Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38968327

RESUMEN

OBJECTIVE: To evaluate the effect of volumetric analysis on the diagnosis and management of indeterminate solid pulmonary nodules in routine clinical practice. METHODS: This was a retrospective study with 107 computed tomography (CT) cases of solid pulmonary nodules (range, 6-15 mm), 57 pathology-proven malignancies (lung cancer, n = 34; metastasis, n = 23), and 50 benign nodules. Nodules were evaluated on a total of 309 CT scans (average number of CTs/nodule, 2.9 [range, 2-7]). CT scans were from multiple institutions with variable technique. Nine radiologists (attendings, n = 3; fellows, n = 3; residents, n = 3) were asked their level of suspicion for malignancy (low/moderate or high) and management recommendation (no follow-up, CT follow-up, or care escalation) for baseline and follow-up studies first without and then with volumetric analysis data. Effect of volumetry on diagnosis and management was assessed by generalized linear and logistic regression models. RESULTS: Volumetric analysis improved sensitivity (P = 0.009) and allowed earlier recognition (P < 0.05) of malignant nodules. Attending radiologists showed higher sensitivity in recognition of malignant nodules (P = 0.03) and recommendation of care escalation (P < 0.001) compared with trainees. Volumetric analysis altered management of high suspicion nodules only in the fellow group (P = 0.008). κ Statistics for suspicion for malignancy and recommended management were fair to substantial (0.38-0.66) and fair to moderate (0.33-0.50). Volumetric analysis improved interobserver variability for identification of nodule malignancy from 0.52 to 0.66 (P = 0.004) only on the second follow-up study. CONCLUSIONS: Volumetric analysis of indeterminate solid pulmonary nodules in routine clinical practice can result in improved sensitivity and earlier identification of malignant nodules. The effect of volumetric analysis on management recommendations is variable and influenced by reader experience.

2.
J Virol ; 89(2): 1267-77, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25392219

RESUMEN

UNLABELLED: To better characterize the assembly of the HIV-1 core, we have used electron cryotomography (ECT) to image infected cells and the viral particles cryopreserved next to them. We observed progressive stages of virus assembly and egress, including flower-like flat Gag lattice assemblies, hemispherical budding profiles, and virus buds linked to the plasma membrane via a thin membrane neck. The population of budded viral particles contains immature, maturation-intermediate, and mature core morphologies. Structural characteristics of the maturation intermediates suggest that the core assembly pathway involves the formation of a CA sheet that associates with the condensed ribonucleoprotein (RNP) complex. Our analysis also reveals a correlation between RNP localization within the viral particle and the formation of conical cores, suggesting that the RNP helps drive conical core assembly. Our findings support an assembly pathway for the HIV-1 core that begins with a small CA sheet that associates with the RNP to form the core base, followed by polymerization of the CA sheet along one side of the conical core toward the tip, and then closure around the body of the cone. IMPORTANCE: During HIV-1 assembly and release, the Gag polyprotein is organized into a signature hexagonal lattice, termed the immature lattice. To become infectious, the newly budded virus must disassemble the immature lattice by proteolyzing Gag and then reassemble the key proteolytic product, the structural protein p24 (CA), into a distinct, mature hexagonal lattice during a process termed maturation. The mature HIV-1 virus contains a conical capsid that encloses the condensed viral genome at its wide base. Mutations or small molecules that interfere with viral maturation also disrupt viral infectivity. Little is known about the assembly pathway that results in the conical core and genome encapsidation. Here, we have used electron cryotomography to structurally characterize HIV-1 particles that are actively maturing. Based on the morphologies of core assembly intermediates, we propose that CA forms a sheet-like structure that associates with the condensed viral genome to produce the mature infectious conical core.


Asunto(s)
Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , VIH-1/fisiología , VIH-1/ultraestructura , Ensamble de Virus , Membrana Celular/virología , Células Cultivadas , Células Endoteliales/virología , Humanos , Virión/ultraestructura , Liberación del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA