym ; 335: 122073, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38616095

RESUMEN

Breast cancer remains one of the most intractable diseases, especially the malignant form of metastasis, with which the cancer cells are hard to track and eliminate. Herein, the common known carbohydrate polymer chitosan (CS) was innovatively used as a shelter for the potent tumor-killing agent. The designed nanoparticles (NPs) not only enhance the solubility of hydrophobic paclitaxel (PTX), but also provide a "hide" effect for cytotoxic PTX in physiological condition. Moreover, coupled with the photothermal (PTT) properties of MoS2, results in a potent chemo/PTT platform. The MoS2@PTX-CS-K237 NPs have a uniform size (135 ± 17 nm), potent photothermal properties (η = 31.5 %), and environment-responsive (low pH, hypoxia) and near infrared (NIR) laser irradiation-triggered PTX release. Through a series of in vitro and in vivo experiments, the MoS2@PTX-CS-K237 showed high affinity and specificity for breast cancer cells, impressive tumor killing capacity, as well as the effective inhibitory effect of metastasis. Benefit from the unique optical properties of MoS2, this multifunctional nanomedicine also exhibited favorable thermal/PA/CT multimodality imaging effect on tumor-bearing mice. The system developed in this work represents the advanced design concept of hierarchical stimulus responsive drug release, and merits further investigation as a potential nanotheranostic platform for clinical translation.


Asunto(s)
Quitosano , Neoplasias , Animales , Ratones , Molibdeno , Nanomedicina , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Imagen Multimodal
19.
Immunopharmacol Immunotoxicol ; : 1-10, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622049

RESUMEN

Context: Hemangioma (HA) is a benign vascular neoplasm that can lead to permanent scarring. C-C motif chemokine ligand 2 (CCL2) plays a crucial role in facilitating growth and angiogenesis during HA progression. However, the mechanism regulating CCL2 in HA remains poorly elucidated.Objective: To elucidate the mechanism regulating CCL2 in HA.Methods: Quantitative real-time polymerase chain reaction (RT-qPCR) was employed to determine the expression levels of CCL2, long noncoding RNA (lncRNA) CTBP1 divergent transcript (CTBP1-AS2), and microRNAs (miRNAs). Proliferation, migration, invasion, and angiogenic abilities of human HA endothelial cells (HemECs) were assessed using cell counting kit-8 (CCK-8), colony formation, flow cytometry, transwell, and tube formation assays. Bioinformatics analysis, RNA pull-down, and luciferase reporter assays were conducted to investigate whether CCL2 targets miR-335-5p. Additionally, rescue experiments were performed in this study.Results: CCL2 expression was markedly upregulated in HemECs. CCL2 promoted HA cell proliferation, migration, invasion, and angiogenesis while inhibiting apoptosis. CCL2 was directly targeted by miR-335-5p. Additionally, we found that CTBP1-AS2 could function as a competing endogenous RNA (ceRNA) to sponge miR-335-5p, thereby upregulating CCL2.Conclusion: Our findings suggest that targeting the CTBP1-AS2/miR-335-5p/CCL2 axis may hold promise as a therapeutic strategy for HA.

20.
Curr Radiopharm ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38644703

RESUMEN

BACKGROUND: Alveolar rhabdomyosarcoma (ARMS) predominantly affects adolescents aged 10-15 years and is distinguished by its high aggressiveness and adverse prognosis compared with other sarcomas. It exhibits a pronounced tendency for lymphatic and hematogenous metastases at early stages. ARMS commonly manifests in the limbs and genitourinary system, with occurrences in the head and neck region being relatively uncommon. The role of CT, MRI, and 18F-FDG positron emission tomography combined with computed tomography (PET/CT) in the diagnostic process of ARMS is yet to be fully established. CASE REPORT: We report the case of a 49-year-old woman who presented with hematological nasal discharge for one month. CT imaging revealed a soft tissue mass in the left nasal cavity. MRI demonstrated a marginally hypo- to isointense signal on T1-weighted images, a hyperintense signal on T2-weighted images, and heterogeneous enhancement post-contrast. 18F-FDG PET/CT identified a hypermetabolic lesion located within the left nasal cavity. Surgical intervention entailed the excision of the left intranasal mass and the skull base lesion. Postoperative pathological analysis indicated ARMS. CONCLUSION: Sinus ARMS is notably malignant and associated with a dismal prognosis. Accurate diagnosis depends on histopathological and immunohistochemical evaluation, complemented by genetic analysis for specific chromosomal translocations and fusion genes. Imaging techniques, including CT, MRI, and PET/CT, are crucial for assessing lesion extent and metastasis, supporting disease diagnosis, informing treatment choices, facilitating surgical planning, and monitoring response to therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA