Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cell ; 167(5): 1398-1414.e24, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27863251

RESUMEN

Characterizing the multifaceted contribution of genetic and epigenetic factors to disease phenotypes is a major challenge in human genetics and medicine. We carried out high-resolution genetic, epigenetic, and transcriptomic profiling in three major human immune cell types (CD14+ monocytes, CD16+ neutrophils, and naive CD4+ T cells) from up to 197 individuals. We assess, quantitatively, the relative contribution of cis-genetic and epigenetic factors to transcription and evaluate their impact as potential sources of confounding in epigenome-wide association studies. Further, we characterize highly coordinated genetic effects on gene expression, methylation, and histone variation through quantitative trait locus (QTL) mapping and allele-specific (AS) analyses. Finally, we demonstrate colocalization of molecular trait QTLs at 345 unique immune disease loci. This expansive, high-resolution atlas of multi-omics changes yields insights into cell-type-specific correlation between diverse genomic inputs, more generalizable correlations between these inputs, and defines molecular events that may underpin complex disease risk.


Asunto(s)
Epigenómica , Enfermedades del Sistema Inmune/genética , Monocitos/metabolismo , Neutrófilos/metabolismo , Linfocitos T/metabolismo , Transcripción Genética , Adulto , Anciano , Empalme Alternativo , Femenino , Predisposición Genética a la Enfermedad , Células Madre Hematopoyéticas/metabolismo , Código de Histonas , Humanos , Masculino , Persona de Mediana Edad , Sitios de Carácter Cuantitativo , Adulto Joven
2.
Epigenetics ; 9(9): 1238-51, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25055051

RESUMEN

Allele-specific (AS) assessment of chromatin has the potential to elucidate specific cis-regulatory mechanisms, which are predicted to underlie the majority of the known genetic associations to complex disease. However, development of chromatin landscapes at allelic resolution has been challenging since sites of variable signal strength require substantial read depths not commonly applied in sequencing based approaches. In this study, we addressed this by performing parallel analyses of input DNA and chromatin immunoprecipitates (ChIP) on high-density Illumina genotyping arrays. Allele-specificity for the histone modifications H3K4me1, H3K4me3, H3K27ac, H3K27me3, and H3K36me3 was assessed using ChIP samples generated from 14 lymphoblast and 6 fibroblast cell lines. AS-ChIP SNPs were combined into domains and validated using high-confidence ChIP-seq sites. We observed characteristic patterns of allelic-imbalance for each histone-modification around allele-specifically expressed transcripts. Notably, we found H3K4me1 to be significantly anti-correlated with allelic expression (AE) at transcription start sites, indicating H3K4me1 allelic imbalance as a marker of AE. We also found that allelic chromatin domains exhibit population and cell-type specificity as well as heritability within trios. Finally, we observed that a subset of allelic chromatin domains is regulated by DNase I-sensitive quantitative trait loci and that these domains are significantly enriched for genome-wide association studies hits, with autoimmune disease associated SNPs specifically enriched in lymphoblasts. This study provides the first genome-wide maps of allelic-imbalance for five histone marks. Our results provide new insights into the role of chromatin in cis-regulation and highlight the need for high-depth sequencing in ChIP-seq studies along with the need to improve allele-specificity of ChIP-enrichment.


Asunto(s)
Alelos , Cromatina/metabolismo , Histonas/metabolismo , Secuencia de Aminoácidos , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/metabolismo , Línea Celular , Línea Celular Tumoral , Cromatina/genética , Inmunoprecipitación de Cromatina/métodos , Fibroblastos/metabolismo , Estudio de Asociación del Genoma Completo , Técnicas de Genotipaje , Humanos , Linfocitos/metabolismo , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Procesamiento Proteico-Postraduccional
3.
Cancer Res ; 73(14): 4323-36, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23722552

RESUMEN

B-cell precursor acute lymphoblastic leukemia (pre-B ALL) is the most common pediatric cancer. Although the genetic determinants underlying disease onset remain unclear, epigenetic modifications including DNA methylation are suggested to contribute significantly to leukemogenesis. Using the Illumina 450K array, we assessed DNA methylation in matched tumor-normal samples of 46 childhood patients with pre-B ALL, extending single CpG-site resolution analysis of the pre-B ALL methylome beyond CpG-islands (CGI). Unsupervised hierarchical clustering of CpG-site neighborhood, gene, or microRNA (miRNA) gene-associated methylation levels separated the tumor cohort according to major pre-B ALL subtypes, and methylation in CGIs, CGI shores, and in regions around the transcription start site was found to significantly correlate with transcript expression. Focusing on samples carrying the t(12;21) ETV6-RUNX1 fusion, we identified 119 subtype-specific high-confidence marker CpG-loci. Pathway analyses linked the CpG-loci-associated genes with hematopoiesis and cancer. Further integration with whole-transcriptome data showed the effects of methylation on expression of 17 potential drivers of leukemogenesis. Independent validation of array methylation and sequencing-derived transcript expression with Sequenom Epityper technology and real-time quantitative reverse transcriptase PCR, respectively, indicates more than 80% empirical accuracy of our genome-wide findings. In summary, genome-wide DNA methylation profiling enabled us to separate pre-B ALL according to major subtypes, to map epigenetic biomarkers specific for the t(12;21) subtype, and through a combined methylome and transcriptome approach to identify downstream effects on candidate drivers of leukemogenesis.


Asunto(s)
Metilación de ADN , Epigenómica/métodos , Perfilación de la Expresión Génica/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Transcriptoma , Adolescente , Niño , Preescolar , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Islas de CpG , Epigénesis Genética , Femenino , Expresión Génica , Humanos , Masculino , MicroARNs/genética , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Represoras/genética , Sitio de Iniciación de la Transcripción , Proteína ETS de Variante de Translocación 6
4.
Arthritis Res Ther ; 12(1): R21, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20144213

RESUMEN

INTRODUCTION: This study aimed to investigate whether hydroxynonenal (HNE) depletion is responsible for the switch from cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2 synthase-1 (mPGES-1) to 5-lipoxygenase-activating protein (FLAP) and 5-lipoxygenase (5-LOX). METHODS: For COX-2 and mPGES-1 studies, human osteoarthritic chondrocytes were stimulated at different incubation times (up to 24 hours) with a single or repetitive addition of 10 muM HNE to the cultures at 2-hour intervals, up to 14 hours. For 5-LOX and FLAP studies, cells were treated with a single addition of 10 muM HNE for 24 hours, 48 hours, and 72 hours in the presence or absence of naproxen (a nonspecific COX-2 inhibitor) or antibody anti-transforming growth factor-beta 1 (TGF-beta1). The protein levels of COX-2, mPGES-1 and early growth response factor-1 (Egr-1) transcription factor were evaluated by western blot, and those of prostaglandin E2 (PGE2), leukotriene B4 (LTB4) and TGF-beta1 were determined with commercial kits. The levels of mPGES-1, FLAP and 5-LOX mRNA were measured by real-time RT-PCR. Transient transfection was performed to determine promoter activities of mPGES-1 and 5-LOX. RESULTS: Single addition of 10 muM HNE to cultured chondrocytes induced PGE2 release as well as COX-2 and mPGES-1 expression at the protein and mRNA levels, with a plateau reached respectively at 8 and 16 hours of incubation, followed by a subsequent decline. However, repeated treatments with HNE prevented the decline of COX-2 and mPGES-1 expression that occurred with a single aldehyde addition. HNE induced mPGES-1 promoter activity, possibly through transcription factor Egr-1 activation. After 48 hours, when COX-2 expression decreased, the LTB4 level rose through 5-LOX and FLAP upregulation. The addition of naproxen to cultured chondrocytes revealed that FLAP and 5-LOX regulation by HNE required PGE2 production. Furthermore, our data showed that HNE significantly induced TGF-beta1 production. The addition of anti-TGF-beta1 antibody reduced HNE-induced 5-LOX and FLAP expression by 40%, indicating the partial involvement of a TGF-beta1-dependent mechanism. CONCLUSIONS: Our data demonstrate that the shunt to the FLAP and 5-LOX pathway in HNE-induced human osteoarthritic chondrocytes is attributed to COX-2 and mPGES-1 inhibition, probably due to HNE depletion. PGE2 and TGF-beta1 are suggested to be involved in this regulation.


Asunto(s)
Aldehídos/farmacología , Araquidonato 5-Lipooxigenasa/biosíntesis , Proteínas Portadoras/biosíntesis , Inhibidores de Cisteína Proteinasa/farmacología , Oxidorreductasas Intramoleculares/biosíntesis , Proteínas de la Membrana/biosíntesis , Osteoartritis/metabolismo , Proteínas Activadoras de la 5-Lipooxigenasa , Anciano , Western Blotting , Células Cultivadas , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Ciclooxigenasa 2/metabolismo , Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Leucotrieno B4/biosíntesis , Microsomas/efectos de los fármacos , Microsomas/metabolismo , Prostaglandina-E Sintasas , ARN Mensajero/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Crecimiento Transformador beta1/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA