Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Cardiovasc Imaging ; 40(3): 655-664, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38363435

RESUMEN

In patients with repaired tetralogy of Fallot (rTOF), the regurgitant fraction (RF) in left pulmonary artery (LPA) and right pulmonary artery (RPA) is usually unequal. The morphometrics may play a crucial role in this RF discrepancy. Cardiovascular MR of 79 rTOF patients and 20 healthy controls were retrospectively enrolled. Forty-four from the 79 patients were matched in age, sex and body surface area to the 20 controls and were investigated for: (1) phase-contrast flow of main pulmonary artery (MPA), LPA, and RPA; (2) vascular angles: the angles between the thoracic anterior-posterior line (TAPL) with MPA (θM-AP), MPA with RPA (θM-R), and MPA with LPA (θM-L); (3) cardiac angle, the angle between TAPL and the interventricular septum; (4) area ratio of bilateral lung and hemithorax regions. Compared with the 20 controls, the 44 rTOF patients exhibited wider θM-AP, sharper θM-L angle, and a smaller θM-L/θM-R ratio. In the 79 rTOF patients, LPA showed lower forward, backward, and net flow, and greater RF as compared with RPA. Multivariate analysis showed that the RF of LPA was negatively associated with the θM-L/θM-R ratio and the age at surgery (R2 = 0.255). Conversely, the RF of RPA was negatively associated with the left lung/left hemithorax area ratio and cross-sectional area (CSA) of LPA, and positively associated with CSA of RPA and MPA (R2 = 0.366). In rTOF patients, the RF of LPA is more severe than that of RPA, which may be related to the vascular morphometrics. Different morphometric parameters are independently associated with the RF of LPA or RPA, which may offer potential insights for surgical strategies.


Asunto(s)
Insuficiencia de la Válvula Pulmonar , Tetralogía de Fallot , Tabique Interventricular , Humanos , Arteria Pulmonar/diagnóstico por imagen , Arteria Pulmonar/cirugía , Tetralogía de Fallot/diagnóstico por imagen , Tetralogía de Fallot/cirugía , Estudios Retrospectivos , Insuficiencia de la Válvula Pulmonar/diagnóstico por imagen , Insuficiencia de la Válvula Pulmonar/etiología , Insuficiencia de la Válvula Pulmonar/cirugía , Valor Predictivo de las Pruebas
2.
Brain Commun ; 6(1): fcad349, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38162905

RESUMEN

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy, caused by cysteine-altering variants in NOTCH3, is the most prevalent inherited cerebral small vessel disease. Impaired cerebral interstitial fluid dynamics has been proposed as one of the potential culprits of neurodegeneration and may play a critical role in the initiation and progression of cerebral small vessel disease. In the present study, we aimed to explore the cerebral interstitial fluid dynamics in patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy and to evaluate its association with clinical features, imaging biomarkers and disease severity of cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy. Eighty-one participants carrying a cysteine-altering variant in NOTCH3, including 44 symptomatic cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy patients and 37 preclinical carriers, and 21 age- and sex-matched healthy control individuals were recruited. All participants underwent brain MRI studies and neuropsychological evaluations. Cerebral interstitial fluid dynamics was investigated by using the non-invasive diffusion tensor image analysis along the perivascular space method. We found that cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy patients exhibited significantly lower values of diffusion tensor image analysis along the perivascular space index comparing to preclinical carriers and healthy controls. For the 81 subjects carrying NOTCH3 variants, older age and presence of hypertension were independently associated with decreased diffusion tensor image analysis along the perivascular space index. The degree of cerebral interstitial fluid dynamics was strongly related to the severity of cerebral small vessel disease imaging markers, with a positive correlation between diffusion tensor image analysis along the perivascular space index and brain parenchymal fraction and negative correlations between diffusion tensor image analysis along the perivascular space index and total volume of white matter hyperintensity, peak width of skeletonized mean diffusivity, lacune numbers and cerebral microbleed counts. In addition, diffusion tensor image analysis along the perivascular space index was a significant risk factor associated with the development of clinical symptoms of stroke or cognitive dysfunction in individuals carrying NOTCH3 variants. In cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy patients, diffusion tensor image analysis along the perivascular space index was significantly associated with Mini-Mental State Examination scores. Mediation analysis showed that compromised cerebral interstitial fluid dynamics was not only directly associated with cognitive dysfunction but also had an indirect effect on cognition by influencing brain atrophy, white matter disruption, lacunar lesions and cerebral microbleeds. In conclusion, cerebral interstitial fluid dynamics is impaired in cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy and its disruption may play an important role in the pathogenesis of cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy. Diffusion tensor image analysis along the perivascular space index may serve as a biomarker of disease severity for cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA