Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.904
Filtrar
Más filtros











Intervalo de año de publicación
1.
Heliyon ; 10(9): e30209, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38707270

RESUMEN

Objective: In this study, we aimed to utilize computed tomography (CT)-derived radiomics and various machine learning approaches to differentiate between invasive mucinous adenocarcinoma (IMA) and invasive non-mucinous adenocarcinoma (INMA) preoperatively in solitary pulmonary nodules (SPN) ≤3 cm. Methods: A total of 538 patients with SPNs measuring ≤3 cm were enrolled, categorized into either the IMA group (n = 50) or INMA group (n = 488) based on postoperative pathology. Radiomic features were extracted from non-contrast-enhanced CT scans and identified using the least absolute shrinkage and selection operator (LASSO) algorithm. In constructing radiomics-based models, logistic regression, support vector machines, classification and regression trees, and k-nearest neighbors were employed. Additionally, a clinical model was developed, focusing on CT radiological features. Subsequently, this clinical model was integrated with the most effective radiomic model to create a combined model. Performance assessments of these models were conducted, utilizing metrics such as the area under the receiver operating characteristic curve (AUC), DeLong's test, net reclassification index (NRI), and integrated discrimination improvement (IDI). Results: The support vector machine approach showed superior predictive efficiency, with AUCs of 0.829 and 0.846 in the training and test cohorts, respectively. The clinical model had AUCs of 0.760 and 0.777 in the corresponding cohorts. The combined model had AUCs of 0.847 and 0.857 in the corresponding cohorts. Furthermore, compared to the radiomic model, the combined model significantly improved performance in both the training (DeLong test P = 0.045, NRI 0.206, IDI 0.024) and test cohorts (P = 0.029, NRI 0.125, IDI 0.032), as well as compared to the clinical model in both the training (P = 0.01, NRI 0.310, IDI 0.09) and test cohorts (P = 0.047, NRI 0.382, IDI 0.085). Conclusion: the combined model exhibited excellent performance in distinguishing between IMA and INMA in SPNs ≤3 cm.

2.
Sci Rep ; 14(1): 10114, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698063

RESUMEN

Wogonin is a natural flavone compound from the plant Scutellaria baicalensis, which has a variety of pharmacological activities such as anti-cancer, anti-virus, anti-inflammatory, and immune regulation. However, the potential mechanism of wogonin remains unknown. This study was to confirm the molecular mechanism of wogonin for acute monocytic leukemia treatment, known as AML-M5. The potential action targets between wogonin and acute monocytic leukemia were predicted from databases. The compound-target-pathway network and protein-protein interaction network (PPI) were constructed. The enrichment analysis of related targets and molecular docking were performed. The network pharmacological results of wogonin for AML-M5 treatment were verified using the THP-1 cell line. 71 target genes of wogonin associated with AML-M5 were found. The key genes TP53, SRC, AKT1, RELA, HSP90AA1, JUN, PIK3R1, and CCND1 were preliminarily found to be the potential central targets of wogonin for AML-M5 treatment. The PPI network analysis, GO analysis and KEGG pathway enrichment analysis demonstrated that the PI3K/AKT signaling pathway was the significant pathway in the wogonin for AML-M5 treatment. The antiproliferative effects of wogonin on THP-1 cells of AML-M5 presented a dose-dependent and time-dependent manner, inducing apoptosis, blocking the cell cycle at the G2/M phase, decreasing the expressions of CCND1, CDK2, and CyclinA2 mRNA, as well as AKT and p-AKT proteins. The mechanisms of wogonin on AML-M5 treatment may be associated with inhibiting cell proliferation and regulating the cell cycle via the PI3K/AKT signaling pathway.


Asunto(s)
Flavanonas , Leucemia Monocítica Aguda , Simulación del Acoplamiento Molecular , Farmacología en Red , Mapas de Interacción de Proteínas , Flavanonas/farmacología , Humanos , Leucemia Monocítica Aguda/tratamiento farmacológico , Leucemia Monocítica Aguda/metabolismo , Leucemia Monocítica Aguda/patología , Mapas de Interacción de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células THP-1 , Línea Celular Tumoral , Apoptosis/efectos de los fármacos
3.
Heliyon ; 10(10): e31346, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38807872

RESUMEN

Pancreatic cancer is one of the most lethal cancers with significant radioresistance and tumor repopulation after radiotherapy. As a type of short non-coding RNA that regulate various biological and pathological processes, miRNAs might play vital role in radioresistance. We found by miRNA sequencing that microRNA-26a (miR-26a) was upregulated in pancreatic cancer cells after radiation, and returned to normal state after a certain time. miR-26a was defined as a tumor suppressive miRNA by conventional tumor biology experiments. However, transient upregulation of miR-26a after radiation significantly promoted radioresistance, while stable overexpression inhibited radioresistance, highlighting the importance of molecular dynamic changes after treatment. Mechanically, transient upregulation of miR-26a promoted cell cycle arrest and DNA damage repair to promote radioresistance. Further experiments confirmed HMGA2 as the direct functional target, which is an oncogene but enhances radiosensitivity. Moreover, PTGS2 was also the target of miR-26a, which might potentiate tumor repopulation via delaying the synthesis of PGE2. Overall, this study revealed that transient upregulation of miR-26a after radiation promoted radioresistance and potentiated tumor repopulation, highlighting the importance of dynamic changes of molecules upon radiotherapy.

4.
Langmuir ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38781140

RESUMEN

Due to the high oil spill incidence and industrial wastewater discharge including oil and emulsified oil, designing and synthesizing oil-water separation materials which can maintain stability under harsh environmental conditions with high separation efficiencies remains a great challenge. The present work developed an easy, green, cost-effective, and easily scaled-up approach for fabricating cellulose-based membranes. First, we coated polydopamine (PDA) onto fibers of filter membrane (FM). Then, the PDA-FM membrane was immersed into the mixed solution of poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) and further thermally cross-linked at 150 °C to create a superhydrophilic/underwater superoleophobic membrane (PVA/PAA@PDA-FM) to separate oil/water mixtures. The simple thermally cross-linking process promotes multiple covalent chemical bonds generation between cellulose filter membrane, PAA, PDA, and PVA, endowing membranes with excellent stability and resistance to acidity, alkalinity, and salinity. The PVA/PAA@PDA-FM membrane not only demonstrates great separation performance (>99.8%) and great flux (>1000 L m-2 h-1) in oil-water immiscible mixtures but also maintains high separation efficiency under conditions of high acidity, alkalinity, and salinity. Additionally, the PVA/PAA@PDA-FM membrane exhibits excellent separation capacity in oil-water emulsions, which can maintain the >99.6% separation efficiency even after 40 cycles in harsh environments, showing outstanding reusability. Thus, due to the multiple cross-linked networks in the membrane, the excellent performance makes the PVA/PAA@PDA-FM membrane a good application prospect in water purification and oily wastewater treatment.

5.
Front Pharmacol ; 15: 1379389, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38783940

RESUMEN

Introduction: Curcumin is gaining recognition as an agent for cancer chemoprevention and is presently administered to humans. However, the limited number of clinical trials conducted for the treatment of prostate cancer is noteworthy. Animal models serve as valuable tools for enhancing our understanding of disease mechanisms and etiology in humans. The objective of this study was to examine the anti-prostate cancer effects of curcumin in vivo for comprehending its current research status and potential clinical applicability. Methods: Our methodology involved a systematic exploration of animal studies pertaining to curcumin and prostate cancer, as documented in PubMed, Web of Science, Embase, Cochrane Library, CNKI, Wanfang database, Vip database, and SinoMed, up to 03 September 2023. Risk of bias was assessed using the SYRCLE Animal Study Risk of Bias tool. The results were combined using the RevMan 5.3. Results: A comprehensive analysis was conducted on 17 studies encompassing 263 mouse transplantation tumor models. The findings of this meta-analysis demonstrated that curcumin exhibited a superior inhibitory effect on the volume of prostate cancer tumors in mice compared to the control group (standardized mean difference [SMD]: 1.16, 95% confidence interval [CI]: 0.52, 1.80, p < 0.001). Additionally, curcumin displayed a more effective inhibition of mice prostate cancer tumor weight (SMD: -3.27, 95% CI: -4.70, -1.83, p < 0.001). Furthermore, in terms of tumor inhibition rate, curcumin exhibited greater efficacy (SMD: 0.25, 95% CI: 0.23, 0.27, p < 0.001). Moreover, curcumin more effectively inhibited PCNA mRNA (SMD: -3.11, 95% CI: -4.60, -1.63, p < 0.001) and MMP2 mRNA (SMD: -3.19, 95% CI: 5.85, -0.53, p < 0.001). Conclusion: Curcumin exhibited inhibitory properties towards prostate tumor growth and demonstrated a beneficial effect on prostate cancer treatment, thereby offering substantiation for further clinical investigations. It is important to acknowledge that the included animal studies exhibited considerable heterogeneity, primarily because of the limited number of studies included. Consequently, additional randomized controlled trials are required to comprehensively assess the efficacy of curcumin in humans. Systematic Review Registration: (https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023464661), identifier (CRD42023464661).

6.
Transplantation ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773837

RESUMEN

BACKGROUND: Stimulation of myeloid-derived suppressor cell (MDSC) formation represents a potential curative therapeutic approach for graft-versus-host disease (GVHD), which significantly impacts the prognosis of allogeneic hematopoietic stem cell transplantation. However, the lack of an effective strategy for inducing MDSC production in vivo has hindered their clinical application. In our previous study, MDSC expansion was observed in interleukin (IL)-27-treated mice. METHODS: In this study, we overexpressed exogenous IL-27 in mice using a recombinant adeno-associated virus vector to investigate its therapeutic and exacerbating effects in murine GVHD models. RESULTS: In our study, we demonstrated that exogenous administration of IL-27 significantly suppressed GVHD development in a mouse model. We found that IL-27 treatment indirectly inhibited the proliferation and activation of donor T cells by rapidly expanding recipient and donor myeloid cells, which act as MDSCs after irradiation or under inflammatory conditions, rather than through regulatory T-cell expansion. Additionally, IL-27 stimulated MDSC expansion by enhancing granulocyte-monocyte progenitor generation. Notably, we verified that IL-27 signaling in donor T cells exerted an antagonistic effect on GVHD prevention and treatment. Further investigation revealed that combination therapy involving IL-27 and T-cell depletion exhibited remarkable preventive effects on GVHD in both mouse and xenogeneic GVHD models. CONCLUSIONS: Collectively, these findings suggest that IL-27 promotes MDSC generation to reduce the incidence of GVHD, whereas targeted activation of IL-27 signaling in myeloid progenitors or its combination with T-cell depletion represents a potential strategy for GVHD therapy.

7.
Int J Lab Hematol ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775786

RESUMEN

BACKGROUND: Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma, which caused many patients to lose their precious lives. FOXO3 was a suppressor in various cancers, however, the role and mechanism of FOXO3 in DLBCL remain unclear. METHODS: Bioinformatics analysis was used to offer information FOXO3 expression and its expression for prognosis of DLBCL patients. The abundance of genes and proteins was evaluated using RT-qPCR and western blot. Cell proliferation and apoptosis was detected by CCK-8 and flow cytometry. The interactions among FOXO3, miR-34b, and HSPG2 were predicted by TransmiR and Starbase and validated using dual luciferase reporter assay, ChIP assay, and RIP assay. RESULTS: Our findings revealed that FOXO3 expression was abnormally declined in DLBCL cells. FOXO3 upregulation restrained cell proliferation and promoted cell apoptosis of DLBCL cells, while miR-34b inhibitor eliminated these influences. Similarly, miR-34b mimic suppressed malignant behaviors of DLBCL cells, which were abolished by HSPG2 overexpression. Mechanically, FOXO3 induced miR-34b expression through interacting with miR-34b promoter and HSPG2 was a targeted gene of miR-34b. CONCLUSION: FOXO3 attenuated the capability of cell proliferation and promoted cell apoptosis rate of DLBCL cells through affecting miR-34b/HSPG2 axis, therefore inhibiting DLBCL progression.

8.
J Hand Surg Eur Vol ; : 17531934241253137, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38785230
9.
Front Oncol ; 14: 1230514, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779083

RESUMEN

Objective: This study aimed to establish an antineoplastic drugs trigger tool based on Global Trigger Tool (GTT), to examine the performance by detecting adverse drug events (ADEs) in patients with cancer in a Chinese hospital (a retrospective review), and to investigate the factors associating with the occurrence of antineoplastic ADEs. Methods: Based on the triggers recommended by the GTT and those used in domestic and foreign studies and taking into account the scope of biochemical indexes in our hospital, some of them were adjusted. A total of 37 triggers were finally developed. Five hundred medical records of oncology patients discharged in our hospital from 1 June 2020 to 31 May 2021 were randomly selected according to the inclusion and exclusion criteria. These records were reviewed retrospectively by antineoplastic drugs trigger tool. The sensitivity and specificity of the triggers were analyzed, as well as the characteristics and risk factors for the occurrence of ADEs. Results: Thirty-three of the 37 triggers had positive trigger, and the sensitivity rate was 91.8% (459/500). For the specificity, the positive predictive value of overall ADEs was 46.0% (715/1556), the detection rate of ADEs was 63.0% (315/500), the rate of ADEs per 100 admissions was 136.0 (95% CI, 124.1-147.9), and the rate of ADEs per 1,000 patient days was 208.33 (95% CI, 201.2-215.5). The top three antineoplastic drugs related to ADEs were antimetabolic drugs (29.1%), plant sources and derivatives (27.1%), and metal platinum drugs (26.3%). The hematologic system was most frequently involved (507 cases, 74.6%), followed by gastrointestinal system (89 cases, 13.1%). Multivariate logistic regression analysis showed that the number of combined drugs (OR = 1.14; 95% CI, 1.07-1.22; P < 0.001) and the previous history of adverse drug reaction (ADR) (OR = 0.38; 95% CI, 0.23-0.60; P < 0.001) were the risk factors for ADEs. The length of hospital stay (OR = 0.40; 95% CI, 0.14-1.12; P < 0.05) and the previous history of ADR (OR = 2.18; 95% CI, 1.07-4.45; P < 0.05) were the risk factors for serious adverse drug events (SAE). Conclusion: The established trigger tool could be used to monitor antineoplastic drugs adverse events in patients with tumor effectively but still needs to be optimized. This study may provide some references for further research in order to improve the rationality and safety of antineoplastic medications.

10.
Arch Oral Biol ; 164: 106000, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38759391

RESUMEN

OBJECTIVE: To explore the expression of HAUS6 in squamous cell carcinoma of the tongue (TSCC) and its relationship with the clinicopathological features of patients, and to further provide new ideas and therapeutic targets for curing TSCC. DESIGN: The Cancer Genome Atlas (TCGA) database was used to screen for differentially expressed genes (DEGs) between TSCC and normal tissues and survival analysis. DEGs of HAUS6 were screened and analyzed for GO, KEGG and GSEA enrichment. Exploring the correlation of HAUS6 with immune cell infiltration and immune checkpoint-related genes. The expression of HAUS6 in tumor and paraneoplastic tissues was confirmed by immunohistochemistry and Western Blot. RESULTS: Analysis of the TCGA database results showed that expression of HAUS6 mRNA was significantly enhanced and correlated with overall survival (OS, p < 0.05) in TSCC. HAUS6 expression correlated with the level of immune cell infiltration and immune checkpoint-related genes. Immunohistochemistry and Western Blot confirmed that the expression level of HAUS6 protein was significantly higher in tumor tissues than in paraneoplastic tissues, and that tumor size and hypo-differentiation were higher in the HAUS6 high expression group than in the low expression group in TSCC (p < 0.05). CONCLUSIONS: In conclusion, these analyses suggest that HAUS6 can act as an independent predictor of prognosis (p < 0.05) and high HAUS6 expression is strongly associated with poor prognosis.

11.
BMC Pregnancy Childbirth ; 24(1): 371, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750445

RESUMEN

BACKGROUND: To explore a method for screening and diagnosing neonatal congenital heart disease (CHD) applicable to grassroots level, evaluate the prevalence of CHD, and establish a hierarchical management system for CHD screening and treatment at the grassroots level. METHODS: A total of 24,253 newborns born in Tang County between January 2016 and December 2020 were consecutively enrolled and screened by trained primary physicians via the "twelve-section ultrasonic screening and diagnosis method" (referred to as the "twelve-section method"). Specialized staff from the CHD Screening and Diagnosis Center of Hebei Children's Hospital regularly visited the local area for definite diagnosis of CHD in newborns who screened positive. Newborns with CHD were managed according to the hierarchical management system. RESULTS: The centre confirmed that, except for 2 newborns with patent ductus arteriosus missed in the diagnosis of ventricular septal defect combined with severe pulmonary hypertension, newborns with other isolated or concomitant simple CHDs were identified at the grassroots level. The sensitivity, specificity and diagnostic coincidence rate of the twelve-section method for screening complex CHD were 92%, 99.6% and 84%, respectively. A total of 301 children with CHD were identified. The overall CHD prevalence was 12.4‰. According to the hierarchical management system, 113 patients with simple CHD recovered spontaneously during local follow-up, 48 patients continued local follow-up, 106 patients were referred to the centre for surgery (including 17 patients with severe CHD and 89 patients with progressive CHD), 1 patient died without surgery, and 8 patients were lost to follow-up. Eighteen patients with complex CHD were directly referred to the centre for surgery, 3 patients died without surgery, and 4 patients were lost to follow-up. Most patients who received early intervention achieved satisfactory results. The mortality rate of CHD was approximately 28.86 per 100,000 children. CONCLUSIONS: The "twelve-section method" is suitable for screening neonatal CHD at the grassroots level. The establishment of a hierarchical management system for CHD screening and treatment is conducive to the scientific management of CHD, which has important clinical and social significance for early detection, early intervention, reduction in mortality and improvement of the prognosis of complex and severe CHDs.


Asunto(s)
Cardiopatías Congénitas , Tamizaje Neonatal , Humanos , Cardiopatías Congénitas/epidemiología , Cardiopatías Congénitas/diagnóstico por imagen , Recién Nacido , China/epidemiología , Tamizaje Neonatal/métodos , Femenino , Masculino , Prevalencia , Sensibilidad y Especificidad
12.
Anal Chem ; 96(19): 7577-7584, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38696338

RESUMEN

Owing to the separation of field-effect transistor (FET) devices from sensing environments, extended-gate FET (EGFET) biosensor features high stability and low cost. Herein, a highly sensitive EGFET biosensor based on a GaN micropillar array and polycrystalline layer (GMP) was fabricated, which was prepared by using simple one-step low-temperature MOCVD growth. In order to improve the sensitivity and detection limit of EGFET biosensor, the surface area and the electrical conductivity of extended-gate electrode can be increased by the micropillar array and the polycrystalline layer, respectively. The designed GMP-EGFET biosensor was modified with l-cysteine and applied for Hg2+ detection with a low limit of detection (LOD) of 1 ng/L, a high sensitivity of -16.3 mV/lg(µg/L) and a wide linear range (1 ng/L-24.5 µg/L). In addition, the detection of Hg2+ in human urine was realized with an LOD of 10 ng/L, which was more than 30 times lower than that of reported sensors. To our knowledge, it is the first time that GMP was used as extended-gate of EGFET biosensor.


Asunto(s)
Técnicas Biosensibles , Límite de Detección , Mercurio , Humanos , Mercurio/orina , Mercurio/análisis , Transistores Electrónicos , Galio/química , Electrodos
13.
Comput Methods Programs Biomed ; 250: 108192, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38701699

RESUMEN

BACKGROUND AND OBJECTIVE: The morbidity of lung adenocarcinoma (LUAD) has been increasing year by year and the prognosis is poor. This has prompted researchers to study the survival of LUAD patients to ensure that patients can be cured in time or survive after appropriate treatment. There is still no fully valid model that can be applied to clinical practice. METHODS: We introduced struc2vec-based multi-omics data integration (SBMOI), which could integrate gene expression, somatic mutations and clinical data to construct mutation gene vectors representing LUAD patient features. Based on the patient features, the random survival forest (RSF) model was used to predict the long- and short-term survival of LUAD patients. To further demonstrate the superiority of SBMOI, we simultaneously replaced scale-free gene co-expression network (FCN) with a protein-protein interaction (PPI) network and a significant co-expression network (SCN) to compare accuracy in predicting LUAD patient survival under the same conditions. RESULTS: Our results suggested that compared with SCN and PPI network, the FCN based SBMOI combined with RSF model had better performance in long- and short-term survival prediction tasks for LUAD patients. The AUC of 1-year, 5-year, and 10-year survival in the validation dataset were 0.791, 0.825, and 0.917, respectively. CONCLUSIONS: This study provided a powerful network-based method to multi-omics data integration. SBMOI combined with RSF successfully predicted long- and short-term survival of LUAD patients, especially with high accuracy on long-term survival. Besides, SBMOI algorithm has the potential to combine with other machine learning models to complete clustering or stratificational tasks, and being applied to other diseases.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/mortalidad , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Pronóstico , Mutación , Mapas de Interacción de Proteínas/genética , Análisis de Supervivencia , Algoritmos , Masculino , Femenino , Biología Computacional/métodos , Redes Reguladoras de Genes , Regulación Neoplásica de la Expresión Génica , Perfilación de la Expresión Génica , Multiómica
14.
Anal Chim Acta ; 1308: 342660, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38740460

RESUMEN

BACKGROUND: The research on cysteine (Cys) determination is deemed as a hot topic, since it has been reported to be connected with various physiological processes and disease prediction. However, existing Cys-responding probes may expose some defects such as long reaction time, disappointing photostability, and suboptimal sensitivity. Under such a circumstance, our team has proposed an efficient fluorescent probe with novel sensing mechanism to perfectly cope with the above-mentioned drawbacks. RESULTS: A novel cascade reaction-based probe 9-(2,2-dicyanovinyl)-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-8-yl acrylate (DPQA) has been synthesized for the first time. Undergoing addition-cleavage and cyclization-rearrangement processes, DPQA reacts with Cys to generate an iminocoumarin product with relucent green fluorescence, namely 11-imino-2,3,6,7-tetrahydro-1H,5H,11H-pyrano[2,3-f]pyrido[3,2,1-ij]quinoline-10-carbonitrile (IMC-J), and the relative fluorescence quantum yield (Φf) soars from 0.007 to 0.793. Utilizing such a mechanism, DPQA shows a superb turn-on signal (172-fold), low detection limit (4.1 nM), and wide detection range (5-6000 nM) toward Cys detection. Encouraged by the admirable sensing performance of DPQA, bioimaging of endogenous Cys has been attempted in HeLa cells with satisfactory results. Moreover, cell model of H2O2-induced oxidative stress has been established and the Cys fluctuation during this process has been inspected, elucidating how living cells confront with the eruption of reactive oxygen species (ROS) storm. SIGNIFICANCE: The probe DPQA with such an intriguing cascade responding process for Cys detection has been endowed with many merits, such as fast reaction and superior sensitivity, conducive to improving responsiveness and rendering it more suitable for further applications. Thereby, we expect that the DPQA would be an efficient tool for detecting Cys fluctuation in living cells of different physiological processes.


Asunto(s)
Cisteína , Colorantes Fluorescentes , Cisteína/análisis , Cisteína/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Humanos , Células HeLa , Espectrometría de Fluorescencia , Estructura Molecular , Límite de Detección
15.
Adv Sci (Weinh) ; : e2307452, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38708713

RESUMEN

Tumor heterogeneity, the presence of multiple distinct subpopulations of cancer cells between patients or among the same tumors, poses a major challenge to current targeted therapies. The way these different subpopulations interact among themselves and the stromal niche environment, and how such interactions affect cancer stem cell behavior has remained largely unknown. Here, it is shown that an FGF-BMP7-INHBA signaling positive feedback loop integrates interactions among different cell populations, including mammary gland stem cells, luminal epithelial and stromal fibroblast niche components not only in organ regeneration but also, with certain modifications, in cancer progression. The reciprocal dependence of basal stem cells and luminal epithelium is based on basal-derived BMP7 and luminal-derived INHBA, which promote their respective expansion, and is regulated by stromal-epithelial FGF signaling. Targeting this interaction loop, for example, by reducing the function of one or more of its components, inhibits organ regeneration and breast cancer progression. The results have profound implications for overcoming drug resistance because of tumor heterogeneity in future targeted therapies.

16.
Aging (Albany NY) ; 16(9): 8031-8043, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38713159

RESUMEN

BACKGROUND: Stratifying patient risk and exploring the tumor microenvironment are critical endeavors in prostate cancer research, essential for advancing our understanding and management of this disease. METHODS: Single-cell sequencing data for prostate cancer were sourced from the pradcellatlas website, while bulk transcriptome data were obtained from the TCGA database. Dimensionality reduction cluster analysis was employed to investigate heterogeneity in single-cell sequencing data. Gene set enrichment analysis, utilizing GO and KEGG pathways, was conducted to explore functional aspects. Weighted gene coexpression network analysis (WGCNA) identified key gene modules. Prognostic models were developed using Cox regression and LASSO regression techniques, implemented in R software. Validation of key gene expression levels was performed via PCR assays. RESULTS: Through integrative analysis of single-cell and bulk transcriptome data, key genes implicated in prostate cancer pathogenesis were identified. A prognostic model focused on sphingolipid metabolism (SRSR) was constructed, comprising five genes: "FUS," "MARK3," "CHTOP," "ILF3," and "ARIH2." This model effectively stratified patients into high-risk and low-risk groups, with the high-risk cohort exhibiting significantly poorer prognoses. Furthermore, distinct differences in the immune microenvironment were observed between these groups. Validation of key gene expression, exemplified by ILF3, was confirmed through PCR analysis. CONCLUSION: This study contributes to our understanding of the role of sphingolipid metabolism in prostate cancer diagnosis and treatment. The identified prognostic model holds promise for improving risk stratification and patient outcomes in clinical settings.


Asunto(s)
Neoplasias de la Próstata , Análisis de la Célula Individual , Esfingolípidos , Humanos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Masculino , Pronóstico , Esfingolípidos/metabolismo , Microambiente Tumoral/genética , Regulación Neoplásica de la Expresión Génica , Transcriptoma , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Perfilación de la Expresión Génica , Redes Reguladoras de Genes
17.
Int J Biol Macromol ; 269(Pt 1): 131794, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697434

RESUMEN

A middle ear infection occurs due to the presence of several microorganisms behind the eardrum (tympanic membrane) and is very challenging to treat due to its unique location and requires a well-designed treatment. If not treated properly, the infection can result in severe symptoms and unavoidable side effects. In this study, excellent biocompatible ethyl cellulose (EC) and biodegradable polyhydroxybutyrate (PHB) biopolymer were used to fabricate drug-loaded nanofiber scaffolds using an electrospinning technique to overcome antibiotic overdose and insufficient efficacy of drug release during treatment. PHB polymer was produced from Halomonas sp., and the purity of PHB was found to around be 90 %. Additionally, ciprofloxacin (CIP) and amoxicillin (AMX) are highly preferable since both drugs are highly effective against gram-negative and gram-positive bacteria to treat several infections. Obtained smooth nanofibers were between 116.24 and 171.82 nm in diameter and the addition of PHB polymer and antibiotics improved the morphology of the nanofiber scaffolds. Thermal properties of the nanofiber scaffolds were tested and the highest Tg temperature resulted at 229 °C. The mechanical properties of the scaffolds were tested, and the highest tensile strength resulted in 4.65 ± 6.33 MPa. Also, drug-loaded scaffolds were treated against the most common microorganisms that cause the infection, such as S.aureus, E.coli, and P.aeruginosa, and resulted in inhibition zones between 10 and 21 mm. MTT assay was performed by culturing human adipose-derived mesenchymal stem cells (hAD MSCs) on the scaffolds. The morphology of the hAD MSCs' attachment was tested with SEM analysis and hAD MSCs were able to attach, spread, and live on each scaffold even on the day of 7. The cumulative drug release kinetics of CIP and AMX from drug-loaded scaffolds were analysed in phosphate-buffered saline (pH: 7.4) within different time intervals of up to 14 days using a UV spectrophotometer. Furthermore, the drug release showed that the First-Order and Korsmeyer-Peppas models were the most suitable kinetic models. Animal testing was performed on SD rats, matrix and collagen deposition occurred on days 5 and 10, which were observed using Hematoxylin-eosin and Masson's trichrome staining. At the highest drug concentration, a better repair effect was observed. Results were promising and showed potential for novel treatment.


Asunto(s)
Amoxicilina , Antibacterianos , Celulosa , Ciprofloxacina , Nanofibras , Celulosa/química , Celulosa/análogos & derivados , Ciprofloxacina/farmacología , Ciprofloxacina/química , Nanofibras/química , Animales , Ratas , Amoxicilina/farmacología , Amoxicilina/química , Antibacterianos/farmacología , Antibacterianos/química , Hidroxibutiratos/química , Hidroxibutiratos/farmacología , Humanos , Otitis Media/tratamiento farmacológico , Otitis Media/microbiología , Poliésteres/química , Liberación de Fármacos , Andamios del Tejido/química , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Prohibitinas , Portadores de Fármacos/química , Masculino
18.
Heliyon ; 10(9): e30437, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38726179

RESUMEN

Background: Sotorasib has been approved for the treatment of adult patients with KRAS G12C-mutated locally advanced or metastatic non-small cell lung cancer (NSCLC). Due to the limitations of clinical trials, potential adverse events (AEs) and long-term safety issues cannot be detected. The presented study aimed to evaluate sotorasib-associated AEs using the FDA Adverse Event Reporting System (FAERS) database. Methods: Post-marketing AE reports of sotorasib in the database were collected for analysis. Disproportionality analyses, including the reporting odds ratio (ROR), proportional reporting ratio (PRR), information component (IC) and empirical bayes geometric mean (EBGM) algorithms, were performed to mine the signals of sotorasib-associated AEs. The median duration, quartiles and the Weibull shape parameter (WSP) test were used to assess the onset time data. Results: The database contained 1538 cases of sotorasib as primary suspect (PS), with 27 signals detected, scattering in 5 SOCs. The SOC of hepatobiliary disorders (182, ROR 4.48, PRR 4.07, IC 2.02, EBGM 4.07) met the four methodological thresholds. The median onset time of sotorasib-associated AEs was 42 days (interquartile range [IQR] 14-86.75 days). Different SOCs had different types of risk over time. Conclusion: After obtaining marketing authorization, the study identified all potentially relevant adverse event (AE) signals expected to have a reporting frequency higher than anticipated and characterized them during sotorasib treatment.

19.
Int J Biol Macromol ; : 132439, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38761907

RESUMEN

This study explored the immunomodulatory impact and potential mechanisms on macrophages RAW264.7 using a purified macromolecular sulfate glycosaminoglycan (SBSG) from the swim bladder, whose structure was similar to chondroitin sulfate A. The results showed that SBSG at 0.25-1 mg/mL increased the viability and phagocytosis of RAW264.7 cells. Meanwhile, SBSG promoted the secretion of tumor necrosis factor α (TNF-α), interleukin 10 (IL-10), and nitric oxide (NO), as well as the production of reactive oxygen species (ROS). According to the RT-PCR and Western blot data, SBSG activated TLR4-nuclear factor kappa B (NF-κB) signaling pathways, which decreased the relative mRNA and protein levels of Toll-like receptor 4 (TLR4), IκB kinase ß (IKKß), NF-κB p65, and p-NF-κB p65. The molecular docking and molecular dynamic simulation findings revealed that the main binding force between TLR4 and SBSG was conventional hydrogen bond interaction, resulting in more stable ligand receptor complexes. In summary, SBSG exhibits significant immunomodulatory potential, similar to chondroitin sulfate C. The underlying molecular mechanism involved the binding of SBSG through hydrogen bonding to TLR4 receptors, triggering the NF-κB signaling pathway to downregulate the expression of related genes and proteins. This, in turn, regulated the secretion of various cytokines that were mediated by macrophages to exert the immunity of the body.

20.
Int J Nurs Pract ; : e13264, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747089

RESUMEN

AIMS: The purpose of this study was to investigate the status of self-management behaviour and illness perceptions and to examine illness perceptions in relation to self-management behaviour in elderly patients with chronic obstructive pulmonary disease (COPD). METHODS: A cross-sectional study was conducted, and 152 elderly COPD patients were recruited via the convenience sampling method. The COPD Self-Management Scale and the Revised Illness Perception Questionnaire for COPD patients were used to examine self-management behaviour and illness perceptions. Pearson correlation analysis, univariate analysis and hierarchical linear regression analysis were used to explore illness perceptions in relation to self-management behaviour. RESULTS: The mean overall score for self-management behaviour was 2.90 ± 0.39. Among the subscales of self-management behaviour, information management had the lowest score of 2.20 ± 0.76. Patients' demographic and clinical characteristics, including educational level, smoking status, type of primary caregiver, home oxygen therapy and COPD duration, were found to be significant determinants of self-management behaviour. After controlling for these variables, several illness perception subscales, including treatment control, personal control, coherence, timeline cyclical and identity, were significantly correlated with self-management behaviour. CONCLUSIONS: This study confirmed that elderly COPD patients' self-management behaviour was unsatisfactory and that illness perceptions were significant determinants of self-management behaviour. The findings may contribute to the development of self-management interventions for elderly COPD patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA