Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Eur J Pharm Biopharm ; 197: 114234, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401743

RESUMEN

Nanoparticle-based delivery systems such as RNA-encapsulating lipid nanoparticles (RNA LNPs) have dramatically advanced in function and capacity over the last few decades. RNA LNPs boast of a diverse array of external and core configurations that enhance targeted delivery and prolong circulatory retention, advancing therapeutic outcomes. Particularly within the realm of cancer immunotherapies, RNA LNPs are increasingly gaining prominence. Pre-clinical in vitro and in vivo studies have laid a robust foundation for new and ongoing clinical trials that are actively enrolling patients for RNA LNP cancer immunotherapy. This review explores RNA LNPs, starting from their core composition to their external membrane formulation, set against a backdrop of recent clinical breakthroughs. We further elucidate the LNP delivery avenues, broach the prevailing challenges, and contemplate the future perspectives of RNA LNP-mediated immunotherapy.


Asunto(s)
Liposomas , Nanopartículas , Neoplasias , Humanos , Neoplasias/terapia , Inmunoterapia , Proyectos de Investigación , ARN
2.
Adv Healthc Mater ; 13(2): e2302268, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37748773

RESUMEN

Combination immunotherapy has emerged as a promising strategy to address the challenges associated with immune checkpoint inhibitor (ICI) therapy in breast cancer. The efficacy of combination immunotherapy hinges upon the intricate and dynamic nature of the tumor microenvironment (TME), characterized by cellular heterogeneity and molecular gradients. However, current methodologies for drug screening often fail to accurately replicate these complex conditions, resulting in limited predictive capacity for treatment outcomes. Here, a tumor-microenvironment-on-chip (TMoC), integrating a circulation system and ex vivo tissue culture with physiological oxygen and nutrient gradients, is described. This platform enables spatial infiltration of cytotoxic CD8+ T cells and their targeted attack on the tumor, while preserving the high complexity and heterogeneity of the TME. The TMoC is employed to assess the synergistic effect of five targeted therapy drugs and five chemotherapy drugs in combination with immunotherapy, demonstrating strong concordance between chip and animal model responses. The TMoC holds significant potential for advancing drug development and guiding clinical decision-making, as it offers valuable insights into the complex dynamics of the TME.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Animales , Microambiente Tumoral , Inmunoterapia/métodos , Neoplasias/tratamiento farmacológico , Resultado del Tratamiento
4.
J Control Release ; 356: 14-25, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36805873

RESUMEN

Over the past decade, immunotherapy aiming to activate an effective antitumor immune response has ushered in a new era of cancer treatment. However, the efficacy of cancer immunotherapy is limited by low response rates and high systemic toxicity. Nanotechnology is an encouraging platform for the development of next-generation cancer immunotherapy to effectively treat advanced cancer. Nanotechnology-enabled immunotherapy has remarkable advantages, ranging from the increased bioavailability and stability of immunotherapeutic agents to the enhanced activation of immune cells and favorable safety profiles. Nanotechnology-enabled immunotherapy can target solid tumors through reprogramming or stimulating immune cells (i.e., nanovaccines); modulating the immunosuppressive tumor microenvironment; or targeting tumor cells and altering their responses to immune cells to generate effective antitumor immunity. In this Oration, I introduce the advanced strategies currently being pursued by our laboratory and other groups to improve the therapeutic efficacy of cancer immunotherapy and discuss the potential challenges and future directions.


Asunto(s)
Neoplasias , Humanos , Neoplasias/terapia , Inmunoterapia , Nanotecnología , Inmunidad , Inmunosupresores , Microambiente Tumoral
5.
Adv Mater ; 35(13): e2208966, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36609913

RESUMEN

Extracellular vesicles (EVs) are released by cells to mediate intercellular communication under pathological and physiological conditions. While small EVs (sEVs; <100-200 nm, exosomes) are intensely investigated, the properties and functions of medium and large EVs (big EVs (bEVs); >200 nm, microvesicles) are less well explored. Here, bEVs and sEVs are identified as distinct EV populations, and it is determined that bEVs are released in a greater bEV:sEV ratio in the aggressive human triple-negative breast cancer (TNBC) subtype. PalmGRET, bioluminescence-resonance-energy-transfer (BRET)-based EV reporter, reveals dose-dependent EV biodistribution at nonlethal and physiological EV dosages, as compared to lipophilic fluorescent dyes. Remarkably, the bEVs and sEVs exhibit unique biodistribution profiles, yet individually promote in vivo tumor growth in a syngeneic immunocompetent TNBC breast tumor murine model. The bEVs and sEVs share mass-spectrometry-identified tumor-progression-associated EV surface membrane proteins (tpEVSurfMEMs), which include solute carrier family 29 member 1, Cd9, and Cd44. tpEVSurfMEM depletion attenuates EV lung organotropism, alters biodistribution, and reduces protumorigenic potential. This study identifies distinct in vivo property and function of bEVs and sEVs in breast cancer, which suggest the significant role of bEVs in diseases, diagnostic and therapeutic applications.


Asunto(s)
Exosomas , Vesículas Extracelulares , Neoplasias de la Mama Triple Negativas , Ratones , Humanos , Animales , Distribución Tisular , Proteínas de la Membrana/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Vesículas Extracelulares/metabolismo , Exosomas/metabolismo , Carcinogénesis/metabolismo
6.
Blood Adv ; 7(1): 145-158, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35358998

RESUMEN

In chronic lymphocytic leukemia (CLL), B-cell receptor signaling, tumor-microenvironment interactions, and somatic mutations drive disease progression. To better understand the intersection between the microenvironment and molecular events in CLL pathogenesis, we integrated bulk transcriptome profiling of paired peripheral blood (PB) and lymph node (LN) samples from 34 patients. Oncogenic processes were upregulated in LN compared with PB and in immunoglobulin heavy-chain variable (IGHV) region unmutated compared with mutated cases. Single-cell RNA sequencing (scRNA-seq) distinguished 3 major cell states: quiescent, activated, and proliferating. The activated subpopulation comprised only 2.2% to 4.3% of the total tumor bulk in LN samples. RNA velocity analysis found that CLL cell fate in LN is unidirectional, starts in the proliferating state, transitions to the activated state, and ends in the quiescent state. A 10-gene signature derived from activated tumor cells was associated with inferior treatment-free survival (TFS) and positively correlated with the proportion of activated CD4+ memory T cells and M2 macrophages in LN. Whole exome sequencing (WES) of paired PB and LN samples showed subclonal expansion in LN in approximately half of the patients. Since mouse models have implicated activation-induced cytidine deaminase in mutagenesis, we compared AICDA expression between cases with and without clonal evolution but did not find a difference. In contrast, the presence of a T-cell inflamed microenvironment in LN was associated with clonal stability. In summary, a distinct minor tumor subpopulation underlies CLL pathogenesis and drives the clinical outcome. Clonal trajectories are shaped by the LN milieu, where T-cell immunity may contribute to suppressing clonal outgrowth. The clinical study is registered at clinicaltrials.gov as NCT00923507.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Ratones , Animales , Leucemia Linfocítica Crónica de Células B/patología , Heterogeneidad Genética , Región Variable de Inmunoglobulina/genética , Transducción de Señal , Progresión de la Enfermedad , Microambiente Tumoral/genética
7.
J Control Release ; 352: 920-930, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36334859

RESUMEN

While immunotherapy has emerged as a promising strategy to treat glioblastoma multiforme (GBM), the limited availability of immunotherapeutic agents in tumors due to the presence of the blood-brain barrier (BBB) and immunosuppressive tumor microenvironment dampens efficacy. Nitric oxide (NO) plays a role in modulating both the BBB and tumor vessels and could thus be delivered to disrupt the BBB and improve the delivery of immunotherapeutics into GBM tumors. Herein, we report an immunotherapeutic approach that utilizes CXCR4-targeted lipid­calcium-phosphate nanoparticles with NO donors (LCP-NO NPs). The delivery of NO resulted in enhanced BBB permeability and thus improved gene delivery across the BBB. CXCR4-targeted LCP-NO NPs delivered siRNA against the immune checkpoint ligand PD-L1 to GBM tumors, silenced PD-L1 expression, increased cytotoxic T cell infiltration and activation in GBM tumors, and suppressed GBM progression. Thus, the codelivery of NO and PD-L1 siRNA by these CXCR4-targeted NPs may serve as a potential immunotherapy for GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Humanos , Glioblastoma/tratamiento farmacológico , Antígeno B7-H1 , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico , Óxido Nítrico/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Inmunoterapia , Microambiente Tumoral , Línea Celular Tumoral , Receptores CXCR4/genética
8.
J Mater Chem B ; 10(46): 9590-9598, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36106522

RESUMEN

Cirrhosis is a major cause of global morbidity and mortality, and significantly leads to a heightened risk of liver cancer. Despite decades of efforts in seeking for cures for cirrhosis, this disease remains irreversible. To assist in the advancement of understanding toward cirrhosis as well as therapeutic options, various disease models, each with different strengths, are developed. With the development of three-dimensional (3D) cell culture in recent years, more realistic biochemical properties are observed in 3D cell models, which have gradually taken over the responsibilities of traditional 2D cell culture, and are expected to replace some of the animal models in the near future. Here, we propose a 3D fibrotic liver model inspired by liver lobules. In the model, 3D-printed poly(glycerol sebacate) acrylate (PGSA) scaffolds facilitated the formation of 3D tissues and guided the deposition of fibrotic structures. Through the sequential seeding of hepatic stellate cells (HSCs), HepG2 and HSCs, fibrotic septum-like tissues were created on PGSA scaffolds. As albumin secretion is considered a rather important function of the liver and is found only among hepatic cells, the detection of albumin secretion up to 30 days indicates the mimicking of basic liver functions. Moreover, the in vivo fibrotic tissue shows a high similarity to fibrotic septa. Finally, via complete encapsulation of HSCs, a down-regulated albumin secretion profile was observed in the capped model, which is a metabolic indicator that is important for the prognosis for liver cirrhosis. Looking forward, the incorporation of the vasculature will further upgrade the model into a sound tool for liver research and associated treatments.


Asunto(s)
Células Estrelladas Hepáticas , Cirrosis Hepática , Animales , Células Estrelladas Hepáticas/patología , Cirrosis Hepática/tratamiento farmacológico , Fibrosis , Albúminas/metabolismo , Acrilatos , Impresión Tridimensional
9.
J Hematol Oncol ; 15(1): 85, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35794621

RESUMEN

BACKGROUND: Metastasis and chemoresistance are major culprits of cancer mortality, but factors contributing to these processes are incompletely understood. METHODS: Bioinformatics methods were used to identify the relations of Smyca expression to clinicopathological features of human cancers. RNA-sequencing analysis was used to reveal Smyca-regulated transcriptome. RNA pull-down and RNA immunoprecipitation were used to examine the binding of Smyca to Smad3/4 and c-Myc/Max. Chromatin immunoprecipitation and chromatin isolation by RNA purification were used to determine the binding of transcription factors and Smyca to various gene loci, respectively. Real-time RT-PCR and luciferase assay were used to examine gene expression levels and promoter activities, respectively. Xenograft mouse models were performed to evaluate the effects of Smyca on metastasis and chemoresistance. Nanoparticle-assisted gapmer antisense oligonucleotides delivery was used to target Smyca in vivo. RESULTS: We identify lncRNA Smyca for its association with poor prognosis of many cancer types. Smyca potentiates metabolic reprogramming, migration, invasion, cancer stemness, metastasis and chemoresistance. Mechanistically, Smyca enhances TGF-ß/Smad signaling by acting as a scaffold for promoting Smad3/Smad4 association and further serves as a Smad target to amplify/prolong TGF-ß signaling. Additionally, Smyca potentiates c-Myc-mediated transcription by enhancing the recruitment of c-Myc/Max complex to a set of target promoters and c-Myc binding to TRRAP. Through potentiating TGF-ß and c-Myc pathways, Smyca synergizes the Warburg effect elicited by both pathways but evades the anti-proliferative effect of TGF-ß. Targeting Smyca prevents metastasis and overcomes chemoresistance. CONCLUSIONS: This study uncovers a lncRNA that coordinates tumor-relevant pathways to orchestra a pro-tumor program and establishes the clinical values of Smyca in cancer prognosis and therapy.


Asunto(s)
Neoplasias , ARN Largo no Codificante , Animales , Humanos , Ratones , Regiones Promotoras Genéticas , ARN Largo no Codificante/genética , Factor de Crecimiento Transformador beta/metabolismo
10.
J Biomed Sci ; 29(1): 29, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35534851

RESUMEN

BACKGROUND: Castration-resistant prostate cancer (CRPC) with sustained androgen receptor (AR) signaling remains a critical clinical challenge, despite androgen depletion therapy. The Jumonji C-containing histone lysine demethylase family 4 (KDM4) members, KDM4A‒KDM4C, serve as critical coactivators of AR to promote tumor growth in prostate cancer and are candidate therapeutic targets to overcome AR mutations/alterations-mediated resistance in CRPC. METHODS: In this study, using a structure-based approach, we identified a natural product, myricetin, able to block the demethylation of histone 3 lysine 9 trimethylation by KDM4 members and evaluated its effects on CRPC. A structure-based screening was employed to search for a natural product that inhibited KDM4B. Inhibition kinetics of myricetin was determined. The cytotoxic effect of myricetin on various prostate cancer cells was evaluated. The combined effect of myricetin with enzalutamide, a second-generation AR inhibitor toward C4-2B, a CRPC cell line, was assessed. To improve bioavailability, myricetin encapsulated by poly lactic-co-glycolic acid (PLGA), the US food and drug administration (FDA)-approved material as drug carriers, was synthesized and its antitumor activity alone or with enzalutamide was evaluated using in vivo C4-2B xenografts. RESULTS: Myricetin was identified as a potent α-ketoglutarate-type inhibitor that blocks the demethylation activity by KDM4s and significantly reduced the proliferation of both androgen-dependent (LNCaP) and androgen-independent CRPC (CWR22Rv1 and C4-2B). A synergistic cytotoxic effect toward C4-2B was detected for the combination of myricetin and enzalutamide. PLGA-myricetin, enzalutamide, and the combined treatment showed significantly greater antitumor activity than that of the control group in the C4-2B xenograft model. Tumor growth was significantly lower for the combination treatment than for enzalutamide or myricetin treatment alone. CONCLUSIONS: These results suggest that myricetin is a pan-KDM4 inhibitor and exhibited potent cell cytotoxicity toward CRPC cells. Importantly, the combination of PLGA-encapsulated myricetin with enzalutamide is potentially effective for CRPC.


Asunto(s)
Antineoplásicos , Productos Biológicos , Flavonoides , Neoplasias de la Próstata Resistentes a la Castración , Andrógenos/farmacología , Andrógenos/uso terapéutico , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos , Flavonoides/farmacología , Glicolatos , Glicoles/farmacología , Glicoles/uso terapéutico , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/farmacología , Masculino , Nitrilos/farmacología , Nitrilos/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Receptores Androgénicos/uso terapéutico
11.
J Control Release ; 346: 169-179, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35429575

RESUMEN

Fibrosis is an excessive accumulation of the extracellular matrix within solid organs in response to injury and a common pathway that leads functional failure. No clinically approved agent is available to reverse or even prevent this process. Herein, we report a nanotechnology-based approach that utilizes a drug carrier to deliver a therapeutic cargo specifically to fibrotic kidneys, thereby improving the antifibrotic effect of the drug and reducing systemic toxicity. We first adopted in vitro-in vivo combinatorial phage display technology to identify peptide ligands that target myofibroblasts in mouse unilateral ureteral obstruction (UUO)-induced fibrotic kidneys. We then engineered lipid-coated poly(lactic-co-glycolic acid) nanoparticles (NPs) with fibrotic kidney-homing peptides on the surface and sorafenib, a potent antineoplastic multikinase inhibitor, encapsulated in the core. Sorafenib loaded in the myofibroblast-targeted NPs significantly reduced the infiltration of α-smooth muscle actin-expressing myofibroblasts and deposition of collagen I in UUO-treated kidneys and enhanced renal plasma flow measured by Technetium-99m mercaptoacetyltriglycine scintigraphy. This study demonstrates the therapeutic potential of the newly identified peptide fragments as anchors to target myofibroblasts and represents a strategic advance for selective delivery of sorafenib to treat renal fibrosis. SIGNIFICANCE STATEMENT: Renal fibrosis is a pathological feature accounting for the majority of issues in chronic kidney disease (CKD), which may progress to end-stage renal disease (ESRD). This manuscript describes a myofibroblast-targeting drug delivery system modified with phage-displayed fibrotic kidney-homing peptides. By loading the myofibroblast-targeting nanoparticles (NPs) with sorafenib, a multikinase inhibitor, the NPs could suppress collagen synthesis in cultured human myofibroblasts. When given intravenously to mice with UUO-induced renal fibrosis, sorafenib loaded in myofibroblast-targeting NPs significantly ameliorated renal fibrosis. This approach provides an efficient therapeutic option to renal fibrosis. The myofibroblast-targeting peptide ligands and nanoscale drug carriers may be translated into clinical application in the future.


Asunto(s)
Enfermedades Renales , Nanopartículas , Obstrucción Ureteral , Animales , Colágeno , Modelos Animales de Enfermedad , Portadores de Fármacos/uso terapéutico , Fibrosis , Riñón , Enfermedades Renales/patología , Ligandos , Ratones , Ratones Endogámicos C57BL , Miofibroblastos , Sorafenib/uso terapéutico , Obstrucción Ureteral/tratamiento farmacológico , Obstrucción Ureteral/patología
13.
Gut ; 71(9): 1843-1855, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34921062

RESUMEN

OBJECTIVE: Stromal barriers, such as the abundant desmoplastic stroma that is characteristic of pancreatic ductal adenocarcinoma (PDAC), can block the delivery and decrease the tumour-penetrating ability of therapeutics such as tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), which can selectively induce cancer cell apoptosis. This study aimed to develop a TRAIL-based nanotherapy that not only eliminated the extracellular matrix barrier to increase TRAIL delivery into tumours but also blocked antiapoptotic mechanisms to overcome TRAIL resistance in PDAC. DESIGN: Nitric oxide (NO) plays a role in preventing tissue desmoplasia and could thus be delivered to disrupt the stromal barrier and improve TRAIL delivery in PDAC. We applied an in vitro-in vivo combinatorial phage display technique to identify novel peptide ligands to target the desmoplastic stroma in both murine and human orthotopic PDAC. We then constructed a stroma-targeted nanogel modified with phage display-identified tumour stroma-targeting peptides to co-deliver NO and TRAIL to PDAC and examined the anticancer effect in three-dimensional spheroid cultures in vitro and in orthotopic PDAC models in vivo. RESULTS: The delivery of NO to the PDAC tumour stroma resulted in reprogramming of activated pancreatic stellate cells, alleviation of tumour desmoplasia and downregulation of antiapoptotic BCL-2 protein expression, thereby facilitating tumour penetration by TRAIL and substantially enhancing the antitumour efficacy of TRAIL therapy. CONCLUSION: The co-delivery of TRAIL and NO by a stroma-targeted nanogel that remodels the fibrotic tumour microenvironment and suppresses tumour growth has the potential to be translated into a safe and promising treatment for PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Carcinoma Ductal Pancreático/patología , Humanos , Ratones , Nanogeles , Óxido Nítrico , Neoplasias Pancreáticas/patología , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Microambiente Tumoral , Neoplasias Pancreáticas
14.
ACS Appl Mater Interfaces ; 13(41): 48478-48491, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34633791

RESUMEN

Three-dimensional (3D) spheroid culture provides opportunities to model tumor growth closer to its natural context. The collagen network in the extracellular matrix supports autonomic tumor cell proliferation, but its presence and role in tumor spheroids remain unclear. In this research, we developed an in vitro 3D co-culture model in a microwell 3D (µ-well 3D) cell-culture array platform to mimic the tumor microenvironment (TME). The modular setup is used to characterize the paracrine signaling molecules and the role of the intraspheroidal collagen network in cancer drug resistance. The µ-well 3D platform is made up of poly(dimethylsiloxane) that contains 630 round wells for individual spheroid growth. Inside each well, the growth surface measured 500 µm in diameter and was functionalized with the amphiphilic copolymer. HCT-8 colon cancer cells and/or NIH3T3 fibroblasts were seeded in each well and incubated for up to 9 days for TME studies. It was observed that NIH3T3 cells promoted the kinetics of tumor organoid formation. The two types of cells self-organized into core-shell chimeric tumor spheroids (CTSs) with fibroblasts confined to the shell and cancer cells localized to the core. Confocal microscopy analysis indicated that a type-I collagen network developed inside the CTS along with increased TGF-ß1 and α-SMA proteins. The results were correlated with a significantly increased stiffness in 3D co-cultured CTS up to 52 kPa as compared to two-dimensional (2D) co-culture. CTS was more resistant to 5-FU (IC50 = 14.0 ± 3.9 µM) and Regorafenib (IC50 = 49.8 ± 9.9 µM) compared to cells grown under the 2D condition 5-FU (IC50 = 12.2 ± 3.7 µM) and Regorafenib (IC50 = 5.9 ± 1.9 µM). Targeted collagen homeostasis with Sclerotiorin led to damaged collagen structure and disrupted the type-I collagen network within CTS. Such a treatment significantly sensitized collagen-supported CTS to 5-FU (IC50 = 4.4 ± 1.3 µM) and to Regorafenib (IC50 = 0.5 ± 0.2 µM). In summary, the efficient formation of colon cancer CTSs in a µ-well 3D culture platform allows exploration of the desmoplastic TME. The novel role of intratumor collagen quality as a drug sensitization target warrants further investigation.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Esferoides Celulares/metabolismo , Microambiente Tumoral/fisiología , Animales , Benzopiranos/farmacología , Técnicas de Cultivo Tridimensional de Células/métodos , Técnicas de Cocultivo/métodos , Colágeno Tipo I/antagonistas & inhibidores , Colágeno Tipo I/metabolismo , Neoplasias Colorrectales/metabolismo , Fluorouracilo/farmacología , Humanos , Ratones , Células 3T3 NIH , Compuestos de Fenilurea/farmacología , Poloxámero/química , Piridinas/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Microambiente Tumoral/efectos de los fármacos
15.
J Med Chem ; 64(19): 14513-14525, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34558909

RESUMEN

Autophagy is upregulated in response to metabolic stress, a hypoxic tumor microenvironment, and therapeutic stress in various cancers and mediates tumor progression and resistance to cancer therapy. Herein, we identified a cinchona alkaloid derivative containing urea (C1), which exhibited potential cytotoxicity and inhibited autophagy in hepatocellular carcinoma (HCC) cells. We showed that C1 not only induced apoptosis but also blocked autophagy in HCC cells, as indicated by the increased expression of LC3-II and p62, inhibition of autophagosome-lysosome fusion, and suppression of the Akt/mTOR/S6k pathway in the HCC cells. Finally, to improve its solubility and efficacy, we encapsulated C1 into PEGylated lipid-poly(lactic-co-glycolic acid) (PLGA) nanoscale drug carriers. Systemic administration of nanoscale C1 significantly suppressed primary tumor growth and prevented distant metastasis while maintaining a desirable safety profile. Our findings demonstrate that C1 combines autophagy modulation and apoptosis induction in a single molecule, making it a promising therapeutic option for HCC.


Asunto(s)
Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Carcinoma Hepatocelular/patología , Alcaloides de Cinchona/farmacología , Neoplasias Hepáticas/patología , Urea/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Microambiente Tumoral/efectos de los fármacos
16.
JACS Au ; 1(7): 998-1013, 2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34467346

RESUMEN

Nitric oxide (NO), a pro-neurogenic and antineuroinflammatory gasotransmitter, features the potential to develop a translational medicine against neuropathological conditions. Despite the extensive efforts made on the controlled delivery of therapeutic NO, however, an orally active NO prodrug for a treatment of chronic neuropathy was not reported yet. Inspired by the natural dinitrosyl iron unit (DNIU) [Fe(NO)2], in this study, a reversible and dynamic interaction between the biomimetic [(NO)2Fe(µ-SCH2CH2OH)2Fe(NO)2] (DNIC-1) and serum albumin (or gastrointestinal mucin) was explored to discover endogenous proteins as a vehicle for an oral delivery of NO to the brain after an oral administration of DNIC-1. On the basis of the in vitro and in vivo study, a rapid binding of DNIC-1 toward gastrointestinal mucin yielding the mucin-bound dinitrosyl iron complex (DNIC) discovers the mucoadhesive nature of DNIC-1. A reversible interconversion between mucin-bound DNIC and DNIC-1 facilitates the mucus-penetrating migration of DNIC-1 shielded in the gastrointestinal tract of the stomach and small intestine. Moreover, the NO-release reactivity of DNIC-1 induces the transient opening of the cellular tight junction and enhances its paracellular permeability across the intestinal epithelial barrier. During circulation in the bloodstream, a stoichiometric binding of DNIC-1 to the serum albumin, as another endogenous protein vehicle, stabilizes the DNIU [Fe(NO)2] for a subsequent transfer into the brain. With aging mice under a Western diet as a disease model for metabolic syndrome and cognitive impairment, an oral administration of DNIC-1 in a daily manner for 16 weeks activates the hippocampal neurogenesis and ameliorates the impaired cognitive ability. Taken together, these findings disclose the synergy between biomimetic DNIC-1 and endogenous protein vehicles for an oral delivery of therapeutic NO to the brain against chronic neuropathy.

17.
ACS Appl Mater Interfaces ; 13(32): 38090-38104, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34342219

RESUMEN

Much effort has been focused on novel nanomedicine for cancer therapy. However, tumor hypoxia limits the efficacy of various cancer therapeutics. Herein, we constructed a self-sufficient hybrid enzyme-based silk fibroin hydrogel system, consisting of Pt-decorated hollow Ag-Au trimetallic nanocages (HGN@Pt) and glucose oxidase (GOx), to supply O2 continuously and consume glucose concurrently and, thereby, synergistically enhance the anti-cancer efficacy of a combined starvation and photothermal therapy operating in a hypoxic tumor microenvironment. Thanks to the cooperative effects of the active surface atoms (resulting from the island-like features of the Pt coating), the intrinsically hollow structure, and the strain effect induced by the trimetallic composition, HGN@Pt displayed efficient catalase-like activity. The enhancement in the generation of O2 through the decomposition of H2O2 mediated by the as-designed nanozyme was greater than 400% when compared with that of hollow Ag-Pt bimetallic nanospheres or tiny Pt nanoparticles. Moreover, in the presence of HGN@Pt, significant amounts of O2 could be generated within a few minutes, even in an acidic buffer solution (pH 5.8-6.5) containing a low concentration of H2O2 (100-500 µM). Because HGN@Pt exhibited a strong surface plasmon resonance peak in the near-infrared wavelength range, it could be used as a photothermal agent for hyperthermia therapy. Furthermore, GOx was released gradually from the SF hydrogel into the tumor microenvironment to mediate the depletion of glucose, leading to glucose starvation-induced cancer cell death. Finally, the O2 supplied by HGN@Pt overcame the hypoxia of the microenvironment and, thereby, promoted the starvation therapeutic effect of the GOx-mediated glucose consumption. Meanwhile, the GOx-produced H2O2 from the oxidation of glucose could be used to regenerate O2 and, thereby, construct a complementary circulatory system. Accordingly, this study presents a self-sufficient hybrid enzyme-based system that synergistically alleviates tumor hypoxia and induces an anti-cancer effect when combined with irradiation of light from a near-infrared laser.


Asunto(s)
Nanopartículas/uso terapéutico , Neoplasias/terapia , Terapia Fototérmica/métodos , Hipoxia Tumoral/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Femenino , Ratones , Ratones Endogámicos BALB C
18.
Genome Biol ; 22(1): 111, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33863366

RESUMEN

BACKGROUND: Oncopanel genomic testing, which identifies important somatic variants, is increasingly common in medical practice and especially in clinical trials. Currently, there is a paucity of reliable genomic reference samples having a suitably large number of pre-identified variants for properly assessing oncopanel assay analytical quality and performance. The FDA-led Sequencing and Quality Control Phase 2 (SEQC2) consortium analyze ten diverse cancer cell lines individually and their pool, termed Sample A, to develop a reference sample with suitably large numbers of coding positions with known (variant) positives and negatives for properly evaluating oncopanel analytical performance. RESULTS: In reference Sample A, we identify more than 40,000 variants down to 1% allele frequency with more than 25,000 variants having less than 20% allele frequency with 1653 variants in COSMIC-related genes. This is 5-100× more than existing commercially available samples. We also identify an unprecedented number of negative positions in coding regions, allowing statistical rigor in assessing limit-of-detection, sensitivity, and precision. Over 300 loci are randomly selected and independently verified via droplet digital PCR with 100% concordance. Agilent normal reference Sample B can be admixed with Sample A to create new samples with a similar number of known variants at much lower allele frequency than what exists in Sample A natively, including known variants having allele frequency of 0.02%, a range suitable for assessing liquid biopsy panels. CONCLUSION: These new reference samples and their admixtures provide superior capability for performing oncopanel quality control, analytical accuracy, and validation for small to large oncopanels and liquid biopsy assays.


Asunto(s)
Alelos , Biomarcadores de Tumor , Frecuencia de los Genes , Pruebas Genéticas/métodos , Variación Genética , Genómica/métodos , Neoplasias/genética , Línea Celular Tumoral , Variaciones en el Número de Copia de ADN , Heterogeneidad Genética , Pruebas Genéticas/normas , Genómica/normas , Humanos , Neoplasias/diagnóstico , Flujo de Trabajo
19.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33753481

RESUMEN

The CXC chemokine receptor type 4 (CXCR4) receptor and its ligand, CXCL12, are overexpressed in various cancers and mediate tumor progression and hypoxia-mediated resistance to cancer therapy. While CXCR4 antagonists have potential anticancer effects when combined with conventional anticancer drugs, their poor potency against CXCL12/CXCR4 downstream signaling pathways and systemic toxicity had precluded clinical application. Herein, BPRCX807, known as a safe, selective, and potent CXCR4 antagonist, has been designed and experimentally realized. In in vitro and in vivo hepatocellular carcinoma mouse models it can significantly suppress primary tumor growth, prevent distant metastasis/cell migration, reduce angiogenesis, and normalize the immunosuppressive tumor microenvironment by reducing tumor-associated macrophages (TAMs) infiltration, reprogramming TAMs toward an immunostimulatory phenotype and promoting cytotoxic T cell infiltration into tumor. Although BPRCX807 treatment alone prolongs overall survival as effectively as both marketed sorafenib and anti-PD-1, it could synergize with either of them in combination therapy to further extend life expectancy and suppress distant metastasis more significantly.


Asunto(s)
Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Receptores CXCR4/antagonistas & inhibidores , Animales , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Dietilnitrosamina/administración & dosificación , Dietilnitrosamina/toxicidad , Sinergismo Farmacológico , Humanos , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas Experimentales/inducido químicamente , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Neoplasias Hepáticas Experimentales/inmunología , Neoplasias Hepáticas Experimentales/patología , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Ratones , Simulación del Acoplamiento Molecular , Ratas , Receptores CXCR4/metabolismo , Transducción de Señal/efectos de los fármacos , Sorafenib/farmacología , Sorafenib/uso terapéutico , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Citotóxicos/inmunología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Chest ; 160(1): 199-208, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33549601

RESUMEN

BACKGROUND: Lymphangioleiomyomatosis (LAM) is a rare lung disease found primarily in women of childbearing age, characterized by the formation of air-filled cysts, which may be associated with reductions in lung function. An experimental, regional ultra-high resolution CT scan identified an additional volume of cysts relative to standard chest CT imaging, which consisted primarily of ultra-small cysts. RESEARCH QUESTION: What is the impact of these ultra-small cysts on the pulmonary function of patients with LAM? STUDY DESIGN AND METHODS: A group of 103 patients with LAM received pulmonary function tests and a CT examination in the same visit. Cyst score, the percentage lung volume occupied by cysts, was measured by using commercial software approved by the US Food and Drug Administration. The association between cyst scores and pulmonary function tests of diffusing capacity of the lungs for carbon monoxide (Dlco) (% predicted), FEV1 (% predicted), and FEV1/FVC (% predicted) was assessed with statistical analysis adjusted for demographic variables. The distributions of average cyst size and ultra-small cyst fraction among the patients were evaluated. RESULTS: The additional cyst volume identified by the experimental, higher resolution scan consisted of cysts of 2.2 ± 0.8 mm diameter on average and are thus labeled the "ultra-small cyst fraction." It accounted for 27.9 ± 19.0% of the total cyst volume among the patients. The resulting adjusted, whole-lung cyst scores better explained the variance of Dlco (P < .001 adjusted for multiple comparisons) but not FEV1 and FEV1/FVC (P = 1.00). The ultra-small cyst fraction contributed to the reduction in Dlco (P < .001) but not to FEV1 and FEV1/FVC (P = .760 and .575, respectively). The ultra-small cyst fraction and average cyst size were correlated with cyst burden, FEV1, and FEV1/FVC but less with Dlco. INTERPRETATION: The ultra-small cysts primarily contributed to the reduction in Dlco, with minimal effects on FEV1 and FEV1/FVC. Patients with lower cyst burden and better FEV1 and FEV1/FVC tended to have smaller average cyst size and higher ultra-small cyst fraction. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov; No.: NCT00001465; URL: www.clinicaltrials.gov.


Asunto(s)
Obstrucción de las Vías Aéreas/etiología , Órganos Artificiales , Neoplasias Pulmonares/complicaciones , Linfangioleiomiomatosis/complicaciones , Impresión Tridimensional , Tomografía Computarizada por Rayos X/métodos , Trabajo Respiratorio/fisiología , Obstrucción de las Vías Aéreas/fisiopatología , Quistes/fisiopatología , Difusión , Humanos , Pulmón , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/fisiopatología , Linfangioleiomiomatosis/diagnóstico , Linfangioleiomiomatosis/fisiopatología , Pruebas de Función Respiratoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA