Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 350
Filtrar
1.
Front Immunol ; 15: 1387896, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736875

RESUMEN

Background: Mutations in STK11 (STK11Mut) gene may present a negative impact on survival in Non-small Cell Lung Cancer (NSCLC) patients, however, its relationship with immune related genes remains unclear. This study is to unveil whether overexpressed- and mutated-STK11 impact survival in NSCLC and to explore whether immune related genes (IRGs) are involved in STK11 mutations. Methods: 188 NSCLC patients with intact formalin-fixed paraffin-embedded (FFPE) tissue available for detecting STK11 protein expression were included in the analysis. After immunohistochemical detection of STK11 protein, patients were divided into high STK11 expression group (STK11High) and low STK11 expression group (STK11Low), and then Kaplan-Meier survival analysis and COX proportional hazards model were used to compare the overall survival (OS) and progression-free survival (PFS) of the two groups of patients. In addition, the mutation data from the TCGA database was used to categorize the NSCLC population, namely STK11 Mutated (STK11Mut) and wild-type (STK11Wt) subgroups. The difference in OS between STK11Mut and STK11Wt was compared. Finally, bioinformatics analysis was used to compare the differences in IRGs expression between STK11Mut and STK11Wt populations. Results: The median follow-up time was 51.0 months (range 3.0 - 120.0 months) for real-life cohort. At the end of follow-up, 64.36% (121/188) of patients experienced recurrence or metastasis. 64.89% (122/188) of patients ended up in cancer-related death. High expression of STK11 was a significant protective factor for NSCLC patients, both in terms of PFS [HR=0.42, 95% CI= (0.29-0.61), P<0.001] and OS [HR=0.36, 95% CI= (0.25, 0.53), P<0.001], which was consistent with the finding in TCGA cohorts [HR=0.76, 95%CI= (0.65, 0.88), P<0.001 HR=0.76, 95%CI= (0.65, 0.88), P<0.001]. In TCGA cohort, STK11 mutation was a significant risk factor for NSCLC in both lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) histology in terms of OS [HR=6.81, 95%CI= (2.16, 21.53), P<0.001; HR=1.50, 95%CI= (1.00, 2.26), P=0.051, respectively]. Furthermore, 7 IRGs, namely CALCA, BMP6, S100P, THPO, CGA, PCSK1 and MUC5AC, were found significantly overexpressed in STK11-mutated NSCLC in both LUSC and LUAD histology. Conclusions: Low STK11 expression at protein level and presence of STK11 mutation were associated with poor prognosis in NSCLC, and mutated STK11 might probably alter the expression IRGs profiling.


Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Mutación , Proteínas Serina-Treonina Quinasas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Femenino , Masculino , Proteínas Serina-Treonina Quinasas/genética , Pronóstico , Persona de Mediana Edad , Anciano , Biomarcadores de Tumor/genética , Linfocitos Infiltrantes de Tumor/inmunología , Adulto , Estimación de Kaplan-Meier
2.
Artículo en Inglés | MEDLINE | ID: mdl-38615275

RESUMEN

This study aimed to analyze the relationship between human epididymal protein 4 (HE4) and infiltration depth, postoperative recurrence, and metastasis of epithelial ovarian cancer (OVCA). Immunohistochemistry was used to detect the expression level of HE4 in cancer tissues and adjacent tissues of 90 patients with epithelial OVCA admitted to our hospital from May 2017 to January 2018. Cox regression was used to analyze the factors affecting the prognosis of epithelial OVCA. The relationship between HE4 and the prognosis of epithelial OVCA was analyzed by the receiver operating characteristic curve and Kaplan-Meier survival curve. The positive expression rate of HE4 in epithelial OVCA was 85.56%, which was higher than 34.44% in adjacent tissues (p < 0.01). The International Federation of Gynecology and Obstetrics stage, infiltration depth, lymph node metastasis, postoperative recurrence and metastasis, and HE4 positivity were independent risk factors for the prognosis, and platinum-based chemotherapy sensitivity was an independent protective factor for the prognosis of patients with epithelial OVCA (p < 0.05). The area under the curve of HE4 in diagnosing epithelial OVCA and predicting recurrence was 0.863 and 0.700, the sensitivity was 91.60% and 85.60%, and the specificity was 90.20% and 65.60%. The median progression-free survival and overall survival were 26.1 and 30.2 months in HE4-positive epithelial OVCA patients, while these were 31.4 and 35.6 months in HE4-negative epithelial OVCA patients (p < 0.05). In conclusion, HE4 was highly expressed in epithelial OVCA tissues. Its expression level was related to the depth of tumor invasion, postoperative recurrence and metastasis, and other clinicopathological characteristics of patients with epithelial OVCA.

3.
Environ Pollut ; 351: 124042, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38679128

RESUMEN

Chlorinated hydrocarbons (CHs) pose significant health risks due to their suspected carcinogenicity, necessitating urgent remediation efforts. While the combination of zero-valent iron (Fe0) and microbial action shows promise in mitigating CH contamination, field studies on this approach are scarce. We devised a novel three-layer permeable reactive barrier (PRB) material incorporating Fe0 and coconut shell biochar, effectively implemented at a typical CH-contaminated site. Field monitoring data revealed conducive conditions for reductive dechlorination of CHs, characterized by low oxygen levels and a relatively neutral pH in the groundwater. The engineered PRB material consistently released organic carbon and iron, fostering the proliferation of CH-dechlorinating bacteria. Over a 250-day operational period, the pilot-scale PRB demonstrated remarkable efficacy in CH removal, achieving removal efficiencies ranging from 21.9% to 99.6% for various CH compounds. Initially, CHs were predominantly eliminated through adsorption and iron-mediated reductive dechlorination. However, microbial reductive dechlorination emerged as the predominant mechanism for sustained and long-term CHs removal. These findings underscore the economic viability and effectiveness of our approach in treating CH-contaminated groundwater, offering promising prospects for broader application in environmental remediation efforts.


Asunto(s)
Agua Subterránea , Hidrocarburos Clorados , Contaminantes Químicos del Agua , Agua Subterránea/química , Hidrocarburos Clorados/química , Contaminantes Químicos del Agua/química , Biodegradación Ambiental , Restauración y Remediación Ambiental/métodos , Hierro/química , Carbón Orgánico/química
4.
Phytochemistry ; 223: 114097, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38641142

RESUMEN

A chemical investigation of the dichloromethane extract from the Xisha sponge Diacarnus sp. revealed seven undescribed norterpene cyclic peroxides, named diacarperoxides T-Z, and five unreported related norterpenes, named diacarnoids E-I, and eleven previously reported compounds. The structures of these isolated compounds, including their absolute configurations, were elucidated based on extensive spectroscopic analyses, electronic circular dichroism (ECD) calculations, Snatzke's method, [Rh2(OCOCF3)4]-induced ECD spectra, and modified Mosher's method. Bioassays were performed to assess the antibacterial activity against six pathogenic bacteria, cytotoxicities toward three cancer cell lines, and antimalarial activity against Plasmodium parasites. Most of the cyclic peroxides exhibited substantial antibacterial activity (MIC 1-8 µg/mL). Diacarperoxide W and nuapapuin A showed substantial antimalarial activity with IC50 values of 0.98 and 2.83 µM. Moreover, many compounds exhibited <50% cell survival rates, and IC50 values of 0.22-6.33 µM. The apoptosis assay showed that nuapapuin A induced cancer cell apoptosis in a dose-dependent manner.


Asunto(s)
Antibacterianos , Antimaláricos , Peróxidos , Poríferos , Antimaláricos/farmacología , Antimaláricos/química , Antimaláricos/aislamiento & purificación , Poríferos/química , Peróxidos/farmacología , Peróxidos/química , Peróxidos/aislamiento & purificación , Humanos , Animales , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Estructura Molecular , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Ensayos de Selección de Medicamentos Antitumorales , Apoptosis/efectos de los fármacos , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/efectos de los fármacos , Relación Estructura-Actividad , Pruebas de Sensibilidad Microbiana , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos
5.
Angew Chem Int Ed Engl ; : e202401877, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637294

RESUMEN

The second near-infrared (NIR-II, 1000-1700 nm) light-activated organic photothermal agent that synchronously enables satisfying NIR-II fluorescence imaging is highly warranted yet rather challenging on the basis of the overwhelming nonradiative decay. Herein, such an agent, namely TPABT-TD, was tactfully designed and constructed via employing benzo[c]thiophene moiety as bulky electron donor/π-bridge and tailoring the peripheral molecular rotors. Benefitting from its high electron donor-acceptor strength and finely modulated intramolecular motion, TPABT-TD simultaneously exhibits ultralong absorption in NIR-II region, intense fluorescence emission in the NIR-IIa (1300-1500 nm) region as nanoaggregates, and high photothermal conversion upon 1064 nm laser irradiation. Those intrinsic advantages endow TPABT-TD nanoparticles with prominent fluorescence/photoacoustic/photothermal trimodal imaging-guided NIR-II photothermal therapy against orthotopic 4T1 breast tumor with negligible adverse effect.

6.
Cancer Res ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38536119

RESUMEN

The widespread use of androgen receptor (AR) signaling inhibitors has led to an increased incidence of AR-negative castration-resistant prostate cancer (CRPC), limiting effective treatment and patient survival. A more comprehensive understanding of the molecular mechanisms supporting AR-negative CRPC could reveal therapeutic vulnerabilities to improve treatment. This study showed that the transcription factor nuclear factor I/B (NFIB) was upregulated in AR-negative CRPC patient tumors and cell lines and was positively associated with an epithelial-to-mesenchymal transition (EMT) phenotype. Loss of NFIB inhibited EMT and reduced migration of CRPC cells. NFIB directly bound to gene promoters and regulated the transcription of EMT-related factors E-cadherin and vimentin, independently of other typical EMT-related transcriptional factors. In vivo data further supported the positive role of NFIB in the metastasis of AR-negative CRPC cells. Moreover, N6-methyladenosine (m6A) modification induced NFIB upregulation in AR-negative CRPC. Mechanistically, the m6A levels of mRNA, including NFIB and its E3 ubiquitin ligase TRIM8, were increased in AR-negative CRPC cells. Elevated m6A methylation of NFIB mRNA recruited YTHDF2 to increase mRNA stability and protein expression. Inversely, the m6A modification of TRIM8 mRNA, induced by ALKBH5 downregulation, decreased its translation and expression, which further promoted NFIB protein stability. Overall, this study reveals that upregulation of NFIB, mediated by m6A modification, triggers EMT and metastasis in AR-negative CRPC. Targeting the m6A/NFIB axis is a potential prevention and treatment strategy for AR-negative CRPC metastasis.

7.
Int Immunopharmacol ; 130: 111747, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38442576

RESUMEN

Phosphatidylinositol 3-kinase (PI3K) is frequently hyperactivated in cancer, playing pivotal roles in the pathophysiology of both malignant and immune cells. The impact of PI3K inhibitors on the tumor microenvironment (TME) within lung cancer remains largely unknown. In this study, we explored the regulatory effects of GNE-493, an innovative dual inhibitor of PI3K and mammalian target of rapamycin (mTOR), on the TME of lung cancer. First, through the analysis of The Cancer Genome Atlas-lung squamous cell carcinoma (LUSC) cohort, we found PIK3CA to be related to CD8 T cells, which may affect the overall survival rate of patients by affecting CD8 function. We herein demonstrated that GNE-493 can significantly inhibit tumor cell proliferation and promote cell apoptosis while increasing the expression of the immunogenic death-related molecules CRT and HSP70 using in vitro cell proliferation and apoptosis experiments on the murine KP lung cancer cell line and human A549 lung cancer cell line. Next, through the establishment of an orthotopic tumor model in vivo, it was found that after GNE-493 intervention, the infiltration of CD4+ and CD8+ T cells in mouse lung tumor was significantly increased, and the expression of CRT in tumors could be induced to increase. To explore the mechanisms underlying PI3K inhibition-induced changes in the TME, the gene expression differences of T cells in the control group versus GNE-493-treated KP tumors were analyzed by RNA-seq, and the main effector pathway of anti-tumor immunity was identified. The IFN/TNF family molecules were significantly upregulated after GNE-493 treatment. In summary, our findings indicate that GNE-493 promotes immunogenic cell death in lung cancer cells, and elucidates its regulatory impact on molecules associated with the adaptive immune response. Our study provides novel insights into how PI3K/mTOR inhibitors exert their activity by modulating the tumor-immune interaction.


Asunto(s)
Muerte Celular Inmunogénica , Neoplasias Pulmonares , Fosfatidilinositol 3-Quinasa , Inhibidores de las Quinasa Fosfoinosítidos-3 , Animales , Humanos , Ratones , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I , Muerte Celular Inmunogénica/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Fosfatidilinositol 3-Quinasa/metabolismo , Transducción de Señal , Microambiente Tumoral , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Células A549 , Femenino , Ratones Endogámicos C57BL
8.
Chem Biol Interact ; 394: 110968, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38522564

RESUMEN

Bone metastases caused by breast cancer pose a major challenge to the successful treatment of breast cancer patients. Many researchers have suggested that herbal medicines are extremely effective at preventing and treating cancer-associated osteolysis. Previous studies have revealed that Morusin (MOR) is cytotoxic to many cancer cells ex vivo. Nevertheless, how MOR contributes to osteolysis induced by breast cancer is still unknown, and the potential mechanism of action against osteolysis is worthy of further study. The protective effect and molecular mechanism of MOR in inhibiting breast cancer cell-induced osteolysis were verified by experiments and network pharmacology. Cell function was assessed by cell proliferation, osteoclast (OC) formation, bone resorption, and phalloidin staining. Tumour growth was examined by micro-CT scanning in vivo. To identify potential MOR treatments, the active ingredient-target pathway of breast cancer was screened using network pharmacology and molecular docking approaches. This study is the first to report that MOR can prevent osteolysis induced by breast cancer cells. Specifically, our results revealed that MOR inhibits RANKL-induced osteoclastogenesis and restrains the proliferation, invasion and migration of MDA-MB-231 breast cells through restraining the PI3K/AKT/MTOR signalling pathway. Notably, MOR prevented bone loss caused by breast cancer cell-induced osteolysis in vivo, indicating that MOR inhibited the development of OCs and the resorption of bone, which are essential for cancer cell-associated bone distraction. This study showed that MOR treatment inhibited osteolysis induced by breast cancer in vivo. MOR inhibited OC differentiation and bone resorption ex vivo and in vivo and might be a potential drug candidate for treating breast cancer-induced osteolysis.


Asunto(s)
Neoplasias de la Mama , Osteólisis , Fosfatidilinositol 3-Quinasa , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Femenino , Humanos , Ratones , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ratones Endogámicos BALB C , Ratones Desnudos , Simulación del Acoplamiento Molecular , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteólisis/metabolismo , Osteólisis/tratamiento farmacológico , Osteólisis/patología , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ligando RANK/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
9.
Anal Chem ; 96(14): 5527-5536, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38483815

RESUMEN

Dynamic tracing of intracellular telomerase activity plays a crucial role in cancer cell recognition and correspondingly in earlier cancer diagnosis and personalized precision therapy. However, due to the complexity of the required reaction system and insufficient loading of reaction components into cells, achieving a high-fidelity determination of telomerase activity is still a challenge. Herein, an Aptamer-Liposome mediated Telomerase activated poly-Molecular beacon Arborescent Nanoassembly(ALTMAN) approach was described for direct high-fidelity visualization of telomerase activity. Briefly, intracellular telomerase activates molecular beacons, causing their hairpin structures to unfold and produce fluorescent signals. Furthermore, multiple molecular beacons can self-assemble, forming arborescent nanostructures and leading to exponential amplification of fluorescent signals. Integrating the enzyme-free isothermal signal amplification successfully increased the sensitivity and reduced interference by leveraging the skillful design of the molecular beacon and the extension of the telomerase-activated TTAGGG repeat sequence. The proposed approach enabled ultrasensitive visualization of activated telomerase exclusively with a prominent detection limit of 2 cells·µL-1 and realized real-time imaging of telomerase activity in living cancer cells including blood samples from breast cancer patients and urine samples from bladder cancer patients. This approach opens an avenue for establishing a telomerase activity determination and in situ monitoring technique that can facilitate both telomerase fundamental biological studies and cancer diagnostics.


Asunto(s)
Nanoestructuras , Células Neoplásicas Circulantes , Telomerasa , Humanos , Telomerasa/metabolismo , Colorantes Fluorescentes/química , Nanoestructuras/química , Células HeLa
10.
Acta Pharm Sin B ; 14(3): 1204-1221, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38486987

RESUMEN

The orphan nuclear receptor Nur77 is a critical regulator of the survival and death of tumor cells. The pro-death effect of Nur77 can be regulated by its interaction with Bcl-2, resulting in conversion of Bcl-2 from a survival to killer. As Bcl-2 is overexpressed in various cancers preventing them from apoptosis and promoting their resistance to chemotherapy, targeting the apoptotic pathway of Nur77/Bcl-2 may lead to new cancer therapeutics. Here, we report our identification of XS561 as a novel Nur77 ligand that induces apoptosis of tumor cells by activating the Nur77/Bcl-2 pathway. In vitro and animal studies revealed an apoptotic effect of XS561 in a range of tumor cell lines including MDA-MB-231 triple-negative breast cancer (TNBC) and MCF-7/LCC2 tamoxifen-resistant breast cancer (TAMR) in a Nur77-dependent manner. Mechanistic studies showed XS561 potently induced the translocation of Nur77 from the nucleus to mitochondria, resulting in mitochondria-related apoptosis. Interestingly, XS561-induced accumulation of Nur77 at mitochondria was associated with XS561 induction of Nur77 phase separation and the formation of Nur77/Bcl-2 condensates. Together, our studies identify XS561 as a new activator of the Nur77/Bcl-2 apoptotic pathway and reveal a role of phase separation in mediating the apoptotic effect of Nur77 at mitochondria.

11.
MedComm (2020) ; 5(3): e493, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38463396

RESUMEN

Treatment response and prognosis estimation in advanced pulmonary adenocarcinoma are challenged by the significant heterogeneity of the disease. The current Response Evaluation Criteria in Solid Tumors (RECIST) criteria, despite providing a basis for solid tumor response evaluation, do not fully encompass this heterogeneity. To better represent these nuances, we introduce the intertumoral heterogeneity response score (THRscore), a measure built upon and expanding the RECIST criteria. This retrospective study included patients with 3-10 measurable advanced lung adenocarcinoma lesions who underwent first-line chemotherapy or targeted therapy. The THRscore, derived from the coefficient of variation in size for each measurable tumor before and 4-6 weeks posttreatment, unveiled a correlation with patient outcomes. Specifically, a high THRscore was associated with shorter progression-free survival, lower tumor response rate, and a higher tumor mutation burden. These associations were further validated in an external cohort, confirming THRscore's effectiveness in stratifying patients based on progression risk and treatment response, and enhancing the utility of RECIST in capturing complex tumor behaviors in lung adenocarcinoma. These findings affirm the promise of THRscore as an enhanced tool for tumor response assessment in advanced lung adenocarcinoma, extending the RECIST criteria's utility.

12.
Atherosclerosis ; 391: 117473, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38412763

RESUMEN

BACKGROUND AND AIMS: Atherosclerosis is a chronic lipid-driven inflammatory disease largely influenced by hemodynamics. Neutrophil extracellular trap (NET)-mediated inflammation plays an important role in atherosclerosis. However, little is known about the relationship between low shear stress (LSS) and NET generation, as well as the underlying mechanism. METHODS: We induced LSS by partial ligation of the left carotid artery in high-fat diet-fed male ApoE-/- mice. To further validate the direct relationship between LSS and NET formation invitro, differentiated human promyelocytic leukemia HL-60 cells and bone marrow-derived neutrophils were suspended in fluid flow under normal or low shear stress using a parallel-plate flow chamber system. RESULTS: Four weeks after surgery, ligated carotid arteries had more lipid deposition, larger plaque area, and increased NET formation than unligated arteries. Inhibition of NETosis could significantly reduce plaque formation in ApoE-/- mice. Invitro, LSS could promote NET generation directly through downregulation of Piezo1, a mechanosensitive ion channel. Downregulation of Piezol could activate neutrophils and promote NETosis in static conditions. Conversely, Yoda1-evoked activation of Piezo1 attenuated LSS-induced NETosis. Mechanistically, downregulation of Piezo1 resulted in decreased Ca2+ influx and increased histone deacetylase 2 (HDAC2), which increased reactive oxygen species levels and led to NETosis. LSS-induced NET generation also promoted apoptosis and adherence of endothelial cells. CONCLUSION: LSS directly promotes NETosis through the Piezo1-HDAC2 axis in atherosclerosis progression. This study uncovers the essential role of Piezo1-mediated mechanical signaling in NET generation and plaque formation, which provides a promising therapeutic strategy for atherosclerosis.


Asunto(s)
Aterosclerosis , Trampas Extracelulares , Animales , Humanos , Masculino , Ratones , Apolipoproteínas E , Aterosclerosis/genética , Células Endoteliales , Canales Iónicos/genética , Lípidos
13.
Chem Biol Interact ; 392: 110904, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38360085

RESUMEN

Osteosarcoma is a prevalent kind of primary bone malignancy. Trifluoperazine, as an antipsychotic drug, has anti-tumor activity against a variety of cancers. Nevertheless, the impact of trifluoperazine on osteosarcoma is unclear. Our investigation aimed to explore the mechanism of trifluoperazine's effect on osteosarcoma. We found that trifluoperazine inhibited 143B and U2-OS osteosarcoma cell proliferation in a method based on the dose. Furthermore, it was shown that trifluoperazine induced the accumulation of reactive oxygen species (ROS) to cause mitochondrial damage and induced mitophagy in osteosarcoma cells. Finally, combined with RNA-seq results, we first demonstrated the AMPK/mTOR/ULK1 signaling pathway as a potential mechanism of trifluoperazine-mediated mitophagy in osteosarcoma cells and can be suppressed by AMPK inhibitor Compound C.


Asunto(s)
Mitofagia , Osteosarcoma , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Trifluoperazina/farmacología , Autofagia , Apoptosis , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Osteosarcoma/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
14.
Commun Chem ; 7(1): 17, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238524

RESUMEN

Gangliosides play vital biological regulatory roles and are associated with neurological system diseases, malignancies, and immune deficiencies. They have received extensive attention in developing targeted drugs and diagnostic markers. However, it is difficult to obtain enough structurally defined gangliosides and analogs especially at an industrial-relevant scale, which prevent exploring structure-activity relationships and identifying drug ingredients. Here, we report a highly modular chemoenzymatic cascade assembly (MOCECA) strategy for customized and large-scale synthesis of ganglioside analogs with various glycan and ceramide epitopes. We typically accessed five gangliosides with therapeutic promising and systematically prepared ten GM1 analogs with diverse ceramides. Through further process amplification, we achieved industrial production of ganglioside GM1 in the form of modular assembly at hectogram scale. Using MOCECA-synthesized GM1 analogs, we found unique ceramide modifications on GM1 could enhance the ability to promote neurite outgrowth. By comparing the structures with synthetic analogs, we further resolved the problem of contradicting descriptions for GM1 components in different pharmaceutical documents by reinterpreting the exact two-component structures of commercialized GM1 drugs. Because of its applicability and stability, the MOCECA strategy can be extended to prepare other glycosphingolipid structures, which may pave the way for developing new glycolipid drugs.

15.
Thorac Cancer ; 15(5): 419-426, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38219795

RESUMEN

Immune checkpoint inhibitor (ICI) rechallenge in non-small cell lung cancer (NSCLC) is a promising therapeutic strategy. The situation for ICI rechallenge can be divided into three categories: adverse events (AEs); resistance to ICIs, and rechallenge becomes compulsive because of tumor relapse while the patients had completed a 2 year course of immunotherapy. However, these categories are still controversial and should be explored further. Through voting at the 6th Straits Summit Forum on Lung Cancer, in this study we summarize the consensus of 147 experts in ICI rechallenges. A total of 97.74% experts agreed to rechallenge; 48.87% experts rechallenge with the original drug, and the others rechallenge with a different drug; 40.3% agreed to rechallenge directly after progression; 88.06% experts agreed to ICI rechallenge with a combination regimen; and factors such as previous performance status score, PD-1 expression, and age should also be considered. Understanding the the clinical studies in ICI rechallenge could bring us one step closer to understanding the consensus. In patients with advanced NSCLC who have suffered recurrent or distant metastasis after immunotherapy, the option of rechallenge with ICIs is a promising treatment option.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Consenso , Inmunoterapia
16.
Artículo en Inglés | MEDLINE | ID: mdl-38258955

RESUMEN

STUDY DESIGN: Retrospective clinical study with confirmatory evaluation in healthy volunteers. OBJECTIVE: To investigate the association between deep vein thrombosis (DVT) and surgical position after cervical spine surgery. SUMMARY OF BACKGROUND DATA: It is unclear whether posterior cervical surgery using the prone position increases the risk of postoperative DVT relative to anterior cervical surgery. METHODS: 340 patients undergoing surgery for degenerative cervical myelopathy were included. Multivariate analysis was used to identify the predictors of postoperative DVT, adjusting for potential confounders. In addition, 45 healthy volunteers were used to study blood flow velocity and intravascular diameter of the posterior tibial vein (PTV) and popliteal vein (PV) of the subjects were monitored by ultrasound and compared among three positions (supine, prone, and prone with iliac cushions). RESULTS: Multivariate analysis showed that advanced age (>63.5 y old), preoperative varicose veins, D-dimer>0.255 mg/L, bleeding volume>303 mL and prone positioning were significantly associated with DVT after cervical spine surgery. The results of vascular ultrasound showed that blood flow velocities of PV and PTV in the prone position with cushions were significantly lower than those in the supine position. The diameter of PV in prone position with cushions was also significantly larger. The blood flow velocity and diameter of PV in the prone position with cushions were significantly lower and larger, respectively, than those in the prone position without cushions. CONCLUSIONS: Posterior cervical surgery in the prone position was significantly associated with postoperative DVT. The prone position with iliac cushions may decrease venous flow within the lower extremities due to compression of iliac veins, obstructing venous return and thus increasing the incidence of postoperative DVT. The prone position without iliac cushions may reduce the potential for DVT. LEVEL OF EVIDENCE: 3.

17.
Int Immunopharmacol ; 128: 111532, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38237226

RESUMEN

Following hypoxic-ischemic brain damage (HIBD), there is a decline in cognitive function; however, there are no effective treatment strategies for this condition in neonates. This study aimed to evaluate the role of the cluster of differentiation 200 (CD200)/CD200R1 axis in cognitive function following HIBD using an established model of HIBD in postnatal day 7 rats. Western blotting analysis was conducted to evaluate the protein expression levels of CD200, CD200R1, proteins associated with the PI3K/Akt-NF-κB pathway, and inflammatory factors such as TNF-α, IL-1ß, and IL-6 in the hippocampus. Additionally, double-immunofluorescence labeling was utilized to evaluate M1 microglial polarization and neurogenesis in the hippocampus. To assess the learning and memory function of the experimental rats, the Morris water maze (MWM) test was conducted. HIBDleads to a decrease in the expression of CD200 and CD200R1 proteins in the neonatal rat hippocampus, while simultaneously increasing the expression of TNF-α, IL-6, and IL-1ß proteins, ultimately resulting in cognitive impairment. The administration of CD200Fc, a fusion protein of CD200, was found to enhance the expression of p-PI3K and p-Akt, but reduce the expression of p-NF-κB. Additionally, CD200Fc inhibited M1 polarization of microglia, reduced neuroinflammation, improved hippocampal neurogenesis, and mitigated cognitive impairment caused by HIBD in neonatal rats. In contrast, blocking the interaction between CD200 and CD200R1 with the anti-CD200R1 antibody (CD200R1 Ab) exerted the opposite effect. Furthermore, the PI3K specific activator, 740Y-P, significantly increased the expression of p-PI3K and p-Akt, but reduced p-NF-κB expression. It also inhibited M1 polarization of microglia, reduced neuroinflammation, and improved hippocampal neurogenesis and cognitive function in neonatal rats with HIBD. Our findings illustrate that activation of the CD200/CD200R1 axis inhibits the NF-κB-mediated M1 polarization of microglia to improve HIBD-induced cognitive impairment and hippocampal neurogenesis disorder via the PI3K/Akt signaling pathway.


Asunto(s)
Disfunción Cognitiva , Microglía , Fragmentos de Péptidos , Receptores del Factor de Crecimiento Derivado de Plaquetas , Animales , Ratas , Animales Recién Nacidos , Disfunción Cognitiva/metabolismo , Hipocampo/metabolismo , Interleucina-6/metabolismo , Enfermedades Neuroinflamatorias , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
18.
Biochem Pharmacol ; 219: 115974, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38081366

RESUMEN

Fatty acid binding protein 5 (FABP5) is an intracellular chaperone of fatty acid molecules that regulates lipid metabolism and cell growth. However, its role in intestinal inflammation remains enigmatic. Through examination of human tissue samples and single-cell data, we observed a significant upregulation of FABP5 within the mucosa of patients afflicted with ulcerative colitis (UC) and Crohn's disease (CD), predominantly localized in intestinal macrophages. Herein, we investigate the regulation of FABP5-IN-1, a FABP5 inhibitor, on various cells of the gut in an inflammatory environment. Our investigations confirmed that FABP5 ameliorates DSS-induced colitis in mice by impeding the differentiation of macrophages into M1 macrophages in vitro and in vivo. Furthermore, following FABP5-IN-1 intervention, we observed a notable restoration of intestinal goblet cells and tuft cells, even under inflammatory conditions. Additionally, FABP5-IN-1 exhibits a protective effect against DSS-induced colitis by promoting the polarization of macrophages towards the M2 phenotype in vivo. In summary, FABP5-IN-1 confers protection against DSS-induced acute colitis through a multifaceted approach, encompassing the reduction of inflammatory macrophage infiltration, macrophage polarization, regulating Th17/Treg cells to play an anti-inflammatory role in IBD. The implications for IBD are underscored by the comprehensive in vivo and in vitro experiments presented in this article, thereby positioning FABP5 as a promising and novel therapeutic target for the treatment of IBD.


Asunto(s)
Colitis Ulcerosa , Colitis , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Ratones , Enfermedades Inflamatorias del Intestino/inducido químicamente , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/metabolismo , Colitis/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Macrófagos , Antiinflamatorios/farmacología , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Colon , Activación de Macrófagos , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo
20.
CNS Neurosci Ther ; 30(1): e14486, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37830170

RESUMEN

AIMS: Dexmedetomidine (DEX) has been reported to alleviate hypoxic-ischemic brain damage (HIBD) in neonates. This study aimed to investigate whether DEX improves cognitive impairment by promoting hippocampal neurogenesis via the BDNF/TrkB/CREB signaling pathway in neonatal rats with HIBD. METHODS: HIBD was induced in postnatal day 7 rats using the Rice-Vannucci method, and DEX (25 µg/kg) was administered intraperitoneally immediately after the HIBD induction. The BDNF/TrkB/CREB pathway was regulated by administering the TrkB receptor antagonist ANA-12 through intraperitoneal injection or by delivering adeno-associated virus (AAV)-shRNA-BDNF via intrahippocampal injection. Western blot was performed to measure the levels of BDNF, TrkB, and CREB. Immunofluorescence staining was utilized to identify the polarization of astrocytes and evaluate the levels of neurogenesis in the dentate gyrus of the hippocampus. Nissl and TTC staining were performed to evaluate the extent of neuronal damage. The MWM test was conducted to evaluate spatial learning and memory ability. RESULTS: The levels of BDNF and neurogenesis exhibited a notable decrease in the hippocampus of neonatal rats after HIBD, as determined by RNA-sequencing technology. Our results demonstrated that treatment with DEX effectively increased the protein expression of BDNF and the phosphorylation of TrkB and CREB, promoting neurogenesis in the dentate gyrus of the hippocampus in neonatal rats with HIBD. Specifically, DEX treatment significantly augmented the expression of BDNF in hippocampal astrocytes, while decreasing the proportion of detrimental A1 astrocytes and increasing the proportion of beneficial A2 astrocytes in neonatal rats with HIBD. Furthermore, inhibiting the BDNF/TrkB/CREB pathway using either ANA-12 or AAV-shRNA-BDNF significantly counteracted the advantageous outcomes of DEX on hippocampal neurogenesis, neuronal survival, and cognitive improvement. CONCLUSIONS: DEX promoted neurogenesis in the hippocampus by activating the BDNF/TrkB/CREB pathway through the induction of polarization of A1 astrocytes toward A2 astrocytes, subsequently mitigating neuronal damage and cognitive impairment in neonates with HIBD.


Asunto(s)
Disfunción Cognitiva , Dexmedetomidina , Hipoxia-Isquemia Encefálica , Ratas , Animales , Animales Recién Nacidos , Ratas Sprague-Dawley , Dexmedetomidina/farmacología , Dexmedetomidina/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo/metabolismo , Transducción de Señal , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/metabolismo , ARN Interferente Pequeño/farmacología , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Neurogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA