Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
NPJ Syst Biol Appl ; 10(1): 38, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594351

RESUMEN

Acute myeloid leukemia (AML) is characterized by uncontrolled proliferation of poorly differentiated myeloid cells, with a heterogenous mutational landscape. Mutations in IDH1 and IDH2 are found in 20% of the AML cases. Although much effort has been made to identify genes associated with leukemogenesis, the regulatory mechanism of AML state transition is still not fully understood. To alleviate this issue, here we develop a new computational approach that integrates genomic data from diverse sources, including gene expression and ATAC-seq datasets, curated gene regulatory interaction databases, and mathematical modeling to establish models of context-specific core gene regulatory networks (GRNs) for a mechanistic understanding of tumorigenesis of AML with IDH mutations. The approach adopts a new optimization procedure to identify the top network according to its accuracy in capturing gene expression states and its flexibility to allow sufficient control of state transitions. From GRN modeling, we identify key regulators associated with the function of IDH mutations, such as DNA methyltransferase DNMT1, and network destabilizers, such as E2F1. The constructed core regulatory network and outcomes of in-silico network perturbations are supported by survival data from AML patients. We expect that the combined bioinformatics and systems-biology modeling approach will be generally applicable to elucidate the gene regulation of disease progression.


Asunto(s)
Leucemia Mieloide Aguda , Nucleofosmina , Humanos , Redes Reguladoras de Genes/genética , Isocitrato Deshidrogenasa/genética , Leucemia Mieloide Aguda/genética , Carcinogénesis
2.
J Am Chem Soc ; 146(6): 4221-4233, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38305127

RESUMEN

Many real-world scenarios involve interfaces, particularly liquid-liquid interfaces, that can fundamentally alter the dynamics of colloids. This is poorly understood for chemically active colloids that release chemicals into their environment. We report here the surprising discovery that chemical micromotors─colloids that convert chemical fuels into self-propulsion─move significantly faster at an oil-water interface than on a glass substrate. Typical speed increases ranged from 3 to 6 times up to an order of magnitude and were observed for different types of chemical motors and interfaces made with different oils. Such speed increases are likely caused by faster chemical reactions at an oil-water interface than at a glass-water interface, but the exact mechanism remains unknown. Our results provide valuable insights into the complex interactions between chemical micromotors and their environments, which are important for applications in the human body or in the removal of organic pollutants from water. In addition, this study also suggests that chemical reactions occur faster at an oil-water interface and that micromotors can serve as a probe for such an effect.

3.
Mol Cell Biochem ; 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38180718

RESUMEN

Methyltransferase like 3 (METTL3) has been reported to promote tumorigenesis of multiple myeloma (MM), however, the molecular mechanism still needs further research. The N6-methyladenosine (m6A) level in tissues or cells was measured by m6A kit and dot blot assay. The mRNA and protein expression were detected by quantitative real-time PCR (RT-qPCR) and Western blot, respectively. The cell counting kit-8 and colony formation assay were used to detect the cell proliferation. Coimmunoprecipitation (Co-IP) experiment verified the binding of two proteins. The luciferase reporter experiment demonstrated the targeted binding of miR-182-5p and CaMKII inhibitor 1 (CAMK2N1). More importantly, tumor growth was measured in xenograft mice. Our data showed that the expression of METTL3 was significantly increased in MM patients' samples and MM cells. METTL3 overexpression promoted MM cells proliferation, and METTL3 knockdown inhibited MM cells proliferation. Mechanically, METTL3-dependent m6A participated in DiGeorge syndrome critical region 8 (DGCR8)-mediated maturation of pri-miR-182. Upregulation of miR-182-5p further enhanced the promoting proliferation effect of METTL3 overexpression on MM cells. Moreover, the luciferase reporter gene experiment proved that miR-182-5p targetedly regulated CAMK2N1 expression. Xenograft tumor in nude mice further verified that METTL3 promoted MM tumor growth through miR-182/CAMK2N1 signal axis. In summary, the METTL3/miR-182-5p/CAMK2N1 axis plays an important role in MM tumorigenesis, which may provide a new target for MM therapy.

4.
Genome Biol ; 25(1): 16, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216972

RESUMEN

BACKGROUND: The oncogenic protein HOXA9 plays a critical role in leukemia transformation and maintenance, and its aberrant expression is a hallmark of most aggressive acute leukemia. Although inhibiting the upstream regulators of HOXA9 has been proven as a significant therapeutic intervention, the comprehensive regulation network controlling HOXA9 expression in leukemia has not been systematically investigated. RESULTS: Here, we perform genome-wide CRISPR/Cas9 screening in the HOXA9-driven reporter acute leukemia cells. We identify a poorly characterized RNA-binding protein, RBM5, as the top candidate gene required to maintain leukemia cell fitness. RBM5 is highly overexpressed in acute myeloid leukemia (AML) patients compared to healthy individuals. RBM5 loss triggered by CRISPR knockout and shRNA knockdown significantly impairs leukemia maintenance in vitro and in vivo. Through domain CRISPR screening, we reveal that RBM5 functions through a noncanonical transcriptional regulation circuitry rather than RNA splicing, such an effect depending on DNA-binding domains. By integrative analysis and functional assays, we identify HOXA9 as the downstream target of RBM5. Ectopic expression of HOXA9 rescues impaired leukemia cell proliferation upon RBM5 loss. Importantly, acute protein degradation of RBM5 through auxin-inducible degron system immediately reduces HOXA9 transcription. CONCLUSIONS: We identify RBM5 as a new upstream regulator of HOXA9 and reveal its essential role in controlling the survival of AML. These functional and molecular mechanisms further support RBM5 as a promising therapeutic target for myeloid leukemia treatment.


Asunto(s)
Proteínas de Homeodominio , Leucemia Mieloide Aguda , Humanos , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Proteínas de Unión al ADN/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Oncogénicas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas Supresoras de Tumor/metabolismo
5.
Transl Res ; 266: 68-83, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37995969

RESUMEN

Podocyte damage is the major cause of glomerular injury and proteinuria in multiple chronic kidney diseases. Metadherin (MTDH) is involved in podocyte apoptosis and promotes renal tubular injury in mouse models of diabetic nephropathy and renal fibrosis; however, its role in podocyte injury and proteinuria needs further exploration. Here, we show that MTDH was induced in the glomerular podocytes of patients with proteinuric chronic kidney disease and correlated with proteinuria. Podocyte-specific knockout of MTDH in mice reversed proteinuria, attenuated podocyte injury, and prevented glomerulosclerosis after advanced oxidation protein products challenge or adriamycin injury. Furthermore, specific knockout of MTDH in podocytes repressed ß-catenin phosphorylation at the Ser675 site and inhibited its downstream target gene transcription. Mechanistically, on the one hand, MTDH increased cAMP and then activated protein kinase A (PKA) to induce ß-catenin phosphorylation at the Ser675 site, facilitating the nuclear translocation of MTDH and ß-catenin; on the other hand, MTDH induced the deaggregation of pyruvate kinase M2 (PKM2) tetramers and promoted PKM2 monomers to enter the nucleus. This cascade of events leads to the formation of the MTDH/PKM2/ß-catenin/CBP/TCF4 transcription complex, thus triggering TCF4-dependent gene transcription. Inhibition of PKA activity by H-89 or blockade of PKM2 deaggregation by TEPP-46 abolished this cascade of events and disrupted transcription complex formation. These results suggest that MTDH induces podocyte injury and proteinuria by assembling the ß-catenin-mediated transcription complex by regulating PKA and PKM2 function.


Asunto(s)
Nefropatías Diabéticas , Podocitos , Insuficiencia Renal Crónica , Humanos , Ratones , Animales , Podocitos/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico , Factores de Transcripción/genética , Proteinuria/genética , Proteinuria/metabolismo , Nefropatías Diabéticas/metabolismo , Insuficiencia Renal Crónica/metabolismo , Proteínas de la Membrana , Proteínas de Unión al ARN/metabolismo
6.
Food Chem ; 440: 138309, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38159319

RESUMEN

To explore the diversity and fermentation potential of non-Saccharomyces cerevisiae associated with kiwifruit, indigenous yeasts isolated from kiwifruit and natural fermentation were comprehensively analyzed. A total of 166 indigenous yeasts were isolated, of which 54 representative strains were used for subsequent enzyme activity characterization. Different colorimetric methods were used to verify the ability of these strains to secrete hydrolytic enzymes, and then six strains were selected for sequential fermentation by specific activity assay. The performance of indigenous yeasts in improving organic acids, polyphenols, volatile compounds and sensory characteristics of wines was evaluated holistically. Results indicated that most sequential fermentations exhibited significant improvements in vitamin C and polyphenols. Remarkably, the involvement of Zygosaccharomyces rouxii, Meyerozyma guilliermondii, and Pichia kudriavzevii increased the concentrations of ethyl esters, acetates and alcohols, enhancing floral and tropical fruit odors and ultimately achieving the highest overall sensory acceptability, thereby highlighting their potential in kiwifruit wine fermentation.


Asunto(s)
Vitis , Vino , Vino/análisis , Levaduras , Alcoholes , Acetatos/análisis , Fermentación , Odorantes/análisis , Polifenoles
7.
J Hazard Mater ; 465: 133228, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38141303

RESUMEN

The brominated flame retardant decabromodiphenyl ethane (DBDPE) has been extensively used following restrictions on BDE-209 and thus, been frequently detected in aquatic environment. However, information on impact of DBDPE on fish development and the potential mechanisms remains scarce. In present study, developing zebrafish were employed as a study model. Embryos were exposed until 5 d to DBDPE at concentrations of 0, 3, 30, and 300 µg/L, following which the impact on larval development was investigated. DBDPE bioaccumulation and locomotor hyperactivity were observed in developing zebrafish exposed to DBDPE. Transcriptome and bioinformatics analyses indicated that pathways associated with cardiac muscle contraction and retinol metabolism were notably affected. The mechanisms of DBDPE to induce locomotor abnormality were further investigated by analyzing levels of retinol and retinol metabolites, eye and heart histology, heart rates, and ATPase activity. Our results indicate that locomotor hyperactivity observed in larvae exposed to DBDPE results from abnormal heartbeat, which in turn is attributable to inhibition of Na+/K+-ATPase activity. Furthermore, DBDPE did not change larval eye histology and contents of retinoid (retinol, retinal, and retinoic acid). This study provides insight into the mechanisms underlying DBDPE-induced developmental toxicity and highlights the need for addressing the environmental risks for aquatic organisms.


Asunto(s)
Retardadores de Llama , Pez Cebra , Animales , Larva , Vitamina A , Transcriptoma , Bromobencenos/toxicidad , Éteres Difenilos Halogenados/toxicidad , Retardadores de Llama/toxicidad , Adenosina Trifosfatasas
8.
Sci Rep ; 13(1): 19226, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932341

RESUMEN

Bronchiolitis obliterans (BO) is a chronic airway disease that was often indicated by the pathological presentation of narrowed and irreversible airways. However, the molecular mechanisms of BO pathogenesis remain unknown. Although neutrophil extracellular traps (NETs) can contribute to inflammatory disorders, their involvement in BO is unclear. This study aims to identify potential signaling pathways in BO by exploring the correlations between NETs and BO. GSE52761 and GSE137169 datasets were downloaded from gene expression omnibus (GEO) database. A series of bioinformatics analyses such as differential expression analysis, gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), and gene set enrichment analysis (GSEA) were performed on GSE52761 and GSE137169 datasets to identify BO potential signaling pathways. Two different types of BO mouse models were constructed to verify NETs involvements in BO. Additional experiments and bioinformatics analysis using human small airway epithelial cells (SAECs) were also performed to further elucidate differential genes enrichment with their respective signaling pathways in BO. Our study identified 115 differentially expressed genes (DEGs) that were found up-regulated in BO. Pathway enrichment analysis revealed that these genes were primarily involved in inflammatory signaling processes. Besides, we found that neutrophil extracellular traps (NETs) were formed and activated during BO. Our western blot analysis on lung tissue from BO mice further confirmed NETs activation in BO, where neutrophil elastase (NE) and myeloperoxidase (MPO) expression were found significantly elevated. Transcriptomic and bioinformatics analysis of NETs treated-SAECs also revealed that NETs-DEGs were primarily associated through inflammatory and epithelial-to-mesenchymal transition (EMT) -related pathways. Our study provides novel clues towards the understanding of BO pathogenesis, in which NETs contribute to BO pathogenesis through the activation of inflammatory and EMT associated pathways. The completion of our study will provide the basis for potential novel therapeutic targets in BO treatment.


Asunto(s)
Bronquiolitis Obliterante , Trampas Extracelulares , Humanos , Ratones , Animales , Trampas Extracelulares/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Bronquiolitis Obliterante/metabolismo , Inflamación , Células Epiteliales/metabolismo , Biología Computacional
9.
Zhen Ci Yan Jiu ; 48(10): 977-985, 2023 Oct 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-37879947

RESUMEN

OBJECTIVES: To observe the effect of electroacupuncture (EA) on urodynamics and Raf/MEK/ERK signaling pathway in spine cord tissue of rats after suprasacral spinal cord injury (SSCI), so as to explore its possible mechanism in improving bladder function in rats with detrusor hyperreflexia after SSCI. METHODS: Female SD rats were randomly divided into blank, sham operation, model, EA and EA+PD98059 groups, with 12 rats in each group. Thorax (T) 10 spinal cord transection was performed by surgery. Rats in the EA group were given EA (10 Hz/50 Hz, 20 min) at "Ciliao" (BL32), "Zhongji" (CV3), "Sanyinjiao" (SP6) and "Dazhui" (GV14) once daily for 7 d. Rats of the EA+PD98059 group received intraperitoneal injection of PD98059 (5 mg/kg) 2 h before EA intervention. The urodyna-mics was used to measure the base pressure, leak point pressure, maximum pressure, maximum capacity and comp-liance of bladder, and the morphology of bladder detrusor tissue was observed with HE staining. The TUNEL staining was used to detect the cell apoptosis of the spinal cord tissue. The expression levels of exchange protein directly activated by cAMP 2 (Epac2), Rap, phosphorylated rapidly accelerated fibrosarcoma (p-Raf), phosphorylated mitogen-activated extracellular signal-regulated kinase (p-MEK), phosphorylated extracellular signal regulated kinase 1 and 2 (p-ERK1/2), B-cell lymphoma-2 (Bcl-2), and Bcl-2 associated X protein (Bax) were determined by Western blot. RESULTS: Compared with the sham operation group, the base pressure, leak point pressure and maximum pressure of bladder were significantly increased (P<0.01), the maximum bladder capacity and bladder compliance were decreased (P<0.01), the cell apoptosis rate of spinal cord tissue was increased (P<0.01), and the expression levels of Epac2, Rap, p-Raf, p-MEK, p-ERK1/2, and Bcl-2 protein in spinal cord tissue were decreased (P<0.01), while the expression level of Bax protein was increased (P<0.01) in the model group. After the treatment and compared with the model group, the base pressure, leak point pressure and maximum pressure of bladder, the cell apoptosis rate of spinal cord tissue, the expression level of Bax protein were decreased (P<0.05) in the EA group, while the maximum bladder capacity and bladder compliance, the expression levels of Epac2, Rap, p-Raf, p-MEK, p-ERK1/2, and Bcl-2 protein in spinal cord tissue were all increased (P<0.05, P<0.01). In comparison with the EA group, the base pressure, leak point pressure and maximum pressure of bladder, the cell apoptosis rate, the expression level of Bax protein were significantly increased (P<0.05), whereas the maximum bladder capacity, bladder compliance, and the expression levels of p-MEK, p-ERK1/2, and Bcl-2 protein were decreased (P<0.05) in the EA+PD98059 group. Results of HE staining showed disordered transitional epithelial cells and destroyed lamina propria in bladder detrusor tissue, with the infiltration of monocytes in the model group, which was obviously milder in both EA and EA+PD98059 groups, especially in the EA group. CONCLUSIONS: EA can improve the bladder function in detrusor hyperreflexia rats after SSCI, which may be related to its effect in up-regulating Epac2 and Rap, activating the Raf-MEK-ERK pathway, and reducing the cell apoptosis of spinal cord tissue.


Asunto(s)
Electroacupuntura , Traumatismos de la Médula Espinal , Animales , Femenino , Ratas , Proteína X Asociada a bcl-2/metabolismo , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Ratas Sprague-Dawley , Reflejo Anormal , Transducción de Señal , Médula Espinal , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/terapia , Urodinámica , Quinasas raf/metabolismo
10.
Exp Dermatol ; 32(11): 1960-1970, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37688280

RESUMEN

PKM2 mediates the Warburg effects and is crucial for tumorigenesis, but its role in hyperplastic skin disorders remains elusive. In this study, we investigated the function of PKM2 in psoriatic keratinocytes. We found that PKM2 expression and its nuclear translocation were induced in the epidermis of psoriasis patients, contributing to aerobic glycolysis and cell growth. Moreover, mass spectrometry combined with immunoprecipitation analysis revealed that PKM2 could interact with TRIM33, an E3 ubiquitin ligase in the nucleus, and this interaction is critical for the nuclear retention of PKM2. As a result of TRIM33-mediated ubiquitination, PKM2 nuclear protein kinase function is promoted, thus leading to the phosphorylation of STAT3. In addition, blocking PKM2 nuclear translocation abrogated TRIM33-triggered glycolysis and cell proliferation in keratinocytes. Taken together, our experiments demonstrate that ubiquitination regulates the nuclear retention of PKM2 in keratinocytes. Moreover, our results highlight a novel mechanism accounting for the metabolic reprogramming of keratinocytes in psoriasis patients.


Asunto(s)
Queratinocitos , Psoriasis , Humanos , Línea Celular Tumoral , Glucólisis , Fosforilación , Transporte de Proteínas , Factores de Transcripción , Proteínas de Unión a Hormona Tiroide
11.
bioRxiv ; 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37577526

RESUMEN

Acute myeloid leukemia (AML) is characterized by uncontrolled proliferation of poorly differentiated myeloid cells, with a heterogenous mutational landscape. Mutations in IDH1 and IDH2 are found in 20% of the AML cases. Although much effort has been made to identify genes associated with leukemogenesis, the regulatory mechanism of AML state transition is still not fully understood. To alleviate this issue, here we develop a new computational approach that integrates genomic data from diverse sources, including gene expression and ATAC-seq datasets, curated gene regulatory interaction databases, and mathematical modeling to establish models of context-specific core gene regulatory networks (GRNs) for a mechanistic understanding of tumorigenesis of AML with IDH mutations. The approach adopts a novel optimization procedure to identify the optimal network according to its accuracy in capturing gene expression states and its flexibility to allow sufficient control of state transitions. From GRN modeling, we identify key regulators associated with the function of IDH mutations, such as DNA methyltransferase DNMT1, and network destabilizers, such as E2F1. The constructed core regulatory network and outcomes of in-silico network perturbations are supported by survival data from AML patients. We expect that the combined bioinformatics and systems-biology modeling approach will be generally applicable to elucidate the gene regulation of disease progression.

12.
Front Oncol ; 13: 1174306, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37441417

RESUMEN

Multiple primary malignant neoplasms (MPMNs) are defined as the presence of two or more malignancies with different histologies in the same patient. MPMNs are rare, accounting for fewer than 4% of all tumor cases. Depending on the time interval between the diagnosis of the different malignancies, they are classified as either simultaneous or metachronous MPMNs, with simultaneous being rarer in MPMNs. Here, we present a 63-year-old female patient presenting with multiple primary renal and thyroid carcinomas and discuss the risk factors, treatment options, and prognosis of rare dual carcinomas. We focus on managing multidisciplinary teams and selecting individualized treatment options to deliver valuable treatment strategies to patients.

13.
Front Oncol ; 13: 1198765, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37469418

RESUMEN

Primary osteosarcoma of the uterus is an extremely rare pure heterologous sarcoma of the uterus. The relevant available information is limited to case reports. To date, only 31 cases of this type of cancer have been reported. Here, we report the first clinical experience with the administration of an immunotherapy-based combination regimen for multiple metastatic primary osteosarcomas of the uterus. The patient had undergone multiple treatments prior to this regimen, but her condition continued to progress. However, after 3 cycles of immunotherapy combined with targeted therapy and chemotherapy, a review showed that the disease was stable and even in partial remission. The patient has a good quality of life, and long-term survival is expected.

14.
Gene ; 871: 147400, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37028609

RESUMEN

Cell cycle modulation is an important event during decidualization. E2F2 is a transcription regulator that plays a vital role in cell cycle regulation. However, the biological role of E2F2 in decidualization has not yet been identified. In this study, estrogen (E2) and progestin (P4)-induced in vitro and in vivo decidualization models were applied. Our data showed that the expression levels of E2F2 and its downstream target MCM4 were downregulated in the uterus tissues of E2P4-treated mice compared with control mice. In hESCs, exposure to E2P4 resulted in a significant decrease in E2F2 and MCM4 expression. E2P4 treatment reduced hESC proliferation and ectopic expression of E2F2 or MCM4 elevated the viability of E2P4-treated hESCs. In addition, ectopic expression of E2F2 or MCM4 restored the expression of G1 phase-associated proteins. The ERK pathway was inactivated in E2P4-treated hESCs. Treatment with ERK agonist Ro 67-7476 restored the expression of E2F2, MCM4, and G1 phase-associated proteins that were inhibited by E2P4. Moreover, Ro 67-7476 retracted the levels of IGFBP1 and PRL that were induced by E2P4. Collectively, our results indicate that E2F2 is regulated by ERK signaling and contributes to decidualization via regulation of MCM4. Therefore, E2F2/MCM4 cascade may serve as promising targets for alleviating decidualization dysfunction.


Asunto(s)
Decidua , Endometrio , Femenino , Animales , Ratones , Endometrio/metabolismo , Decidua/metabolismo , Sistema de Señalización de MAP Quinasas , Estrógenos/metabolismo , Transducción de Señal , Células del Estroma/metabolismo
15.
Technol Cancer Res Treat ; 22: 15330338221118984, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36740988

RESUMEN

Background: Notch signaling played a critical role in promoting breast tumorigenesis and progression. However, the role and prognostic value of Notch3 combined with DLL4 expression in breast carcinoma had not been explored. Methods: The retrospective study enrolled 90 breast cancer tissues and 60 noncancerous tissues from (conceal). The expression and prognostic value of Notch3 and DLL4 in patients with breast carcinoma were investigated using Oncomine and UALCAN database. Notch3 and DLL4 expression levels were detected by quantitative real-time polymerase chain reaction, western blotting, and immunohistochemistry. We analyzed the correlation between both proteins expression and clinicopathological parameters and survival data, respectively. Results: The expressions of Notch3 and DLL4 were increased, and Notch3 expression was significantly positively associated with DLL4 in breast carcinoma. The 2 proteins dramatically correlated with advanced stage, high grade and negative Her2 status. The overexpressing of single or both Notch3 and DLL4 resulted in shortened survival of breast cancer patients. And Notch3 overexpression was one of independent risk predictors to poor prognosis. Conclusion: The interaction of Notch3 receptor and DLL4 ligand accelerates oncogenesis, progression, and poor prognosis of breast cancer patients. Notch3 protein may serve as one of biomarker to independently predict prognosis of patients.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Neoplasias de la Mama , Proteínas de Unión al Calcio , Receptor Notch3 , Femenino , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de la Mama/patología , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Pronóstico , Receptor Notch3/genética , Receptor Notch3/metabolismo , Estudios Retrospectivos , Transducción de Señal
16.
Front Oncol ; 12: 1021786, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36505803

RESUMEN

Donor cell-derived leukemia (DCL) is a special type of relapse after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Patients with DCL generally have a poor prognosis due to resistance to conventional chemotherapy. Here, we report a case of donor cell-derived acute lymphoblastic leukemia after umbilical cord blood transplantation. The patient didn't respond to induction chemotherapy. She then received anti-CD19 CAR-T cell therapy and achieved MRD-negative complete remission (CR). However, MRD levels rose from negative to 0.05% at 5 months after CAR-T cell therapy. Higher MRD levels were significantly associated with an increased risk of leukemia recurrence. Afterward, preemptive interferon-α treatment was administrated to prevent disease recurrence. To date, the patient has maintained MRD-negative CR for 41 months. Our results suggested that anti-CD19 CAR-T cells followed by interferon-α therapy are effective in treating donor cell-derived acute lymphoblastic leukemia. This report provides a novel strategy for the treatment of DCL.

17.
J Dermatol Sci ; 107(3): 160-168, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36096861

RESUMEN

BACKGROUND: Tripartite motif-containing protein 33, a member of the TRIM E3 ligase family, is shown to be involved in tumorigenesis, cell proliferation and inflammation. Alteration of several TRIM family proteins in psoriatic epidermis has been shown to participate in psoriasis pathogenesis. However, little is known about Trim33 expression and its role in psoriasis. OBJECTIVES: To examine the expression and biological roles of Trim33 in psoriatic process, with a focus on identifying its novel substrates in psoriatic keratinocytes. METHODS: Gene expression of Trim33 in biopsies from psoriasis patients compared with healthy volunteers was analysed by quantitative real-time polymerase chain reaction (qPCR) and immunofluorescence (IF). Identification of Trim33 substrates were performed using immunoprecipitation combined with mass spectrometry. Protein expression and localization were assessed by immunoblotting and immunofluorescence. Expression of cytokines was analysed with qPCR. RESULTS: qPCR and IF analysis revealed increased expression of Trim33 in psoriatic epidermis. Overexpression of Trim33 promoted the expression of psoriasis-related proinflammatory cytokines IL-6, IL-1ß and NLRP3 inflammasome. Intriguingly, Trim33 induced lysine 63 (K63)-linked ubiquitination of Annexin A2 (Anxa2), which promoted its interaction with p50/p65 subunits of NF-κB, favoured the retention of p50/p65 in the nucleus and promoted the expression of inflammation-related NF-κB downstream genes. CONCLUSIONS: Our study highlights the upregulation of Trim33 in psoriatic epidermis and its pivotal role in promoting the inflammation of keratinocytes by Anxa2/NF-κB pathway. Our findings imply that Trim33 might be further explored as potential target for psoriasis treatment.


Asunto(s)
Anexina A2/metabolismo , Dermatitis , Psoriasis , Anexina A2/genética , Citocinas/metabolismo , Dermatitis/metabolismo , Humanos , Inflamasomas/metabolismo , Inflamación/metabolismo , Interleucina-6/metabolismo , Queratinocitos/metabolismo , Lisina/metabolismo , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Psoriasis/patología , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética
18.
Stem Cell Res Ther ; 13(1): 310, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35841116

RESUMEN

BACKGROUND: Tracheal fistulas (TF) can be dangerous and even fatal in patients. The current treatment is really challenging. Previous studies reported that mesenchymal stem cells (MSCs) could be used to treat respiratory tract fistulas. Stem cells from human exfoliated deciduous teeth (SHED) are considered to be MSC-like cells that may also have the potential to treat the tracheal fistulas. In this study, we investigated the therapeutic effects of SHED in rat tracheal fistula models. METHODS: A total of 80 SD rats were randomly divided into five groups: a sham-operated group, a local PBS group (L-PBS), an intravenous PBS group (I-PBS), a local SHED treatment group (L-SHED), and an intravenous SHED treatment group (I-SHED). The L-SHED and I-SHED groups were given a topical application around the fistula or an intravenous injection of 1*107 SHED via the tail vein, respectively, while the L-PBS and I-PBS groups were given an equivalent volume of PBS through local or intravenous administration. A stereomicroscope was used to observe fistula healing on the 2nd, 3rd, and 5th days following transplantation. On the 7th day, the survival of SHED was observed by immunofluorescence. The pathology of the lungs and fistulas was observed by hematoxylin and eosin (H&E) and Masson staining. The expression levels of the Toll-like receptor 4 (TLR4), interleukin (IL)-1ß, IL-33, and IL-4 were measured using immunohistochemistry. The expression levels of TLR4, high mobility group box 1 (HMGB1), and myeloid differentiation factor 88 (MYD88) were studied using western blotting. On day 14, airway responsiveness of rats was detected and analyzed. RESULTS: Fistula healing in the L-SHED and I-SHED groups was faster than that in their respective PBS groups after transplantation. The fistula diameters in the L-SHED and I-SHED groups were significantly smaller than those in the L-PBS and I-PBS groups on the 3rd day. Moreover, the phenomenon of fibroblast proliferation and new blood vessel growth around the fistula seemed more pronounced in the L-SHED and I-SHED groups. Although no discernible difference was found in airway responsiveness after SHED treatment, the degree of inflammation in the lungs was reduced by intravenous SHED treatment. However, there was no significant reduction in lung inflammation by local SHED treatment. The expression levels of IL-1ß and IL-33 were decreased in the I-SHED group, while IL-4 was elevated compared with the I-PBS group. Interestingly, intravenous SHED treatment inhibited the activation of HMGB1/TLR4/MYD88 in the lung tissues of TF rats. CONCLUSIONS: SHED transplantation accelerated the rate of fistula healing in rats. Intravenous SHED treatment reduced lung inflammation. Thus, SHED may have potential in the treatment of tracheal fistula, providing hope for future therapeutic development for TF.


Asunto(s)
Proteína HMGB1 , Fístula del Sistema Respiratorio , Animales , Proteína HMGB1/metabolismo , Humanos , Interleucina-33/metabolismo , Interleucina-4/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Ratas , Ratas Sprague-Dawley , Células Madre/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Diente Primario
19.
Front Oncol ; 12: 921587, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35756668

RESUMEN

Introduction: The hematological manifestations of corona virus disease 2019 (COVID-19) can confound the diagnosis and therapy of other diseases. In this paper, we firstly reported a case of chronic myeloid leukemia (CML) of delayed diagnosis and intolerance to tyrosine kinase inhibitors (TKIs) concurrent with COVID-19. Case Presentation: A 56-year-old female was diagnosed as COVID-19 with no obvious leukocytosis [white blood cell (WBC), ≤17 × 109/L] or splenomegaly until ablation of the virus. Bone marrow aspiration was conducted to establish the diagnosis of CML. She accepted an adjusted dosage of imatinib initially and had to suspend it after myelosuppression (day 41). After hematopoietic therapy, imatinib was given again (day 62), but she was still non-tolerant, and nilotinib at 150 mg twice a day was prescribed from day 214. At just about 4 weeks later, nilotinib was discontinued due to myelosuppression. Then, it was reduced to 150 mg per day and was re-initiated (day 349), but she was still non-tolerant to it. Similarly, from day 398, flumatinib at 200 mg per day was tried, but she was non-tolerant. Her white blood cell or platelet count fluctuated markedly with poor therapeutic response. Considering that she was relatively tolerant and responsive to imatinib, the medication was re-initiated at 200 mg and reduced to 100 mg per day. Her follow-up revealed stable WBC and PLT counts. The latest BCR-ABL-210/ABL was decreased to 0.68% at about 6 months after imatinib was re-initiated, which means an improved response. Conclusion: The offset effect between CML and SARS-CoV-2 infection was supposed to be the underlying mechanism for the absence of leukocytosis or splenomegaly. The impact of immune network by SARS-CoV-2 preserved and disrupted the patient's response to TKIs despite the virus' ablation. We suggest that a continued elevation of basophils may be a useful indicator for CML concurrent with COVID-19, and individualized treatment with adjusted dosage and suitable type of TKIs should be considered to improve the patient's health outcome.

20.
Kidney Int ; 102(3): 506-520, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35644285

RESUMEN

Diabetic kidney disease (DKD) is one of the most common and devastating complications of diabetic mellitus, and its prevalence is rising worldwide. Klotho, an anti-aging protein, is kidney protective in DKD. However, its large size, prohibitive cost and structural complexity hamper its potential utility in clinics. Here we report that Klotho-derived peptide 6 (KP6) mimics Klotho function and ameliorates DKD. In either an accelerated model of DKD induced by streptozotocin and advanced oxidation protein products in unilateral nephrectomized mice or db/db mice genetically prone to diabetes, chronic infusion of KP6 reversed established proteinuria, attenuated glomerular hypertrophy, mitigated podocyte damage, and ameliorated glomerulosclerosis and interstitial fibrotic lesions, but did not affect serum phosphorus and calcium levels. KP6 inhibited ß-catenin activation in vivo and blocked the expression of its downstream target genes in glomerular podocytes and tubular epithelial cells. In vitro, KP6 prevented podocyte injury and inhibited ß-catenin activation induced by high glucose without affecting Wnt expression. Co-immunoprecipitation revealed that KP6 bound to Wnt ligands and disrupted the engagement of Wnts with low density lipoprotein receptor-related protein 6, thereby interrupting Wnt/ß-catenin signaling. Mutated KP6 with a scrambled amino acid sequence failed to bind Wnts and did not alleviate DKD in db/db mice. Thus, our studies identified KP6 as a novel Klotho-derived peptide that ameliorated DKD by blocking Wnt/ß-catenin. Hence, our findings also suggest a new therapeutic strategy for the treatment of patients with DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Podocitos , Animales , Diabetes Mellitus/metabolismo , Nefropatías Diabéticas/patología , Ratones , Péptidos/farmacología , Péptidos/uso terapéutico , Podocitos/patología , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA