Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Intervalo de año de publicación
1.
Transpl Int ; 37: 11900, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38304198

RESUMEN

The generation of insulin-producing cells from human-induced pluripotent stem cells holds great potential for diabetes modeling and treatment. However, existing protocols typically involve incubating cells with un-physiologically high concentrations of glucose, which often fail to generate fully functional IPCs. Here, we investigated the influence of high (20 mM) versus low (5.5 mM) glucose concentrations on IPCs differentiation in three hiPSC lines. In two hiPSC lines that were unable to differentiate to IPCs sufficiently, we found that high glucose during differentiation leads to a shortage of NKX6.1+ cells that have co-expression with PDX1 due to insufficient NKX6.1 gene activation, thus further reducing differentiation efficiency. Furthermore, high glucose during differentiation weakened mitochondrial respiration ability. In the third iPSC line, which is IPC differentiation amenable, glucose concentrations did not affect the PDX1/NKX6.1 expression and differentiation efficiency. In addition, glucose-stimulated insulin secretion was only seen in the differentiation under a high glucose condition. These IPCs have higher KATP channel activity and were linked to sufficient ABCC8 gene expression under a high glucose condition. These data suggest high glucose concentration during IPC differentiation is necessary to generate functional IPCs. However, in cell lines that were IPC differentiation unamenable, high glucose could worsen the situation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Secretoras de Insulina , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Insulina/metabolismo , Diferenciación Celular , Glucosa/farmacología , Glucosa/metabolismo
2.
Sci Rep ; 12(1): 9033, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35641781

RESUMEN

Improved models of experimental diabetes are needed to develop cell therapies for diabetes. Here, we introduce the B6 RIP-DTR mouse, a model of experimental diabetes in fully immunocompetent animals. These inbred mice harbor the H2b major histocompatibility complex (MHC), selectively express high affinity human diphtheria toxin receptor (DTR) in islet ß-cells, and are homozygous for the Ptprca (CD45.1) allele rather than wild-type Ptprcb (CD45.2). 100% of B6 RIP-DTR mice rapidly became diabetic after a single dose of diphtheria toxin, and this was reversed indefinitely after transplantation with islets from congenic C57BL/6 mice. By contrast, MHC-mismatched islets were rapidly rejected, and this allotransplant response was readily monitored via blood glucose and graft histology. In peripheral blood of B6 RIP-DTR with mixed hematopoietic chimerism, CD45.2 BALB/c donor blood immune cells were readily distinguished from host CD45.1 cells by flow cytometry. Reliable diabetes induction and other properties in B6 RIP-DTR mice provide an important new tool to advance transplant-based studies of islet replacement and immunomodulation to treat diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Animales , Diabetes Mellitus Experimental/terapia , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Inmunología del Trasplante
3.
Cancer Genomics Proteomics ; 19(2): 130-144, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35181583

RESUMEN

BACKGROUND/AIM: Better stratification of the risk of relapse will help select the right patients for adjuvant treatment and improve targeted therapies for patients with colon cancer. MATERIALS AND METHODS: To understand why a subset of tumors relapse, we compared the proteome of two groups of patients with colon cancer with similar stage, stratified based on the presence or absence of recurrence. RESULTS: Using tumor biopsies from the primary operation, we identified dissimilarity between recurrent and nonrecurrent mismatch satellite stable colon cancer and found that signaling related to immune activation and inflammation was associated with relapse. CONCLUSION: Immune modulation may have an effect on mismatch satellite stable colon cancer. At present, immune therapy is offered primarily to microsatellite instable colon cancer. Hopefully, immune therapy in mismatch satellite stable colon cancer beyond PD-1 and PD-L1 inhibitors can be implemented.


Asunto(s)
Neoplasias del Colon , Sistema Inmunológico , Proteoma , Neoplasias del Colon/genética , Neoplasias del Colon/inmunología , Neoplasias del Colon/patología , Humanos , Repeticiones de Microsatélite , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/inmunología , Pronóstico
4.
Methods Mol Biol ; 2454: 327-349, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33786775

RESUMEN

Pancreatic islet endocrine cells generated from patient-derived induced pluripotent stem cells represent a great strategy for both disease modeling and regenerative medicine. Nevertheless, these cells inherently miss the effects of the intricate network of systemic signals characterizing the living organisms. Xenotransplantation of in vitro differentiating cells into murine hosts substantially compensates for this drawback.Here we describe our transplantation strategy of encapsulated differentiating pancreatic progenitors into diabetic immunosuppressed (NSG) overtly diabetic mice generated by the total ablation of insulin-producing cells following diphtheria toxin administration. We will detail the differentiation protocol employed, the alginate encapsulation procedure, and the xenotransplantation steps required for a successful and reproducible experiment.


Asunto(s)
Diabetes Mellitus Experimental , Células Madre Pluripotentes Inducidas , Células Secretoras de Insulina , Animales , Diferenciación Celular , Diabetes Mellitus Experimental/terapia , Humanos , Insulina , Ratones , Páncreas
5.
Front Cell Dev Biol ; 8: 109, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32161757

RESUMEN

Generating insulin-producing ß-cells from human induced pluripotent stem cells is a promising cell replacement therapy for improving or curing insulin-dependent diabetes. The transplantation of end-stages differentiating cells into living hosts was demonstrated to improve ß-cell maturation. Nevertheless, the cellular and molecular mechanisms outlining the transplanted cells' response to the in vivo environment are still to be properly characterized. Here we use global proteomics and large-scale imaging techniques to demultiplex and filter the cellular processes and molecular signatures modulated by the immediate in vivo effect. We show that in vivo exposure swiftly confines in vitro generated human pancreatic progenitors to single hormone expression. The global proteome landscape of the transplanted cells was closer to native human islets, especially in regard to energy metabolism and redox balance. Moreover, our study indicates a possible link between these processes and certain epigenetic regulators involved in cell identity. Pathway analysis predicted HNF1A and HNF4A as key regulators controlling the in vivo islet-promoting response, with experimental evidence suggesting their involvement in confining islet cell fate following xeno-transplantation.

6.
Sci Rep ; 10(1): 414, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31942009

RESUMEN

Cell replacement therapies hold great therapeutic potential. Nevertheless, our knowledge of the mechanisms governing the developmental processes is limited, impeding the quality of differentiation protocols. Generating insulin-expressing cells in vitro is no exception, with the guided series of differentiation events producing heterogeneous cell populations that display mixed pancreatic islet phenotypes and immaturity. The achievement of terminal differentiation ultimately requires the in vivo transplantation of, usually, encapsulated cells. Here we show the impact of cell confinement on the pancreatic islet signature during the guided differentiation of alginate encapsulated human induced pluripotent stem cells (hiPSCs). Our results show that encapsulation improves differentiation by significantly reshaping the proteome landscape of the cells towards an islet-like signature. Pathway analysis is suggestive of integrins transducing the encapsulation effect into intracellular signalling cascades promoting differentiation. These analyses provide a molecular framework for understanding the confinement effects on hiPSCs differentiation while confirming its importance for this process.


Asunto(s)
Alginatos/farmacología , Biomarcadores/metabolismo , Diferenciación Celular , Células Madre Pluripotentes Inducidas/metabolismo , Integrinas/metabolismo , Islotes Pancreáticos/metabolismo , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Perfilación de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Insulina/metabolismo , Islotes Pancreáticos/citología , Islotes Pancreáticos/efectos de los fármacos , Fenotipo , Transducción de Señal
7.
Acta Physiol (Oxf) ; 228(4): e13433, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31872528

RESUMEN

AIM: The loss of insulin-secreting ß-cells, ultimately characterizing most diabetes forms, demands the development of cell replacement therapies. The common endpoint for all ex vivo strategies is transplantation into diabetic patients. However, the effects of hyperglycaemia environment on the transplanted cells were not yet properly assessed. Thus, the main goal of this study was to characterize global effect of brief and prolonged in vivo hyperglycaemia exposure on the cell fate acquisition and maintenance of transplanted human pancreatic progenitors. METHODS: To rigorously study the effect of hyperglycaemia, in vitro differentiated human-induced pluripotent stem cells (hiPSC)-derived pancreatic progenitors were xenotransplanted in normoglycaemic and diabetic NSG rat insulin promoter (RIP)-diphtheria toxin receptor (DTR) mice. The transplants were retrieved after 1-week or 1-month exposure to overt hyperglycaemia and analysed by large-scale microscopy or global proteomics. For this study we pioneer the use of the NSG RIP-DTR system in the transplantation of hiPSC, making use of its highly reproducible specific and absolute ß-cell ablation property in the absence of inflammation or other organ toxicity. RESULTS: Here we show for the first time that besides the presence of an induced oxidative stress signature, the cell fate and proteome landscape response to hyperglycaemia was different, involving largely different mechanisms, according to the period spent in the hyperglycaemic environment. Surprisingly, brief hyperglycaemia exposure increased the bihormonal cell number by impeding the activity of specific islet lineage determinants. Moreover, it activated antioxidant and inflammation protection mechanisms signatures in the transplanted cells. In contrast, the prolonged exposure was characterized by decreased numbers of hormone + cells, low/absent detoxification signature, augmented production of oxygen reactive species and increased apoptosis. CONCLUSION: Hyperglycaemia exposure induced distinct, period-dependent, negative effects on xenotransplanted human pancreatic progenitor, affecting their energy homeostasis, cell fate acquisition and survival.


Asunto(s)
Diferenciación Celular/fisiología , Hiperglucemia/fisiopatología , Células Madre Pluripotentes Inducidas/fisiología , Células Secretoras de Insulina/fisiología , Estrés Oxidativo/fisiología , Adulto , Animales , Glucemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Factor de Crecimiento Similar a EGF de Unión a Heparina/genética , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/trasplante , Islotes Pancreáticos/metabolismo , Trasplante de Islotes Pancreáticos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Regiones Promotoras Genéticas , Ratas , Trasplante Heterólogo
8.
Nature ; 567(7746): 43-48, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30760930

RESUMEN

Cell-identity switches, in which terminally differentiated cells are converted into different cell types when stressed, represent a widespread regenerative strategy in animals, yet they are poorly documented in mammals. In mice, some glucagon-producing pancreatic α-cells and somatostatin-producing δ-cells become insulin-expressing cells after the ablation of insulin-secreting ß-cells, thus promoting diabetes recovery. Whether human islets also display this plasticity, especially in diabetic conditions, remains unknown. Here we show that islet non-ß-cells, namely α-cells and pancreatic polypeptide (PPY)-producing γ-cells, obtained from deceased non-diabetic or diabetic human donors, can be lineage-traced and reprogrammed by the transcription factors PDX1 and MAFA to produce and secrete insulin in response to glucose. When transplanted into diabetic mice, converted human α-cells reverse diabetes and continue to produce insulin even after six months. Notably, insulin-producing α-cells maintain expression of α-cell markers, as seen by deep transcriptomic and proteomic characterization. These observations provide conceptual evidence and a molecular framework for a mechanistic understanding of in situ cell plasticity as a treatment for diabetes and other degenerative diseases.


Asunto(s)
Diabetes Mellitus/patología , Diabetes Mellitus/terapia , Células Secretoras de Glucagón/citología , Células Secretoras de Glucagón/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/patología , Animales , Biomarcadores/análisis , Linaje de la Célula/efectos de los fármacos , Reprogramación Celular/efectos de los fármacos , Diabetes Mellitus/inmunología , Diabetes Mellitus/metabolismo , Modelos Animales de Enfermedad , Femenino , Glucagón/metabolismo , Células Secretoras de Glucagón/efectos de los fármacos , Células Secretoras de Glucagón/trasplante , Glucosa/farmacología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/inmunología , Islotes Pancreáticos/metabolismo , Factores de Transcripción Maf de Gran Tamaño/genética , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Masculino , Ratones , Especificidad de Órganos/efectos de los fármacos , Polipéptido Pancreático/metabolismo , Células Secretoras de Polipéptido Pancreático/citología , Células Secretoras de Polipéptido Pancreático/efectos de los fármacos , Células Secretoras de Polipéptido Pancreático/metabolismo , Proteómica , Análisis de Secuencia de ARN , Transactivadores/genética , Transactivadores/metabolismo , Transcriptoma , Transducción Genética
9.
PLoS One ; 13(11): e0206475, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30419021

RESUMEN

Patients with bladder cancer need frequent controls over long follow-up time due to high recurrence rate and risk of conversion to muscle invasive cancer with poor prognosis. We identified cancer-related molecular signatures in apparently healthy bladder in patients with subsequent muscular invasiveness during follow-up. Global proteomics of the normal tissue biopsies revealed specific proteome fingerprints in these patients prior to subsequent muscular invasiveness. In these presumed normal samples, we detected modulations of proteins previously associated with different cancer types. This study indicates that analyzing apparently healthy tissue of a cancer-invaded organ may suggest disease progression.


Asunto(s)
Progresión de la Enfermedad , Músculos/patología , Proteómica , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Pronóstico , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/genética
10.
Nature ; 514(7523): 503-7, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25141178

RESUMEN

Total or near-total loss of insulin-producing ß-cells occurs in type 1 diabetes. Restoration of insulin production in type 1 diabetes is thus a major medical challenge. We previously observed in mice in which ß-cells are completely ablated that the pancreas reconstitutes new insulin-producing cells in the absence of autoimmunity. The process involves the contribution of islet non-ß-cells; specifically, glucagon-producing α-cells begin producing insulin by a process of reprogramming (transdifferentiation) without proliferation. Here we show the influence of age on ß-cell reconstitution from heterologous islet cells after near-total ß-cell loss in mice. We found that senescence does not alter α-cell plasticity: α-cells can reprogram to produce insulin from puberty through to adulthood, and also in aged individuals, even a long time after ß-cell loss. In contrast, before puberty there is no detectable α-cell conversion, although ß-cell reconstitution after injury is more efficient, always leading to diabetes recovery. This process occurs through a newly discovered mechanism: the spontaneous en masse reprogramming of somatostatin-producing δ-cells. The juveniles display 'somatostatin-to-insulin' δ-cell conversion, involving dedifferentiation, proliferation and re-expression of islet developmental regulators. This juvenile adaptability relies, at least in part, upon the combined action of FoxO1 and downstream effectors. Restoration of insulin producing-cells from non-ß-cell origins is thus enabled throughout life via δ- or α-cell spontaneous reprogramming. A landscape with multiple intra-islet cell interconversion events is emerging, offering new perspectives for therapy.


Asunto(s)
Envejecimiento/fisiología , Transdiferenciación Celular , Diabetes Mellitus Experimental/patología , Células Secretoras de Insulina/citología , Insulina/biosíntesis , Regeneración , Células Secretoras de Somatostatina/citología , Animales , Desdiferenciación Celular , Proliferación Celular , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 1/terapia , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/metabolismo , Células Secretoras de Glucagón/citología , Células Secretoras de Glucagón/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Ratones , Maduración Sexual , Somatostatina/biosíntesis , Somatostatina/metabolismo , Células Secretoras de Somatostatina/metabolismo
11.
Diabetes ; 60(11): 2872-82, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21926270

RESUMEN

OBJECTIVE: To evaluate whether healthy or diabetic adult mice can tolerate an extreme loss of pancreatic α-cells and how this sudden massive depletion affects ß-cell function and blood glucose homeostasis. RESEARCH DESIGN AND METHODS: We generated a new transgenic model allowing near-total α-cell removal specifically in adult mice. Massive α-cell ablation was triggered in normally grown and healthy adult animals upon diphtheria toxin (DT) administration. The metabolic status of these mice was assessed in 1) physiologic conditions, 2) a situation requiring glucagon action, and 3) after ß-cell loss. RESULTS: Adult transgenic mice enduring extreme (98%) α-cell removal remained healthy and did not display major defects in insulin counter-regulatory response. We observed that 2% of the normal α-cell mass produced enough glucagon to ensure near-normal glucagonemia. ß-Cell function and blood glucose homeostasis remained unaltered after α-cell loss, indicating that direct local intraislet signaling between α- and ß-cells is dispensable. Escaping α-cells increased their glucagon content during subsequent months, but there was no significant α-cell regeneration. Near-total α-cell ablation did not prevent hyperglycemia in mice having also undergone massive ß-cell loss, indicating that a minimal amount of α-cells can still guarantee normal glucagon signaling in diabetic conditions. CONCLUSIONS: An extremely low amount of α-cells is sufficient to prevent a major counter-regulatory deregulation, both under physiologic and diabetic conditions. We previously reported that α-cells reprogram to insulin production after extreme ß-cell loss and now conjecture that the low α-cell requirement could be exploited in future diabetic therapies aimed at regenerating ß-cells by reprogramming adult α-cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Células Secretoras de Glucagón/efectos de los fármacos , Glucagón/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Receptores de Glucagón/metabolismo , Transducción de Señal , Animales , Recuento de Células , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Toxina Diftérica/toxicidad , Glucagón/sangre , Glucagón/genética , Células Secretoras de Glucagón/metabolismo , Células Secretoras de Glucagón/patología , Factor de Crecimiento Similar a EGF de Unión a Heparina , Hiperglucemia/inducido químicamente , Hiperglucemia/prevención & control , Hipoglucemia/prevención & control , Insulina/sangre , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/patología , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Ratones , Ratones Transgénicos , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Páncreas/patología , Regiones Promotoras Genéticas , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Estreptozocina/toxicidad , Tamoxifeno/farmacología
12.
Dev Growth Differ ; 53(2): 186-201, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21338345

RESUMEN

After bisection, Hydra polyps regenerate their head from the lower half thanks to a head-organizer activity that is rapidly established at the tip. Head regeneration is also highly plastic as both the wild-type and the epithelial Hydra (that lack the interstitial cell lineage) can regenerate their head. In the wild-type context, we previously showed that after mid-gastric bisection, a large subset of the interstitial cells undergo apoptosis, inducing compensatory proliferation of the surrounding progenitors. This asymmetric process is necessary and sufficient to launch head regeneration. The apoptotic cells transiently release Wnt3, which promotes the formation of a proliferative zone by activating the beta-catenin pathway in the adjacent cycling cells. However the injury-induced signaling that triggers apoptosis is unknown. We previously reported an asymmetric immediate activation of the mitogen-activated protein kinase/ribosomal S6 kinase/cAMP response element binding protein (MAPK/RSK/CREB) pathway in head-regenerating tips after mid-gastric bisection. We show here that pharmacological inhibition of the MAPK/ERK pathway or RNAi knockdown of the RSK, CREB, CREB binding protein (CBP) genes prevents apoptosis, compensatory proliferation and blocks head regeneration. As the activation of the MAPK pathway upon injury plays an essential role in regenerating bilaterian species, these results suggest that the MAPK-dependent activation of apoptosis-induced compensatory proliferation represents an evolutionary-conserved mechanism to launch a regenerative process.


Asunto(s)
Apoptosis/fisiología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Hydra/metabolismo , Hydra/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Transducción de Señal/fisiología , Animales , Apoptosis/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Hydra/genética , Proteínas Quinasas S6 Ribosómicas/genética , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal/genética
13.
Dev Biol ; 332(1): 2-24, 2009 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-19465018

RESUMEN

New perspectives on the origin of neurogenesis emerged with the identification of genes encoding post-synaptic proteins as well as many "neurogenic" regulators as the NK, Six, Pax, bHLH proteins in the Demosponge genome, a species that might differentiate sensory cells but no neurons. However, poriferans seem to miss some key regulators of the neurogenic circuitry as the Hox/paraHox and Otx-like gene families. Moreover as a general feature, many gene families encoding evolutionarily-conserved signaling proteins and transcription factors were submitted to a wave of gene duplication in the last common eumetazoan ancestor, after Porifera divergence. In contrast gene duplications in the last common bilaterian ancestor, Urbilateria, are limited, except for the bHLH Atonal-class. Hence Cnidaria share with Bilateria a large number of genetic tools. The expression and functional analyses currently available suggest a neurogenic function for numerous orthologs in developing or adult cnidarians where neurogenesis takes place continuously. As an example, in the Hydra polyp, the Clytia medusa and the Acropora coral, the Gsx/cnox2/Anthox-2 ParaHox gene likely supports neurogenesis. Also neurons and nematocytes (mechanosensory cells) share in hydrozoans a common stem cell and several regulatory genes indicating that they can be considered as sister cells. Performed in anthozoan and medusozoan species, these studies should tell us more about the way(s) evolution hazards achieved the transition from epithelial to neuronal cell fate, and about the robustness of the genetic circuitry that allowed neuromuscular transmission to arise and be maintained across evolution.


Asunto(s)
Evolución Biológica , Cnidarios/crecimiento & desarrollo , Cnidarios/genética , Neurogénesis , Animales , Cnidarios/anatomía & histología , Sistema Nervioso/anatomía & histología , Sistema Nervioso/crecimiento & desarrollo , Neurogénesis/genética
14.
Biochim Biophys Acta ; 1793(9): 1432-43, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19362111

RESUMEN

The Hydra polyp provides a powerful model system to investigate the regulation of cell survival and cell death in homeostasis and regeneration as Hydra survive weeks without feeding and regenerates any missing part after bisection. Induction of autophagy during starvation is the main surviving strategy in Hydra as autophagic vacuoles form in most myoepithelial cells after several days. When the autophagic process is inhibited, animal survival is actually rapidly jeopardized. An appropriate regulation of autophagy is also essential during regeneration as Hydra RNAi knocked-down for the serine protease inhibitor Kazal-type (SPINK) gene Kazal1, exhibit a massive autophagy after amputation that rapidly compromises cell and animal survival. This excessive autophagy phenotype actually mimics that observed in the mammalian pancreas when SPINK genes are mutated, highlighting the paradigmatic value of the Hydra model system for deciphering pathological processes. Interestingly autophagy during starvation predominantly affects ectodermal epithelial cells and lead to cell survival whereas Kazal1(RNAi)-induced autophagy is restricted to endodermal digestive cells that rapidly undergo cell death. This indicates that distinct regulations that remain to be identified, are at work in these two contexts. Cnidarian express orthologs for most components of the autophagy and TOR pathways suggesting evolutionarily-conserved roles during starvation.


Asunto(s)
Autofagia , Evolución Biológica , Hydra/citología , Hydra/fisiología , Estrés Fisiológico , Animales , Supervivencia Celular , Hydra/genética , Transducción de Señal
15.
J Cell Sci ; 119(Pt 5): 846-57, 2006 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-16478786

RESUMEN

In hydra, the endodermal epithelial cells carry out the digestive function together with the gland cells that produce zymogens and express the evolutionarily conserved gene Kazal1. To assess the hydra Kazal1 function, we silenced gene expression through double-stranded RNA feeding. A progressive Kazal1 silencing affected homeostatic conditions as evidenced by the low budding rate and the induced animal death. Concomitantly, a dramatic disorganization followed by a massive death of gland cells was observed, whereas the cytoplasm of digestive cells became highly vacuolated. The presence of mitochondria and late endosomes within those vacuoles assigned them as autophagosomes. The enhanced Kazal1 expression in regenerating tips was strongly diminished in Kazal1(-) hydra, and the amputation stress led to an immediate disorganization of the gland cells, vacuolization of the digestive cells and death after prolonged silencing. This first cellular phenotype resulting from a gene knock-down in cnidarians suggests that the Kazal1 serine-protease-inhibitor activity is required to prevent excessive autophagy in intact hydra and to exert a cytoprotective function to survive the amputation stress. Interestingly, these functions parallel the pancreatic autophagy phenotype observed upon mutation within the Kazal domain of the SPINK1 and SPINK3 genes in human and mice, respectively.


Asunto(s)
Proteínas Portadoras/genética , Silenciador del Gen , Hydra/enzimología , Páncreas/metabolismo , Inhibidores de Serina Proteinasa/genética , Secuencia de Aminoácidos , Animales , Regulación de la Expresión Génica , Humanos , Hydra/citología , Hydra/genética , Imitación Molecular , Datos de Secuencia Molecular , Fenotipo , ARN Bicatenario/genética , Alineación de Secuencia , Inhibidor de Tripsina Pancreática de Kazal
16.
Dev Biol ; 275(1): 104-23, 2004 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-15464576

RESUMEN

In bilaterians, COUP-TF nuclear receptors participate in neurogenesis and/or CNS patterning. In hydra, the nervous system is formed of sensory mechanoreceptor cells (nematocytes) and neuronal cells, both lineages deriving from a common stem cell. The hydra COUP-TF gene, hyCOUP-TF, which encodes highly conserved DNA-binding and ligand-binding domains, belongs to the monophyletic COUP-TFs orphan receptor family (NR2F). In adult polyps, hyCOUP-TF is expressed in nematoblasts and a subset of neuronal cells. Comparative BrDU labeling analyses performed on cells expressing either hyCOUP-TF or the paired-like gene prdl-b showed that prdl-b expression corresponded to early stages of proliferation, while hyCOUP-TF was detected slightly later. HyCOUP-TF and prdl-b expressing cells disappeared in sf-1 mutants becoming "nerve-free". Moreover hyCOUP-TF and prdl-b expression was excluded from regions undergoing developmental processes. These data suggest that hyCOUP-TF and prdl-b belong to a genetic network that appeared together with neurogenesis during early metazoan evolution. The hyCOUP-TF protein specifically bound onto the evolutionarily conserved DR1 and DR5 response elements, and repressed transactivation induced by RAR:RXR nuclear receptors in a dose-dependent manner when expressed in mammalian cells. Hence, a cnidarian transcription factor can be active in vertebrate cells, implying that functional interactions between COUP-TF and other nuclear receptors were evolutionarily conserved.


Asunto(s)
Cnidarios/metabolismo , Proteínas de Unión al ADN/metabolismo , Receptores de Esteroides/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Evolución Biológica , Biomarcadores/metabolismo , Factores de Transcripción COUP , Secuencia Conservada , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/aislamiento & purificación , Proteínas de Homeodominio/metabolismo , Hydra/metabolismo , Datos de Secuencia Molecular , Neuronas/metabolismo , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/aislamiento & purificación , Isoformas de Proteínas/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/aislamiento & purificación , Alineación de Secuencia , Células Madre/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA