Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 154: 27-32, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28285035

RESUMEN

Aflatoxin B1 (AFB1) is a carcinogenic substance produced by fungi of genus Aspergillus, especially Aspergillus flavus. Few nanograms of AFB1 that permeated through the skin is sufficient to cause liver cancer and stunted growth. In this study, a rapid aptamer-based assay for AFB1 was developed using the fluorescence quenching property of graphene oxide (GO) and a fluorescein amidite (FAM)-modified aptamer specific to AFB1. The aptamer, modified with the fluorescence dye FAM on its 5'-end, was used as a probe. Once bound by AFB1, a conformational change of the aptamer was caused that led to its interaction with the well-known fluorescence quencher GO, resulting in a decrease of the fluorescence intensity of the system. In the absence of AFB1, the fluorescence intensity remained unchanged. The aptamer-based AFB1 assay process was conducted through 3 steps within 40min. The aptamer was incubated with AFB1 before the addition of GO. The amount of AFB1 present was measured by the change in fluorescence intensity. The detection system was evaluated with standard solutions of AFB1 of various concentrations. The results showed that the fluorescence intensity decreased linearly as the concentration of AFB1 gradually increased. Although the assay was specific to AFB1, there was slight interference by other types of aflatoxin. When the assay was applied to a real sample, the limit of detection was 4.5 ppb, which was within the wide detection range of up to 300ppb with good linearity. Thus, this biosensor is considered to be competitive with the conventional detection methods in the field owing to its wide detection range and assay rapidity.


Asunto(s)
Aflatoxina B1/análisis , Aptámeros de Nucleótidos , Técnicas Biosensibles/métodos , Fluorescencia , Colorantes Fluorescentes , Contaminación de Alimentos/análisis , Grafito , Humanos , Límite de Detección , Oryza/química , Técnica SELEX de Producción de Aptámeros , Semillas/química
2.
Oncotarget ; 7(30): 47576-47585, 2016 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-27374093

RESUMEN

Recently a mouse skin carcinogenesis study reported that a ß-blocker carvedilol displayed antitumor-properties via antihyperplastic effects. However, the antihyperplastic mechanism is unclear as the ß-blocker is characterized with multiple pleiotropic effects including stimulation of endothelial NO release and verapamil-like calcium channel blocking activity. To investigate the nature and the origin of the antihyperplastic effects, we tested topical pretreatment with pindolol, heptaminol, ATRA or verapamil against Balb/c mouse ear skin hyperplasia that was induced by TPA. We found that pindolol, heptaminol or ATRA, but not verapamil, inhibited the TPA-induced immunoinflammatory skin changes in an NO-dependent manner, which included epidermal hyperplasia, skin edema and fibrosis. Furthermore, we also observed NO-dependent alleviation of the TPA-induced NK cell depletion in the ear tissues by heptaminol pretreatment. Together our results suggest that stimulation of NO generation from constitutive synthases may be primarily responsible for the reported antihyperplastic and NK cell-preserving effects of the ß-blockers, and that similar effects may be observed in other immunity normalizing compounds that also promote endothelial NO synthesis.


Asunto(s)
Heptaminol/farmacología , Óxido Nítrico/fisiología , Pindolol/farmacología , Piel/efectos de los fármacos , Acetato de Tetradecanoilforbol/farmacología , Tretinoina/farmacología , Verapamilo/farmacología , Animales , Femenino , Fibrosis , Hiperplasia , Células Asesinas Naturales/inmunología , Ratones , Ratones Endogámicos BALB C , NG-Nitroarginina Metil Éster/farmacología , Piel/patología
3.
Colloids Surf B Biointerfaces ; 135: 309-315, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26263218

RESUMEN

Gold-coated graphene oxide hybrid material (GO/AuNPs) has exceptional physical and chemical properties like π-π stacking interaction and plays a role in quencher of fluorescence dye. Therefore, GO/AuNPs could enhance the signal-to-background ratio with fluorescence dye that was the point in this fluorescent biosensor. In this study, tetramethyl-6-carboxy-rhodamine (TAMRA)-labeled aptamers that specifically interact with the hyaluronic acid binding domain of CD44 were used as targets to investigate the applicability of the method. GO/AuNPs-TAMRA-aptamer complexes could detect CD44 target cancer cells within a concentration range of 1 × 10(1) to 1 × 10(7) CFU/mL. A linear relationship was observed between target cell concentration and relative fluorescence intensity. The more mounted up CD44 target cell concentrations, relative fluorescence intensity of GO/AuNPs-TAMRA-aptamer complexes was increased even more, which was superior to that of GO alone. Sensitivity of the detection system displayed a low detection limit of 1 × 10(1) CFU/mL. Additionally, this method is specific in that fluorescence is not much enhanced in CD44 negative cancer cell line. Thus, the fluorescence sensing based on GO/AuNPs could be developed to receptive and robust detection tool for various target molecules.


Asunto(s)
Colorantes Fluorescentes/química , Oro/química , Grafito/química , Receptores de Hialuranos/metabolismo , Nanopartículas del Metal/química , Aptámeros de Nucleótidos/química , Técnicas Biosensibles , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Colorantes Fluorescentes/administración & dosificación , Humanos , Ácido Hialurónico/química , Ensayo de Tumor de Célula Madre/métodos
4.
Biotechnol Lett ; 37(11): 2237-45, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26169200

RESUMEN

OBJECTIVES: The promoter of HpMET3, encoding an ATP sulfurylase, was evaluated for its potential as a repressible promoter to downregulate the expression of target genes in the thermotolerant, methylotrophic yeast Hansenula polymorpha. RESULTS: The expression of lacZ under the control of the 0.6 kb HpMET3 promoter was efficiently downregulated by cysteine, but not by methionine or sulfate. The HpMET3 promoter was used to generate a conditional mutant of the HpPMT2 gene encoding an O-mannosyltransferase, which is involved in post-translational protein modification. The addition of 0.5 mM cysteine adversely affected the growth of the conditional HpMET3(p)-Hppmt2 mutant strain by downregulating transcription of HpPMT2 to approx. 40 % of the normal levels, indicating that the HpPMT2 gene is essential for cell viability. However, the HpMET3 promoter was neither induced nor repressed in the heterologous host Saccharomyces cerevisiae. CONCLUSION: Our results reveal that the cysteine-repressible HpMET3 promoter is a useful tool that downregulates the expression of various genes in H. polymorpha.


Asunto(s)
Cisteína/genética , Regulación Fúngica de la Expresión Génica/genética , Ingeniería Genética/métodos , Pichia/genética , Regiones Promotoras Genéticas/genética , Cisteína/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Manosiltransferasas/genética , Mutación/genética , Pichia/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sulfato Adenililtransferasa/genética
5.
Yeast ; 29(1): 1-16, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22162039

RESUMEN

In the present study, we functionally analysed two yapsin genes of the thermotolerant methylotrophic yeast Hansenula polymorpha, HpYPS1 and HpYPS7, for their roles in maintaining cell wall integrity and proteolytic processing. Both HpYPS1 and HpYPS7 proteins were shown to largely localize on the cell wall via glycosylphosphatidylinositol anchor. Heterologous expression of HpYPS1 completely restored all of the growth defects of the Saccharomyces cerevisiae yps1-deletion strains, while HpYPS7 expression exhibited a limited complementation effect on the S. cerevisiae yps7-deletion strain. However, different from S. cerevisiae, deletion of the HpYPS genes generated only minor influence on the sensitivity to cell wall stress. Likewise, HpYPS1 expression was significantly induced only by a subset of stressor agents, such as sodium dodecyl sulphate and tunicamycin. HpYps1p was shown to consist of two subunits, whereas HpYps7p comprises a single long polypeptide chain. Biochemical analysis revealed that HpYps1p has much stronger proteolytic cleavage activity at basic amino acids, compared to HpYps7p. Consistent with the much higher proteolytic activity and expression level of HpYps1p compared to HpYps7p, the sole disruption of HpYPS1 was sufficient in eliminating the aberrant proteolytic cleavage of recombinant proteins secreted by H. polymorpha. The results indicate that, although their roles in the maintenance of cell wall integrity are not critical, HpYps1p and HpYps7p are functional aspartic proteases at the cell surface of H. polymorpha. Furthermore, our data present the high biotechnological potential of H. polymorpha yps1-mutant strains as hosts useful for the production of secretory recombinant proteins.


Asunto(s)
Proteasas de Ácido Aspártico/metabolismo , Pared Celular/enzimología , Proteínas Fúngicas/metabolismo , Pichia/enzimología , Proteasas de Ácido Aspártico/química , Proteasas de Ácido Aspártico/genética , Pared Celular/química , Pared Celular/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulación Enzimológica de la Expresión Génica , Pichia/química , Pichia/genética , Estructura Terciaria de Proteína , Transporte de Proteínas
6.
Biotechnol J ; 3(5): 659-68, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18320567

RESUMEN

The initial lipid-linked oligosaccharide Glc(3)Man(9)GlcNAc(2)-dolichyl pyrophosphate (Dol-PP) for N-glycan is synthesized and assembled at the membrane of the endoplasmic reticulum (ER) and subsequently transferred to a nascent polypeptide by the oligosaccharide transferase complex. We have identified an ALG3 homolog (HpALG3) coding for a dolichyl-phosphate-mannose dependent alpha-1,3-mannosyltransferase in the methylotrophic yeast Hansenula polymorpha. The detailed analysis of glycan structure by linkage-specific mannosidase digestion showed that HpALG3 is responsible for the conversion of Man5GlcNAc(2)-Dol-PP to Man(6)GlcNAc(2)-Dol-PP, the first step to attach a mannose to the lipid-linked oligosaccharide in the ER. The N-glycosylation pathway of H. polymorpha has been remodeled by deleting the HpALG3 gene in the Hpoch1 null mutant strain blocked in the yeast-specific outer mannose chain synthesis and by introducing an ER-targeted Aspergillus saitoi alpha-1,2-mannosidase gene. This glycoengineered H. polymorpha strain produced glycoproteins mainly containing trimannosyl core N-glycan (Man(3)GlcNAc(2)), which is the common core backbone of various human-type N-glycans. The results demonstrate the high potential of H. polymorpha to be developed as an efficient expression system for the production of glycoproteins with humanized glycans.


Asunto(s)
Mejoramiento Genético/métodos , Glicoproteínas/metabolismo , Manosiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Oligosacáridos/metabolismo , Pichia/fisiología , Polisacáridos/metabolismo , Ingeniería de Proteínas/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Glicoproteínas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA