Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Brain Behav ; 14(5): e3515, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38702895

RESUMEN

INTRODUCTION: Maternal sleep deprivation (MSD), which induces inflammation and synaptic dysfunction in the hippocampus, has been associated with learning and memory impairment in offspring. Melatonin (Mel) has been shown to have anti-inflammatory, antioxidant, and neuroprotective function. However, the beneficial effect of Mel on MSD-induced cognitive impairment and its mechanisms are unknown. METHODS: In the present study, adult offspring suffered from MSD were injected with Mel (20 mg/kg) once a day during postnatal days 61-88. The cognitive function was evaluated by the Morris water maze test. Levels of proinflammatory cytokines were examined by enzyme-linked immunosorbent assay. The mRNA and protein levels of synaptic plasticity associated proteins were examined using reverse transcription-polymerase chain reaction and western blotting. RESULTS: The results showed that MSD impaired learning and memory in the offspring mice. MSD increased the levels of interleukin (IL)-1creIL-6, and tumor necrosis factor-α and decreased the expression levels of brain-derived neurotrophic factor, tyrosine kinase receptor B, postsynaptic density protein-95, and synaptophysin in the hippocampus. Furthermore, Mel attenuated cognitive impairment and restored markers of inflammation and synaptic plasticity to control levels. CONCLUSIONS: These findings indicated that Mel could ameliorate learning and memory impairment induced by MSD, and these beneficial effects were related to improvement in inflammation and synaptic dysfunction.


Asunto(s)
Hipocampo , Melatonina , Trastornos de la Memoria , Plasticidad Neuronal , Privación de Sueño , Animales , Melatonina/farmacología , Melatonina/administración & dosificación , Privación de Sueño/complicaciones , Privación de Sueño/tratamiento farmacológico , Privación de Sueño/fisiopatología , Ratones , Masculino , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Femenino , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/etiología , Trastornos de la Memoria/fisiopatología , Plasticidad Neuronal/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Embarazo , Privación Materna , Disfunción Cognitiva/etiología , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/fisiopatología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico
2.
Brain Behav ; 14(5): e3508, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38688894

RESUMEN

BACKGROUND: The inflammation and synaptic dysfunction induced by mitochondrial dysfunction play essential roles in the learning and memory impairment associated with sleep dysfunction. Elamipretide (SS-31), a novel mitochondrion-targeted antioxidant, was proven to improve mitochondrial dysfunction, the inflammatory response, synaptic dysfunction, and cognitive impairment in models of cerebral ischemia, sepsis, and type 2 diabetes. However, the potential for SS-31 to improve the cognitive impairment induced by chronic sleep deprivation (CSD) and its underlying mechanisms is unknown. METHODS: Adult c57BL/6J mice were subjected to CSD for 21 days using an activity wheel accompanied by daily intraperitoneal injection of SS-31 (5 mg/kg). The novel object recognition and Morris water maze test were used to evaluate hippocampus-dependent cognitive function. Western blotting and reverse transcription-quantitative polymerase chain reaction assays were used to determine the effects of CSD and SS-31 on markers of mitochondria, inflammation response, and synaptic function. Enzyme-linked immunosorbent assays were used to examine the levels of proinflammatory cytokines. RESULTS: SS-31 could improve the cognitive impairment induced by CSD. In particular, SS-31 treatment restored the CSD-induced decrease in sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor γ coactivator alpha levels and the increase in levels nuclear factor kappa-B and inflammatory cytokines, including interleukin (IL)-1ß, IL-6, and tumor necrosis factor-alpha. Furthermore, SS-31 significantly increased the levels of brain-derived neurotrophic factor, postsynaptic density protein-95, and synaptophysin in CSD mice. CONCLUSION: Taken together, these results suggest that SS-31 could improve CSD-induced mitochondrial biogenesis dysfunction, inflammatory response, synaptic dysfunction, and cognitive impairment by increasing SIRT1 expression levels.


Asunto(s)
Antioxidantes , Ratones Endogámicos C57BL , Mitocondrias , Oligopéptidos , Privación de Sueño , Animales , Ratones , Privación de Sueño/tratamiento farmacológico , Privación de Sueño/complicaciones , Privación de Sueño/metabolismo , Oligopéptidos/farmacología , Oligopéptidos/administración & dosificación , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Antioxidantes/farmacología , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/etiología , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Sirtuina 1/metabolismo , Modelos Animales de Enfermedad
3.
J Biochem Mol Toxicol ; 38(4): e23698, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38501767

RESUMEN

Accumulating evidence confirms that sleep insufficiency is a high risk factor for cognitive impairment, which involves inflammation and synaptic dysfunction. Resveratrol, an agonist of the Sirt1, has demonstrated anti-inflammation and neuroprotective effects in models of Alzheimer's disease, Parkinson's disease, and schizophrenia. However, the beneficial effects of resveratrol on sleep deprivation-induced cognitive deficits and its underlying molecular mechanisms are unclear. In the present study, thirty-two male C57BL/6 J mice were randomly divided into a Control+DMSO group, Control+Resveratrol group, SD+DMSO group, and SD+Resveratrol group. The mice in the SD+Resveratrol group underwent 5 days of sleep deprivation after pretreatment with resveratrol (50 mg/kg) for 2 weeks, while the mice in the SD+DMSO group only underwent sleep deprivation. After sleep deprivation, we evaluated spatial learning and memory function using the Morris water maze test. We used general molecular biology techniques to detect changes in levels of pro-inflammatory cytokines and Sirt1/miR-134 pathway-related synaptic plasticity proteins. We found that resveratrol significantly reversed sleep deprivation-induced learning and memory impairment, elevated interleukin-1ß, interleukin-6, and tumor necrosis factor-α levels, and decreased brain-derived neurotrophic factor, tyrosine kinase receptor B, postsynaptic density protein-95, and synaptophysin levels by activating the Sirt1/miR-134 pathway. In conclusion, resveratrol is a promising agent for preventing sleep deprivation-induced cognitive dysfunction by reducing pro-inflammatory cytokines and improving synaptic function via the Sirt1/miR-134 pathway.


Asunto(s)
Disfunción Cognitiva , MicroARNs , Masculino , Ratones , Animales , Resveratrol/farmacología , Privación de Sueño/complicaciones , Privación de Sueño/metabolismo , Sirtuina 1/metabolismo , Dimetilsulfóxido/metabolismo , Dimetilsulfóxido/farmacología , Ratones Endogámicos C57BL , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Disfunción Cognitiva/prevención & control , Hipocampo/metabolismo , MicroARNs/metabolismo , Citocinas/metabolismo , Cognición
4.
Sleep Med ; 117: 177-183, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554533

RESUMEN

OBJECTIVES: To explore the relationship between nocturnal levels of stress-related hormones and different sleep-wake states in chronic insomnia disorder (CID) patients. METHODS: Thirty-three CID patients and 34 good sleepers were enrolled and completed assessment of sleep log, Pittsburgh Sleep Quality Index and Insomnia Severity Index. During a-overnight polysomnography monitoring, the patients' vein bleeds were continually collected at different time points (pre-sleep, deep-sleep, 5-min or 30-min waking, and morning waking-up). The control subjects' bleeds were collected only at 22:00 and morning waking-up. The serum hormones were detected using enzyme-linked immunosorbent assay. RESULTS: Compared with at pre-sleep, the level of cortisol was significantly higher at morning waking-up respectively in two-group subjects (Ps < 0.001), with insignificant inter-group differences in cortisol, corticotropin releasing hormone and copeptin at the two time-points. In the patients, the nocturnal secretion curves of three hormones were similar, with the highest concentration at morning waking-up, followed by 30-min waking, 5-min waking, pre-sleep, and deep-sleep. The patients' cortisol (Z = 79.192, P < 0.001) and copeptin (Z = 12.333, P = 0.015) levels were statistically different at different time-points, with higher cortisol at morning waking-up relative to deep-sleep, pre-sleep and 5-min waking (Ps < 0.05), and at 30-min waking relative to deep-sleep and pre-sleep (Ps < 0.05), and higher copeptin at morning waking-up relative to deep-sleep (P < 0.05). CONCLUSIONS: In CID, the nocturnal wakes were instantaneously accompanied by high level, and deep sleep was accompanied by the lowest levels, of stress-related hormones, especially in cortisol, supporting the insomniac hypothesis of increased nocturnal pulse-release of cortisol.


Asunto(s)
Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Proyectos Piloto , Hidrocortisona , Sueño , Polisomnografía
5.
J Neuroimmunol ; 386: 578252, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38086228

RESUMEN

Growing evidence indicates that neuroinflammation plays a critical role in anxiety, depression, and cognitive impairment. Sleep loss disrupts the host's immune balance and increases neuroinflammation. This study explored whether chronic sleep deprivation aggravates lipopolysaccharide-induced anxiety, depression, and cognitive impairment and assessed the underlying mechanisms. Lipopolysaccharide (250 µg/kg) was administered to adult mice for 9 days, accompanied with daily intermittent sleep deprivation from 12:00 to 18:00 by using an activity wheel. Anxiety, depression, and cognitive function were evaluated using a task battery consisting of an open field, elevated plus maze, tail suspension, forced swimming, and Morris water maze tests. The levels of pro-inflammatory cytokines and synaptic plasticity-associated proteins were examined by enzyme-linked immunosorbent assay and western blot, respectively. The results showed that lipopolysaccharide increased anxiety- and depression-like behaviors, impaired cognitive function, uprelated interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and decreased brain-derived neurotrophic factor (BDNF), postsynaptic density-95 (PSD-95), and synaptophysin (SYN), which were aggravated by chronic sleep deprivation. These results suggest that chronic sleep deprivation exerted adverse effects on lipopolysaccharide-induced anxiety, depression, and cognitive impairment, which was associated with changes in pro-inflammatory cytokines and synaptic plasticity associated proteins.


Asunto(s)
Disfunción Cognitiva , Citocinas , Ratones , Animales , Citocinas/metabolismo , Lipopolisacáridos/toxicidad , Lipopolisacáridos/metabolismo , Depresión/inducido químicamente , Depresión/metabolismo , Privación de Sueño/complicaciones , Enfermedades Neuroinflamatorias , Disfunción Cognitiva/inducido químicamente , Ansiedad/inducido químicamente , Plasticidad Neuronal , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Interleucina-6/metabolismo , Hipocampo
6.
Front Behav Neurosci ; 17: 1271653, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38074521

RESUMEN

Maternal exposure to inflammation may represent a major risk factor for neuropsychiatric disorders with associated cognitive dysfunction in offspring in later life. Growing evidence has suggested that resveratrol exerts a beneficial effect on cognitive impairment via its anti-inflammatory and antioxidant properties and by ameliorating synaptic dysfunction. However, how resveratrol affects maternal immune activation-induced cognitive dysfunction and the underlying mechanisms are unclear. In the present study, pregnant dams were given an intraperitoneal injection of lipopolysaccharide (LPS; 50 µg/kg) on gestational day 15. Subsequently, the offspring mice were treated or not with resveratrol (40 mg/kg) from postnatal day (PND) 60 to PND 88. Male offspring were selected for the evaluation of cognitive function using the Morris water maze test. The hippocampal levels of pro-inflammatory cytokines were examined by ELISA. The mRNA and protein levels of sirtuin-1 (SIRT1), brain-derived neurotrophic factor (BDNF), postsynaptic density protein 95 (PSD-95), and synaptophysin (SYP) were determined by RT-qPCR and western blot, respectively. The results showed that male offspring mice exposed to LPS in utero exhibited learning and memory impairment. Additionally, the levels of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-alpha (TNF-α) were increased while those of SIRT1, BDNF, PSD-95, and SYP were decreased in male offspring of LPS-treated mothers. Treatment with resveratrol reversed cognitive impairment and attenuated the increase in the levels of pro-inflammatory cytokines induced by maternal immune activation in the offspring mice. Furthermore, resveratrol reversed the deleterious effects of maternal immune activation on SIRT1, BDNF, PSD-95, and SYP levels in the hippocampus. Collectively, our results suggested that resveratrol can effectively improve learning and memory impairment induced by maternal immune activation via the modulation of inflammation and synaptic dysfunction.

7.
Front Behav Neurosci ; 17: 1226300, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37560531

RESUMEN

Objective: Studies have suggested that prenatal exposure to inflammation increases the risk of neuropsychiatric disorders, including anxiety, depression, and cognitive dysfunction. Because of anatomical and hormonal alterations, pregnant women frequently experience sleep dysfunction, which can enhance the inflammatory response. The aim of this study was to explore the effects of maternal sleep deprivation on prenatal inflammation exposure-induced behavioral phenotypes in offspring and identify the associated mechanisms. Methods: Pregnant mice received an intraperitoneal injection of lipopolysaccharide (LPS) on gestational day 15 and were subsequently subjected to sleep deprivation during gestational days 15-21. Anxiety-like behavior was evaluated by the open field test and the elevated plus maze test. Depression-like behavior was assessed by the tail suspension test and the forced swimming test. Cognitive function was determined using the Morris water maze test. The levels of markers of inflammation and synaptic function were examined employing general molecular biological techniques. Results: The results showed that prenatal exposure to LPS resulted in anxiety- and depression-like symptoms and learning and memory deficits, and these effects were exacerbated by maternal sleep deprivation. Furthermore, maternal sleep deprivation aggravated the prenatal LPS exposure-induced increase in the expression of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α and decrease in the levels of postsynaptic density-95 and synaptophysin in the hippocampus. Discussion: Collectively, these results suggested that maternal sleep deprivation exacerbates anxiety, depression, and cognitive impairment induced by prenatal LPS exposure, effects that were associated with an inflammatory response and synaptic dysfunction.

8.
Front Behav Neurosci ; 17: 1172091, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37273278

RESUMEN

Maternal separation in early life has a detrimental effect on the physiological and biochemical functions of the brains of offspring and can lead to anxiety- and depression-like behaviors later in life. Resveratrol possesses a variety of pharmacological properties, including anti-inflammatory, anxiolytic, and anti-depressive effects. In rodents, resveratrol can attenuate anxiety- and depression-like behaviors induced by chronic unpredictable mild stress, estrogen deficiency, and lipopolysaccharide. However, whether resveratrol administration during adolescence can counteract these behaviors when they result from maternal separation is unknown. In this study, male C57BL/6J mice were separated from their mothers for 4 h per day from postnatal day 2 (PND 2) to PND 21; starting on PND 61, resveratrol was administered intraperitoneally at 40 mg/(kg/day-1) for 4 weeks. At 3 months of age, anxiety and depression-like behaviors were assessed in the male offspring using a series of tasks consisting of an open field test, an elevated plus maze test, a forced swimming test, and a tail suspension test. The hippocampal levels of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-alpha (TNF-α) were measured by ELISA, while those of sirtuin 1 (Sirt1) and nuclear factor kappa B (NF-κB) p65 were determined by western blotting and PCR. The results showed that maternal separation led to increased anxiety- and depression-like behaviors, enhanced the levels of pro-inflammatory cytokines, and downregulated the Sirt1/NF-κB signaling pathway in the male offspring; however, these effects could be reversed by treatment with resveratrol. Our findings suggested that resveratrol can ameliorate inflammation and anxiety- and depression-like behaviors induced by maternal separation via the activation of the Sirt1/NF-κB pathway.

9.
Front Aging Neurosci ; 15: 1177250, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168717

RESUMEN

Early-life stress disrupts central nervous system development and increases the risk of neuropsychiatric disorder in offspring based on rodent studies. Maternal sleep deprivation (MSD) in rodents has also been associated with depression and cognitive decline in adult offspring. However, it is not known whether these issues persist into old age. Environmental enrichment is a non-pharmacological intervention with proven benefits in improving depression and cognitive impairment; however, it is unclear whether these benefits hold for aging mice following MSD exposure. The aim of this study was to explore the effects of MSD on depression and cognition in elderly offspring CD-1 mice and to determine whether long-term environmental enrichment could alleviate these effects by improving neuroinflammation and synaptic plasticity. The offspring mice subjected to MSD were randomly assigned to either a standard environment or an enriched environment. At 18 months of age, the forced swimming and tail suspension tests were used to evaluated depression-like behaviors, and the Morris water maze test was used to evaluate cognitive function. The expression levels of hippocampal proinflammatory cytokines and synaptic plasticity-associated proteins were also measured. MSD increased depression-like behaviors and impaired cognition function in aging CD-1 offspring mice. These effects were accompanied by upregulated interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α expression, and downregulated brain-derived neurotrophic factor, tyrosine kinase receptor B, postsynaptic density-95, and synaptophysin expression in the hippocampus. All of these changes were reversed by long-term exposure to an enriched environment. These findings suggest that MSD exerts long-term effects on the behaviors of offspring in mice, leading to depression and cognitive impairment in older age. Importantly, long-term environmental enrichment could counteract the behavior difficulties induced by MSD through improving hippocampal proinflammatory cytokines and synaptic plasticity-associated proteins.

10.
Brain Behav ; 12(12): e2817, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36409568

RESUMEN

INTRODUCTION: Previous studies have shown that gestational inflammation can accelerate age-associated cognitive decline (AACD) in maternal mice; enriched environments (EEs) have been reported to protect normally aging mice from AACD and improve mitochondrial function. However, it is unclear whether the nitrosative stress-related proteins tet methylcytosine dioxygenase 1 (TET1) and S-nitrosoglutathione reductase (GSNOR) are involved in the accelerated aging process of gestational inflammation and whether EEs can slow this process. METHODS: In this study, CD-1 female mice on the 15th day of pregnancy were injected with bacterial lipopolysaccharide (50 µg/kg; LPS group) or an equivalent amount of normal saline (CON group) from the abdominal cavity for 4 consecutive days. Twenty-one days after delivery, half of the LPS-treated mice were randomly selected for EE until the end of the behavioral experiment (LPS-E group). When the female rats were raised to 6 months and 18 months of age, the Morris water maze (MWM) was used to detect spatial learning and memory ability; RT-PCR and Western blots were used to measure the mRNA and protein levels of hippocampal TET1 and GSNOR. RESULTS: As for the control group, compared with 6-month-old mice, the spatial learning and memory ability of 18-month-old mice decreased, and the hippocampal TET1 and GSNOR mRNA and protein levels were decreased. Gestational inflammation exacerbated these age-related changes, but an EE alleviated the effects. Pearson's correlation analysis indicated that performance during the learning and memory periods in the MWM correlated with the levels of hippocampal TET1 and GSNOR. CONCLUSIONS: Our findings suggest that gestational inflammation accelerates age-related learning and memory impairments and that postpartum EE exposure could alleviate these changes. These effects may be related to hippocampal TET1 and GSNOR expression.


Asunto(s)
Cognición , Lipopolisacáridos , Humanos , Embarazo , Ratones , Ratas , Femenino , Animales , Lipopolisacáridos/farmacología , Hipocampo/metabolismo , Aprendizaje Espacial , Inflamación/metabolismo , Periodo Posparto , Estrés Oxidativo , ARN Mensajero/metabolismo , Aprendizaje por Laberinto , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/farmacología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/farmacología
11.
Nat Sci Sleep ; 13: 1419-1428, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34413689

RESUMEN

PURPOSE: To examine whether associations exist between chronic insomnia disorder (CID) and overlooked inflammatory factors (Serum amyloid protein A [SAA]), tumor necrosis factor [TNF]-α, granulocyte-macrophage colony-stimulating factor [GM-CSF], and regulated on activation and normal T cell expressed and presumably secreted [RANTES]). PATIENTS AND METHODS: A total of 65 CID patients and 39 sex- and age-matched good sleeper (GS) controls participated in this study. They completed a baseline survey to collect data on demographics, and were elevated sleep and mood by Pittsburgh Sleep Quality Index (PSQI), Athens Insomnia Scale (AIS), 17-item Hamilton Depression Rating Scale (HAMD-17) and 14-item Hamilton Anxiety Rating Scale (HAMA-14), respectively. The blood samples were collected and tested the serum levels of SAA, TNF-α, GM-CSF and RANTES. RESULTS: The CID group had higher serum levels of SAA, TNF-α, and GM-CSF and a lower level of RANTES than the GS group. In the Spearman correlation analysis, SAA and GM-CSF positively correlated with the PSQI and AIS scores. After controlling for sex, HAMD-17 score, and HAMA-14 score, the partial correlation analysis showed that GM-CSF was positively correlated with PSQI score. Further stepwise linear regression analyses showed that GM-CSF was positively associated with the PSQI and AIS scores, while RANTES was negatively associated with them, and SAA was positively associated with just the AIS score. CONCLUSION: The serum levels of inflammatory mediators (SAA, TNF-α, and GM-CSF) were significantly elevated and the level of RANTES was significantly decreased in CID patients and, to some extent, the changes are related to the severity of insomnia. These findings may help us to improve interventions to prevent the biological consequences of CID by inhibiting inflammation, thereby promoting health.

12.
Eur Neurol ; 84(4): 254-264, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33975317

RESUMEN

BACKGROUND: Fibromyalgia (FM) is a chronic widespread pain disorder associated with fatigue, tender points, sleep disturbances, and mood disorders. Symptoms associated with FM also include decreased cognitive function in which the neural basis is poorly understood. Neuroendocrine hormones may be correlated with cognitive performance under some ill conditions. However, we are unaware of current evidence on neuroendocrine hormones as factors influencing cognitive function in adults with FM. OBJECTIVES: The aim of the study was to assess whether neuroendocrine hormones could affect cognition in the patients with FM. STUDY DESIGN: This study used a case-control trial design. SETTING: Study patients were recruited from the neurological outpatient clinics in the Second Affiliated Hospital and Affiliated Chaohu Hospital of Anhui Medical University and met the American College of Rheumatology criteria for FM. METHODS: Forty-six patients with FM were compared with twenty-nine healthy controls (HCs). Several measures of cognitive performance and serum levels of neuroendocrine hormones were used to make these comparisons, and the patients were also asked to complete questionnaires on depression and sleep quality. Partial correlation analysis was performed to control the confounders and linear regression analysis was used to examine the effects of neuroendocrine hormones on cognitive measures. RESULTS: The FM patients had worse performance in attention, short-term memory, orientation, object working memory and spatial reference memory, higher depression scores, and worse sleep quality than HCs. The raised level of cortisol and gonadotropin-releasing hormone (GnRH) can protect general cognition, whereas the raised level of cortisol and thyroid-stimulating hormone (TSH) will damage spatial memory. LIMITATIONS: We did not study the sex hormones comprehensively. CONCLUSIONS: The FM patients showed significant cognitive impairment in several domains. The altered levels of cortisol, thyrotrophin-releasing hormone (TRH), and GnRH may mediate cognitive changes in FM.


Asunto(s)
Disfunción Cognitiva , Fibromialgia , Adulto , Estudios de Casos y Controles , Cognición , Depresión , Fatiga , Humanos
13.
Sleep Med ; 81: 42-51, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33636543

RESUMEN

OBJECTIVES: This study aimed to investigate whether plasma levels of adenosine, adenosine deaminase (ADA), and certain cytokines change in patients with chronic insomnia disorder (CID), and if so, whether these alterations are associated with poor sleep quality and cognitive dysfunction. METHODS: Fifty-five CID patients were selected for the study, along with fifty-five healthy controls (HC) matched to the patients according to their basic data. All subjects completed sleep, emotion, and cognition assessments, with some CID patients also completing an overnight polysomnography. The plasma level of adenosine was measured using liquid chromatography-tandem mass spectrometry, while ADA level was quantified using a quantitative sandwich enzyme-linked immunosorbent assay. Levels of cytokines, including IL-1ß, IL-2, IL-4, IL-6, IL-10, IL-12, TNF-α, and IFN-γ, were measured using Luminex liquid chip technology. RESULTS: CID patients had a lower adenosine level, and higher levels of ADA and some of the cytokines (IL-1ß, IL-2, IL-6, IL-10 and TNF-α) compared with controls. In the CID group, plasma concentrations of adenosine were negatively correlated with Pittsburgh Sleep Quality Index scores, while concentrations of IL-1ß, IL-6 and TNF-α were positively correlated with these scores. Concentrations of IL-1ß and TNF-α were negatively correlated with scores on the Chinese-Beijing Version of the Montreal Cognitive Assessment. Moreover, levels of IL-1ß, TNF-α, IL-6, and IL-2 were positively correlated with memory test errors by CID patients after controlling for confounding factors. CONCLUSIONS: The reduced adenosine and elevated cytokine levels of CID patients were associated with the severity of insomnia and/or cognitive dysfunction.


Asunto(s)
Adenosina/sangre , Cognición , Citocinas/sangre , Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Sueño
14.
Pain Pract ; 18(1): 8-17, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28339138

RESUMEN

Tension-type headache (TTH) is the most prevalent primary headache. Chronic TTH (CTTH), the most serious form of TTH, is refractory, with a high socio-economic burden. Research studies have shown patients with migraine often had cognitive impairment, but few studies have focused on the cognition in patients with CTTH. In this study, we assumed that patients with CTTH also have cognitive impairments, which are modulated by the neuroendocrine state. Participants were recruited, including patients with CTTH and healthy controls. Cognitive ability was evaluated using the Montreal Cognitive Assessment and the Nine Box Maze Test. The administration of neuroendocrine hormones has been established to be associated with cognitive performance, and we detected the hormonal changes in the hypothalamus-pituitary-adrenal axis, the hypothalamus-pituitary-thyroid axis, and gonadotropin-releasing hormone. These results showed that compared to the controls, significant cognitive impairment and neuroendocrine dysfunction were present in the patients with CTTH. We also assessed the correlations between the neuroendocrine hormones and Pittsburgh Sleep Quality Index score, 17-term Hamilton's Depression Scale score, pain intensity, and duration of pain to determine whether the neuroendocrine hormones had any associations with these symptoms of CTTH. These results showed that changes in neuroendocrine hormones were involved in these symptoms of CTTH. Intervention with the neuroendocrine state may be a strategy for CTTH treatment.


Asunto(s)
Cognición , Disfunción Cognitiva/psicología , Cefalea de Tipo Tensional/psicología , Hormona Adrenocorticotrópica/metabolismo , Adulto , Estudios de Casos y Controles , Enfermedad Crónica , Disfunción Cognitiva/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Estudios Transversales , Depresión/psicología , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Humanos , Hidrocortisona/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Masculino , Persona de Mediana Edad , Dimensión del Dolor , Sistema Hipófiso-Suprarrenal/metabolismo , Escalas de Valoración Psiquiátrica , Sueño , Cefalea de Tipo Tensional/metabolismo , Glándula Tiroides/metabolismo , Tirotropina/metabolismo , Hormona Liberadora de Tirotropina/metabolismo , Tiroxina/metabolismo , Triyodotironina/metabolismo , Adulto Joven
15.
PLoS One ; 8(8): e71065, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23951080

RESUMEN

The hypothalamus-pituitary-target gland axis is thought to be linked with insomnia, yet there has been a lack of further systematic studies to prove this. This study included 30 patients with primary insomnia (PI), 30 patients with depression-comorbid insomnia (DCI), and 30 healthy controls for exploring the alterations in the hypothalamus-pituitary-adrenal/thyroid axes' hormones and gonadotropin-releasing hormone (GnRH). The Pittsburgh Sleep Quality Index was used to evaluate sleep quality in all subjects. The serum concentrations of corticotrophin-releasing hormone (CRH), thyrotrophin-releasing hormone (TRH), GnRH, adrenocorticotropic hormone (ACTH), thyroid stimulating hormone (TSH), cortisol, total triiodothyronine (TT3), and total thyroxine (TT4) in the morning (between 0730 h and 0800 h) were detected. Compared to the controls, all hormonal levels were elevated in the insomniacs, except ACTH and TSH in the PI group. Compared to the DCI patients, the PI patients had higher levels of CRH, cortisol, TT3, and TT4 but lower levels of TRH, GnRH, and ACTH. Spearman's correlation analysis indicated that CRH, TRH, GnRH, TSH, cortisol, TT4, and TT3 were positively correlated with the severity of insomnia. The linear regression analysis showed that only CRH, GnRH, cortisol, and TT3 were affected by the PSQI scores among all subjects, and only CRH was included in the regression model by the "stepwise" method in the insomnia patients. Our results indicated that PI patients may have over-activity of the hypothalamus-pituitary-adrenal/thyroid axes and an elevated level of GnRH in the morning.


Asunto(s)
Hormona Liberadora de Gonadotropina/sangre , Sistema Hipotálamo-Hipofisario/fisiopatología , Sistema Hipófiso-Suprarrenal/fisiopatología , Trastornos del Inicio y del Mantenimiento del Sueño/fisiopatología , Glándula Tiroides/fisiopatología , Hormona Adrenocorticotrópica/sangre , Adulto , Estudios de Casos y Controles , Hormona Liberadora de Corticotropina/sangre , Femenino , Humanos , Hidrocortisona/sangre , Sistema Hipotálamo-Hipofisario/metabolismo , Masculino , Persona de Mediana Edad , Sistema Hipófiso-Suprarrenal/metabolismo , Trastornos del Inicio y del Mantenimiento del Sueño/sangre , Glándula Tiroides/metabolismo , Tirotropina/sangre , Hormona Liberadora de Tirotropina/sangre , Tiroxina/sangre , Triyodotironina/sangre
16.
J Clin Immunol ; 32(5): 975-83, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22467037

RESUMEN

OBJECTIVE: Myasthenia gravis (MG) is a CD4(+) T cell-dependent autoimmune disease, and close attention has been paid to the role of CD4(+)CD25(+)Treg cells (Tregs). Previous results regarding Tregs in MG patients have been conflicting. The discrepancy was partly ascribed to selecting different Treg-associated molecules in defining Tregs. Therefore, we considered it necessary to find a reliable index for assessing the immunologic state in MG patients and explore the effect of IS on them. METHODS: We adopted flow cytometric techniques to measure the numbers and frequencies of Tregs in peripheral blood taken from 57 patients and 91 age-matched healthy donors, and we also analyzed FOXP3 mean fluorescence intensity on Tregs. RESULTS: The number and frequency of Tregs in peripheral blood of MG patients significantly decreased, together with down-regulation of FOXP3 expression. There was dynamic change of Treg cell level and the inverse relationship with clinical symptom, suggesting that the immunologic disorder in MG patients was related to peripheral Tregs population. Meanwhile, CD4(+)CD25(+)FOXP3(+)Helios(+)T cells might be activated Tregs, rather than nTregs. Moreover, the number and frequency of CD4(+)CD25(+)FOXP3(+)Helios(+)T cells significantly decreased in MG patients, indicating that the reduction of the activated Tregs population might be a critical contributor to the pathogenesis of MG. CONCLUSIONS: The significant reduction of the peripheral Tregs population in MG patients might be responsible for the immunologic disorders in MG patients. IS such as GC took its effect possible by increasing the population size, and the underlying mechanism should be further investigated.


Asunto(s)
Inmunosupresores/farmacología , Miastenia Gravis/inmunología , Linfocitos T Reguladores/inmunología , Adulto , Antígenos CD4/inmunología , Recuento de Linfocito CD4 , Femenino , Factores de Transcripción Forkhead/inmunología , Humanos , Factor de Transcripción Ikaros/inmunología , Subunidad alfa del Receptor de Interleucina-2/inmunología , Masculino , Persona de Mediana Edad , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/efectos de los fármacos , Timo/citología , Timo/inmunología , Adulto Joven
17.
PLoS One ; 6(11): e27649, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22102917

RESUMEN

The accumulation of the amyloid-ß peptide (Aß) into amyloid plaques, an essential event in Alzheimer's disease (AD) pathogenesis, has caused researchers to seek compounds that physiologically bind Aß and modulate its aggregation and neurotoxicity. In order to develop new Aß-specific peptides for AD, a randomized 12-mer peptide library with Aß1₋10 as the target was used to identify peptides in the present study. After three rounds of selection, specific phages were screened, and their binding affinities to Aß1₋10 were found to be highly specific. Finally, a special peptide was synthesized according to the sequences of the selected phages. In addition, the effects of the special peptide on Aß aggregation and Aß-mediated neurotoxicity in vitro and in vivo were assessed. The results show that the special peptide not only inhibited the aggregation of Aß into plaques, but it also alleviated Aß-induced PC12 cell viability and apoptosis at appropriate concentrations as assessed by the cell counting kit-8 assay and propidium iodide staining. Moreover, the special peptide exhibited a protective effect against Aß-induced learning and memory deficits in rats, as determined by the Morris water maze task. In conclusion, we selected a peptide that specifically binds Aß1₋10 and can modulate Aß aggregation and Aß-induced neuronal damage. This opens up possibilities for the development of a novel therapeutic approach for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Apoptosis , Síndromes de Neurotoxicidad/metabolismo , Fragmentos de Péptidos/metabolismo , Placa Amiloide/metabolismo , Enfermedad de Alzheimer/patología , Animales , Masculino , Aprendizaje por Laberinto , Síndromes de Neurotoxicidad/patología , Células PC12 , Biblioteca de Péptidos , Placa Amiloide/patología , Ratas , Ratas Sprague-Dawley
18.
Artículo en Chino | MEDLINE | ID: mdl-16105459

RESUMEN

OBJECTIVE: To study the effect of aluminum chloride on motor and species-typical behaviors in mice. METHODS: Male ICR mice were administered with drinking double distilled water only containing AlCl(3) (10, 50, 300 mg x kg(-1) x d(-1)), and control group with drinking double distilled water only for 100 days. Spontaneous activity test, grip strength, beam traversal, tightrope task, food hoarding, and nest construction were used to study the effect of chloride aluminum on motor and species-typical behaviors in mice. RESULTS: The frequencies of spontaneous activity in low dose group, medium dose group and high dose group [(81.53 +/- 8.97), (71.67 +/- 8.37), (66.73 +/- 6.96) times respectively] were lower than that in control [(106.46 +/- 8.21) times] (P < 0.01), and were negatively correlated with doses (r(s) = -0.42, P < 0.01). Grip strength scores in medium dose group (19.19 +/- 1.48) and high dose group (13.36 +/- 1.46) respectively were lower than that in control (24.31 +/- 1.43) (P < 0.05, P < 0.01). Food hoarding was greater in high dose group [96.10 (90.20-99.00) g] than that in control group [84.00 (78.00-90.00) g (P < 0.05)]. The rest of parameters were of no statistical significance. CONCLUSION: Subchronic exposure to AlCl(3) in mice may diminish motor activity and grip strength, but motor coordination was not impaired; alteration in food hoarding suggests damage to hippocampus cell.


Asunto(s)
Compuestos de Aluminio/toxicidad , Conducta Animal/efectos de los fármacos , Cloruros/toxicidad , Actividad Motora/efectos de los fármacos , Cloruro de Aluminio , Animales , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Ratones Endogámicos ICR
19.
Physiol Behav ; 85(5): 536-45, 2005 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-16005914

RESUMEN

The species-typical behaviors have been extensively studied, especially in the rodents. But little is known about whether the aging impacts on these species-typical behaviors. In the present study, the species-typical behaviors, including burrowing, hoarding and nesting, were assessed in the accelerated senescence-prone mouse 8 (SAMP8, P8) and the control strain senescence-resistant mouse 1 (SAMR1, R1). Total 147 SAM mice including 74 P8 mice and 73 R1 mice were grouped according to the age, 3, 7 and 11 months, respectively. In the hoarding test, an age-related increase was observed in the both P8 and R1 mice, whereas in the burrowing task, the age-related increment only took place in the P8 mice. The nesting ability in the P8 mice at different ages was inferior to that in the age-matched R1 mice, and the 3-month P8 mice showed the poorest nesting ability. The principal component analysis revealed that the burrowing, hoarding and nesting tests detected the different aspects of species-typical behaviors respectively for all mice combined. Our findings indicated that all tasks of hoarding, burrowing and nesting could detect the aging effect in the P8 mice, whereas, only the hoarding test could detect the aging effect in the R1 mice. These different species-typical behaviors were dissociable.


Asunto(s)
Envejecimiento Prematuro/psicología , Conducta Animal , Conducta Alimentaria , Actividad Motora , Comportamiento de Nidificación , Animales , Ratones , Ratones Endogámicos , Análisis de Componente Principal , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA