Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Phys Chem B ; 128(19): 4590-4601, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38701111

RESUMEN

Cofilin, a key actin-binding protein, orchestrates the dynamics of the actomyosin network through its actin-severing activity and by promoting the recycling of actin monomers. Recent experiments suggest that cofilin forms functionally distinct oligomers via thiol post-translational modifications (PTMs) that promote actin nucleation and assembly. Despite these advances, the structural conformations of cofilin oligomers that modulate actin activity remain elusive because there are combinatorial ways to oxidize thiols in cysteines to form disulfide bonds rapidly. This study employs molecular dynamics simulations to investigate human cofilin 1 as a case study for exploring cofilin dimers via disulfide bond formation. Utilizing a biasing scheme in simulations, we focus on analyzing dimer conformations conducive to disulfide bond formation. Additionally, we explore potential PTMs arising from the examined conformational ensemble. Using the free energy profiling, our simulations unveil a range of probable cofilin dimer structures not represented in current Protein Data Bank entries. These candidate dimers are characterized by their distinct population distributions and relative free energies. Of particular note is a dimer featuring an interface between cysteines 139 and 147 residues, which demonstrates stable free energy characteristics and intriguingly symmetrical geometry. In contrast, the experimentally proposed dimer structure exhibits a less stable free energy profile. We also evaluate frustration quantification based on the energy landscape theory in the protein-protein interactions at the dimer interfaces. Notably, the 39-39 dimer configuration emerges as a promising candidate for forming cofilin tetramers, as substantiated by frustration analysis. Additionally, docking simulations with actin filaments further evaluate the stability of these cofilin dimer-actin complexes. Our findings thus offer a computational framework for understanding the role of thiol PTM of cofilin proteins in regulating oligomerization, and the subsequent cofilin-mediated actin dynamics in the actomyosin network.


Asunto(s)
Citoesqueleto de Actina , Disulfuros , Simulación de Dinámica Molecular , Disulfuros/química , Humanos , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Cofilina 1/química , Cofilina 1/metabolismo , Multimerización de Proteína , Actinas/química , Actinas/metabolismo , Factores Despolimerizantes de la Actina/química , Factores Despolimerizantes de la Actina/metabolismo , Termodinámica
2.
Protein Sci ; 32(12): e4822, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37902126

RESUMEN

Post-translational modification (PTM) of a protein occurs after it has been synthesized from its genetic template, and involves chemical modifications of the protein's specific amino acid residues. Despite of the central role played by PTM in regulating molecular interactions, particularly those driven by reversible redox reactions, it remains challenging to interpret PTMs in terms of protein dynamics and function because there are numerous combinatorially enormous means for modifying amino acids in response to changes in the protein environment. In this study, we provide a workflow that allows users to interpret how perturbations caused by PTMs affect a protein's properties, dynamics, and interactions with its binding partners based on inferred or experimentally determined protein structure. This Python-based workflow, called PTM-Psi, integrates several established open-source software packages, thereby enabling the user to infer protein structure from sequence, develop force fields for non-standard amino acids using quantum mechanics, calculate free energy perturbations through molecular dynamics simulations, and score the bound complexes via docking algorithms. Using the S-nitrosylation of several cysteines on the GAP2 protein as an example, we demonstrated the utility of PTM-Psi for interpreting sequence-structure-function relationships derived from thiol redox proteomics data. We demonstrate that the S-nitrosylated cysteine that is exposed to the solvent indirectly affects the catalytic reaction of another buried cysteine over a distance in GAP2 protein through the movement of the two ligands. Our workflow tracks the PTMs on residues that are responsive to changes in the redox environment and lays the foundation for the automation of molecular and systems biology modeling.


Asunto(s)
Cisteína , Proteínas , Cisteína/metabolismo , Proteínas/química , Procesamiento Proteico-Postraduccional , Programas Informáticos , Aminoácidos/metabolismo
3.
PLoS Comput Biol ; 18(5): e1010105, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35533192

RESUMEN

Actin networks are essential for living cells to move, reproduce, and sense their environments. The dynamic and rheological behavior of actin networks is modulated by actin-binding proteins such as α-actinin, Arp2/3, and myosin. There is experimental evidence that actin-binding proteins modulate the cooperation of myosin motors by connecting the actin network. In this work, we present an analytical mean field model, using the Flory-Stockmayer theory of gelation, to understand how different actin-binding proteins change the connectivity of the actin filaments as the networks are formed. We follow the kinetics of the networks and estimate the concentrations of actin-binding proteins that are needed to reach connectivity percolation as well as to reach rigidity percolation. We find that Arp2/3 increases the actomyosin connectivity in the network in a non-monotonic way. We also describe how changing the connectivity of actomyosin networks modulates the ability of motors to exert forces, leading to three possible phases of the networks with distinctive dynamical characteristics: a sol phase, a gel phase, and an active phase. Thus, changes in the concentration and activity of actin-binding proteins in cells lead to a phase transition of the actin network, allowing the cells to perform active contraction and change their rheological properties.


Asunto(s)
Actinas , Actomiosina , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actomiosina/química , Cinética , Proteínas de Microfilamentos/metabolismo , Miosinas/metabolismo
4.
Biophys J ; 118(7): 1665-1678, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32145192

RESUMEN

We have developed a computational method of atomistically refining the structural ensemble of intrinsically disordered peptides (IDPs) facilitated by experimental measurements using circular dichroism spectroscopy (CD). A major challenge surrounding this approach stems from the deconvolution of experimental CD spectra into secondary structure features of the IDP ensemble. Currently available algorithms for CD deconvolution were designed to analyze the spectra of proteins with stable secondary structures. Herein, our work aims to minimize any bias from the peptide deconvolution analysis by implementing a non-negative linear least-squares fitting algorithm in conjunction with a CD reference data set that contains soluble and denatured proteins (SDP48). The non-negative linear least-squares method yields the best results for deconvolution of proteins with higher disordered content than currently available methods, according to a validation analysis of a set of protein spectra with Protein Data Bank entries. We subsequently used this analysis to deconvolute our experimental CD data to refine our computational model of the peptide secondary structure ensemble produced by all-atom molecular dynamics simulations with implicit solvent. We applied this approach to determine the ensemble structures of a set of short IDPs, that mimic the calmodulin binding domain of calcium/calmodulin-dependent protein kinase II and its 1-amino-acid and 3-amino-acid mutants. Our study offers a, to our knowledge, novel way to solve the ensemble secondary structures of IDPs in solution, which is important to advance the understanding of their roles in regulating signaling pathways through the formation of complexes with multiple partners.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Simulación de Dinámica Molecular , Dicroismo Circular , Péptidos , Conformación Proteica , Estructura Secundaria de Proteína , Proteínas
5.
Proc Natl Acad Sci U S A ; 115(40): 10052-10057, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30224489

RESUMEN

Cytoplasmic dyneins play a major role in retrograde cellular transport by moving vesicles and organelles along microtubule filaments. Dyneins are multidomain motor proteins with two heads that coordinate their motion via their interhead tension. Compared with the leading head, the trailing head has a higher detachment rate from microtubules, facilitating the movement. However, the molecular mechanism of such coordination is unknown. To elucidate this mechanism, we performed molecular dynamics simulations on a cytoplasmic dynein with a structure-based coarse-grained model that probes the effect of the interhead tension on the structure. The tension creates a torque that influences the head rotating about its stalk. The conformation of the stalk switches from the α registry to the ß registry during the rotation, weakening the binding affinity to microtubules. The directions of the tension and the torque of the leading head are opposite to those of the trailing head, breaking the structural symmetry between the heads. The leading head transitions less often to the ß registry than the trailing head. The former thus has a greater binding affinity to the microtubule than the latter. We measured the moment arm of the torque from a dynein structure in the simulations to develop a phenomenological model that captures the influence of the head rotating about its stalk on the differential detachment rates of the two heads. Our study provides a consistent molecular picture for interhead coordination via interhead tension.


Asunto(s)
Citoplasma/química , Dineínas/química , Modelos Químicos , Modelos Moleculares , Animales , Citoplasma/metabolismo , Dineínas/metabolismo , Humanos
6.
Phys Rev E ; 97(3-1): 032402, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29776093

RESUMEN

We investigated the impact of hydrodynamic interactions (HI) on protein folding using a coarse-grained model. The extent of the impact of hydrodynamic interactions, whether it accelerates, retards, or has no effect on protein folding, has been controversial. Together with a theoretical framework of the energy landscape theory (ELT) for protein folding that describes the dynamics of the collective motion with a single reaction coordinate across a folding barrier, we compared the kinetic effects of HI on the folding rates of two protein models that use a chain of single beads with distinctive topologies: a 64-residue α/ß chymotrypsin inhibitor 2 (CI2) protein, and a 57-residue ß-barrel α-spectrin Src-homology 3 domain (SH3) protein. When comparing the protein folding kinetics simulated with Brownian dynamics in the presence of HI to that in the absence of HI, we find that the effect of HI on protein folding appears to have a "crossover" behavior about the folding temperature. This means that at a temperature greater than the folding temperature, the enhanced friction from the hydrodynamic solvents between the beads in an unfolded configuration results in lowered folding rate; conversely, at a temperature lower than the folding temperature, HI accelerates folding by the backflow of solvent toward the folded configuration of a protein. Additionally, the extent of acceleration depends on the topology of a protein: for a protein like CI2, where its folding nucleus is rather diffuse in a transition state, HI channels the formation of contacts by favoring a major folding pathway in a complex free energy landscape, thus accelerating folding. For a protein like SH3, where its folding nucleus is already specific and less diffuse, HI matters less at a temperature lower than the folding temperature. Our findings provide further theoretical insight to protein folding kinetic experiments and simulations.


Asunto(s)
Hidrodinámica , Pliegue de Proteína , Temperatura , Cinética , Simulación de Dinámica Molecular , Péptidos/química , Proteínas de Plantas/química , Dominios Proteicos , Espectrina/química
7.
J Phys Chem B ; 122(17): 4653-4661, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29630822

RESUMEN

Motor proteins are active enzymatic molecules that are critically important for a variety of biological phenomena. It is known that some neurodegenerative diseases are caused by specific mutations in motor proteins that lead to their malfunctioning. Hereditary spastic paraplegia is one of such diseases, and it is associated with the mutations in the neuronal conventional kinesin gene, producing the decreased speed and processivity of this motor protein. Despite the importance of this problem, there is no clear understanding on the role of mutations in modifying dynamic properties of motor proteins. In this work, we investigate theoretically the molecular basis for negative effects of two specific mutations, N256S and R280S, on the dynamics of kinesin motor proteins. We hypothesize that these mutations might accelerate the adenosine triphosphate (ATP) release by increasing the probability of open conformations for the ATP-binding pocket. Our approach is based on the use of coarse-grained structure-based molecular dynamics simulations to analyze the conformational changes and chemical transitions in the kinesin molecule, which is also supplemented by investigation of a mesoscopic discrete-state stochastic model. Computer simulations suggest that mutations N256S and R280S can decrease the free energy difference between open and closed biochemical states, making the open conformation more stable and the ATP release faster, which is in agreement with our hypothesis. Furthermore, we show that in the case of N256S mutation, this effect is caused by disruption of interactions between α helix and switch I and loop L11 structural elements. Our computational results are qualitatively supported by the explicit analysis of the discrete-state stochastic model.


Asunto(s)
Cinesinas/genética , Cinesinas/metabolismo , Simulación de Dinámica Molecular , Mutación , Adenosina Trifosfato/metabolismo , Sitios de Unión , Cinesinas/química , Cinética , Conformación Proteica
8.
Proc Natl Acad Sci U S A ; 114(41): E8611-E8617, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-28973894

RESUMEN

Motor proteins are active enzymatic molecules that support important cellular processes by transforming chemical energy into mechanical work. Although the structures and chemomechanical cycles of motor proteins have been extensively investigated, the sensitivity of a motor's velocity in response to a force is not well-understood. For kinesin, velocity is weakly influenced by a small to midrange external force (weak susceptibility) but is steeply reduced by a large force. Here, we utilize a structure-based molecular dynamic simulation to study the molecular origin of the weak susceptibility for a single kinesin. We show that the key step in controlling the velocity of a single kinesin under an external force is the ATP release from the microtubule-bound head. Only under large loading forces can the motor head release ATP at a fast rate, which significantly reduces the velocity of kinesin. It underpins the weak susceptibility that the velocity will not change at small to midrange forces. The molecular origin of this velocity reduction is that the neck linker of a kinesin only detaches from the motor head when pulled by a large force. This prompts the ATP binding site to adopt an open state, favoring ATP release and reducing the velocity. Furthermore, we show that two load-bearing kinesins are incapable of equally sharing the load unless they are very close to each other. As a consequence of the weak susceptibility, the trailing kinesin faces the challenge of catching up to the leading one, which accounts for experimentally observed weak cooperativity of kinesins motors.


Asunto(s)
Adenosina Trifosfato/metabolismo , Cinesinas/química , Cinesinas/metabolismo , Microtúbulos/metabolismo , Sitios de Unión , Humanos , Cinética , Simulación de Dinámica Molecular , Unión Proteica
9.
Cancer Inform ; 15: 1-13, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26819545

RESUMEN

Efficacies, toxicities, and resistance mechanisms of chemotherapy drugs, such as oxaliplatin and 5-fluorouracil (5-FU), vary widely among various categories and subcategories of colon cancers. By understanding the differences in the drug efficacy and resistance at the level of protein-protein networks, we identified the correlation between the drug activity of oxaliplatin/5-FU and gene variations from the US National Cancer Institute-60 human cancer cell lines. The activity of either of these drugs is correlated with specific amino acid variant(s) of KRAS and other genes from the signaling pathways of colon cancer progression. We also discovered that the activity of a non-DNA-binding novel platinum drug, phosphaplatin, is comparable with oxaliplatin and 5-FU when it was tested against colon cancer cell lines. Our strategy that combines the knowledge from pharmacogenomics across cell lines with the molecular information from specific cancer cells is beneficial for predicting the outcome of a possible combination therapy for personalized treatment.

10.
J Mol Recognit ; 28(2): 74-86, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25622562

RESUMEN

Calmodulin (CaM) is a primary calcium (Ca(2+) )-signaling protein that specifically recognizes and activates highly diverse target proteins. We explored the molecular basis of target recognition of CaM with peptides representing the CaM-binding domains from two Ca(2+) -CaM-dependent kinases, CaMKI and CaMKII, by employing experimentally constrained molecular simulations. Detailed binding route analysis revealed that the two CaM target peptides, although similar in length and net charge, follow distinct routes that lead to a higher binding frustration in the CaM-CaMKII complex than in the CaM-CaMKI complex. We discovered that the molecular origin of the binding frustration is caused by intermolecular contacts formed with the C-domain of CaM that need to be broken before the formation of intermolecular contacts with the N-domain of CaM. We argue that the binding frustration is important for determining the kinetics of the recognition process of proteins involving large structural fluctuations.


Asunto(s)
Calmodulina/química , Calmodulina/metabolismo , Péptidos/química , Animales , Sitios de Unión , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Modelos Moleculares , Unión Proteica , Estructura Terciaria de Proteína
11.
Proc Natl Acad Sci U S A ; 110(51): 20545-50, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24297894

RESUMEN

Protein-protein interactions drive most every biological process, but in many instances the domains mediating recognition are disordered. How specificity in binding is attained in the absence of defined structure contrasts with well-established experimental and theoretical work describing ligand binding to protein. The signaling protein calmodulin presents a unique opportunity to investigate mechanisms for target recognition given that it interacts with several hundred different targets. By advancing coarse-grained computer simulations and experimental techniques, mechanistic insights were gained in defining the pathways leading to recognition and in how target selectivity can be achieved at the molecular level. A model requiring mutually induced conformational changes in both calmodulin and target proteins was necessary and broadly informs how proteins can achieve both high affinity and high specificity.


Asunto(s)
Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/química , Calmodulina/química , Modelos Moleculares , Péptidos/química , Animales , Mamíferos , Unión Proteica , Conformación Proteica
12.
Biophys Rev ; 5(2): 137-145, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28510156

RESUMEN

Proteins fold and function inside cells which are environments very different from that of dilute buffer solutions most often used in traditional experiments. The crowded milieu results in excluded-volume effects, increased bulk viscosity and amplified chances for inter-molecular interactions. These environmental factors have not been accounted for in most mechanistic studies of protein folding executed during the last decades. The question thus arises as to how these effects-present when polypeptides normally fold in vivo-modulate protein biophysics. To address excluded volume effects, we use synthetic macromolecular crowding agents, which take up significant volume but do not interact with proteins, in combination with strategically selected proteins and a range of equilibrium and time-resolved biophysical (spectroscopic and computational) methods. In this review, we describe key observations on macromolecular crowding effects on protein stability, folding and structure drawn from combined in vitro and in silico studies. As expected based on Minton's early predictions, many proteins (apoflavodoxin, VlsE, cytochrome c, and S16) became more thermodynamically stable (magnitude depends inversely on protein stability in buffer) and, unexpectedly, for apoflavodoxin and VlsE, the folded states changed both secondary structure content and, for VlsE, overall shape in the presence of macromolecular crowding. For apoflavodoxin and cytochrome c, which have complex kinetic folding mechanisms, excluded volume effects made the folding energy landscapes smoother (i.e., less misfolding and/or kinetic heterogeneity) than in buffer.

13.
J Chem Phys ; 135(17): 175101, 2011 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-22070323

RESUMEN

Proteins fold and function in the crowded environment of the cell's interior. In the recent years it has been well established that the so-called "macromolecular crowding" effect enhances the folding stability of proteins by destabilizing their unfolded states for selected proteins. On the other hand, chemical and thermal denaturation is often used in experiments as a tool to destabilize a protein by populating the unfolded states when probing its folding landscape and thermodynamic properties. However, little is known about the complicated effects of these synergistic perturbations acting on the kinetic properties of proteins, particularly when large structural fluctuations, such as protein folding, have been involved. In this study, we have first investigated the folding mechanism of Trp-cage dependent on urea concentration by coarse-grained molecular simulations where the impact of urea is implemented into an energy function of the side chain and/or backbone interactions derived from the all-atomistic molecular dynamics simulations with urea through a Boltzmann inversion method. In urea solution, the folding rates of a model miniprotein Trp-cage decrease and the folded state slightly swells due to a lack of contact formation between side chains at the terminal regions. In addition, the equilibrium m-values of Trp-cage from the computer simulations are in agreement with experimental measurements. We have further investigated the combined effects of urea denaturation and macromolecular crowding on Trp-cage's folding mechanism where crowding agents are modeled as hard-spheres. The enhancement of folding rates of Trp-cage is most pronounced by macromolecular crowding effect when the extended conformations of Trp-cast dominate at high urea concentration. Our study makes quantitatively testable predictions on protein folding dynamics in a complex environment involving both chemical denaturation and macromolecular crowding effects.


Asunto(s)
Simulación de Dinámica Molecular , Péptidos/química , Pliegue de Proteína , Proteínas/química , Algoritmos , Interacciones Hidrofóbicas e Hidrofílicas , Espectroscopía de Resonancia Magnética , Estabilidad Proteica , Triptófano/química , Urea/química
14.
J Chem Phys ; 132(17): 175101, 2010 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-20459186

RESUMEN

We developed a multiscale approach (MultiSCAAL) that integrates the potential of mean force obtained from all-atomistic molecular dynamics simulations with a knowledge-based energy function for coarse-grained molecular simulations in better exploring the energy landscape of a small protein under chemical interference such as chemical denaturation. An excessive amount of water molecules in all-atomistic molecular dynamics simulations often negatively impacts the sampling efficiency of some advanced sampling techniques such as the replica exchange method and it makes the investigation of chemical interferences on protein dynamics difficult. Thus, there is a need to develop an effective strategy that focuses on sampling structural changes in protein conformations rather than solvent molecule fluctuations. In this work, we address this issue by devising a multiscale simulation scheme (MultiSCAAL) that bridges the gap between all-atomistic molecular dynamics simulation and coarse-grained molecular simulation. The two key features of this scheme are the Boltzmann inversion and a protein atomistic reconstruction method we previously developed (SCAAL). Using MultiSCAAL, we were able to enhance the sampling efficiency of proteins solvated by explicit water molecules. Our method has been tested on the folding energy landscape of a small protein Trp-cage with explicit solvent under 8M urea using both the all-atomistic replica exchange molecular dynamics and MultiSCAAL. We compared computational analyses on ensemble conformations of Trp-cage with its available experimental NOE distances. The analysis demonstrated that conformations explored by MultiSCAAL better agree with the ones probed in the experiments because it can effectively capture the changes in side-chain orientations that can flip out of the hydrophobic pocket in the presence of urea and water molecules. In this regard, MultiSCAAL is a promising and effective sampling scheme for investigating chemical interference which presents a great challenge when modeling protein interactions in vivo.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas/química , Algoritmos , Péptidos/química , Conformación Proteica , Pliegue de Proteína , Termodinámica , Urea/química , Agua/química
15.
Proc Natl Acad Sci U S A ; 104(48): 18976-81, 2007 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-18024596

RESUMEN

To investigate the consequences of macromolecular crowding on the behavior of a globular protein, we performed a combined experimental and computational study on the 148-residue single-domain alpha/beta protein, Desulfovibrio desulfuricans apoflavodoxin. In vitro thermal unfolding experiments, as well as assessment of native and denatured structures, were probed by using far-UV CD in the presence of various amounts of Ficoll 70, an inert spherical crowding agent. Ficoll 70 has a concentration-dependent effect on the thermal stability of apoflavodoxin (DeltaT(m) of 20 degrees C at 400 mg/ml; pH 7). As judged by CD, addition of Ficoll 70 causes an increase in the amount of secondary structure in the native-state ensemble (pH 7, 20 degrees C) but only minor effects on the denatured state. Theoretical calculations, based on an off-lattice model and hard-sphere particles, are in good agreement with the in vitro data. The simulations demonstrate that, in the presence of 25% volume occupancy of spheres, native flavodoxin is thermally stabilized, and the free energy landscape shifts to favor more compact structures in both native and denatured states. The difference contact map reveals that the native-state compaction originates in stronger interactions between the helices and the central beta-sheet, as well as by less fraying in the terminal helices. This study demonstrates that macromolecular crowding has structural effects on the folded ensemble of polypeptides.


Asunto(s)
Apoproteínas/química , Flavodoxina/química , Pliegue de Proteína , Apoproteínas/efectos de los fármacos , Tampones (Química) , Dicroismo Circular , Simulación por Computador , Desulfovibrio desulfuricans/química , Ficoll/farmacología , Flavodoxina/efectos de los fármacos , Modelos Moleculares , Estructura Molecular , Desnaturalización Proteica/efectos de los fármacos , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Termodinámica
16.
Biophys J ; 93(3): 938-51, 2007 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-17617551

RESUMEN

We perform a statistical analysis of amino-acid contacts to investigate possible preferences of amino-acid interactions. We include in the analysis only tertiary contacts, because they are less constrained--compared to secondary contacts--by proteins' backbone rigidity. Using proteins from the protein data bank, our analysis reveals an unusually high frequency of cysteine pairings relative to that expected from random. To elucidate the possible effects of cysteine interactions in folding, we perform molecular simulations on three cysteine-rich proteins. In particular, we investigate the difference in folding dynamics between a Go-like model (where attraction only occurs between amino acids forming a native contact) and a variant model (where attraction between any two cysteines is introduced to mimic the formation/dissociation of native/nonnative disulfide bonds). We find that when attraction among cysteines is nonspecific and comparable to a solvent-averaged interaction, they produce a target-focusing effect that expedites folding of cysteine-rich proteins as a result of a reduction of conformational search space. In addition, the target-focusing effect also helps reduce glassiness by lowering activation energy barriers and kinetic frustration in the system. The concept of target-focusing also provides a qualitative understanding of a correlation between the rates of protein folding and parameters such as contact order and total contact distance.


Asunto(s)
Cisteína/química , Pliegue de Proteína , Aminoácidos/química , Sitios de Unión , Bases de Datos de Proteínas , Modelos Moleculares , Modelos Teóricos , Probabilidad , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
17.
J Mol Biol ; 357(2): 632-43, 2006 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-16427652

RESUMEN

We have studied the stability and the yield of the folded WW domains in a spherical nanopore to provide insights into the changes in the folding characteristics due to interactions of the polypeptide (SP) with the walls of the pore. Using different models for the interactions between the nanopore and the polypeptide chain we have obtained results that are relevant to a broad range of experiments. (a) In the temperature and the strength of the SP-pore interaction plane (lambda), there are four "phases," namely, the unfolded state, the native state, the molten globule phase (MG), and the surface interaction-stabilized (SIS) state. The MG and SIS states are populated at moderate and large values of lambda, respectively. For a fixed pore size, the folding rates vary non-monotonically as lambda is varied with a maximum at lambda approximately 1 at which the SP-nanopore interaction is comparable to the stability of the native state. At large lambda values, the WW domain is kinetically trapped in the SIS states. Using multiple sequence alignment, we conclude that similar folding mechanism should be observed in other WW domains as well. (b) To mimic the changes in the nature of the allosterically driven SP-GroEL interactions we consider two models for the dynamic Anfinsen cage (DAC). In DAC1, the SP-cavity interaction cycles between hydrophobic (lambda>0) and hydrophilic (lambda=0) with a period tau. The yield of the native state is a maximum for an optimum value of tau=tau(OPT). At tau=tau(OPT), the largest yield of the native state is obtained when tau(H) approximately tau(P) where tau(H)(tau(P)) is the duration for which the cavity is hydrophobic (hydrophilic). Thus, in order to enhance the native state yield, the cycling rate, for a given loading rate of the GroEL nanomachine, should be maximized. In DAC2, the volume of the cavity is doubled (as happens when ATP and GroES bind to GroEL) and the SP-pore interaction simultaneously changes from hydrophobic to hydrophilic. In this case, we find greater increase in yield of the native state compared to DAC1 at all values of tau.


Asunto(s)
Péptidos/química , Conformación Proteica , Pliegue de Proteína , Matemática , Modelos Teóricos , Péptidos/metabolismo , Temperatura , Termodinámica
18.
Proc Natl Acad Sci U S A ; 102(13): 4753-8, 2005 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-15781864

RESUMEN

The presence of macromolecules in cells geometrically restricts the available space for poplypeptide chains. To study the effects of macromolecular crowding on folding thermodynamics and kinetics, we used an off-lattice model of the all-beta-sheet WW domain in the presence of large spherical particles whose interaction with the polypeptide chain is purely repulsive. At all volume fractions, phi(c), of the crowding agents the stability of the native state is enhanced. Remarkably, the refolding rates, which are larger than the value at phi(c) = 0, increase nonmonotonically as phi(c) increases, reaching a maximum at phi(c)=phi(c)(*). At high values of phi(c), the depletion-induced intramolecular attraction produces compact structures with considerable structure in the denatured state. Changes in native state stability and folding kinetics at phi(c) can be quantitatively mapped onto confinement in a volume-fraction-dependent spherical pore with radius R(s) approximately (4pi/3phi(c))(1/3) R(c) (R(c) is the radius of the crowding particles) as long as phi(c)< or =phi(c)(*). We show that the extent of native state stabilization at finite phi(c) is comparable with that in a spherical pore. In both situations, rate enhancement is due to destabilization of the denatured states with respect to phi(c) = 0.


Asunto(s)
Sustancias Macromoleculares/metabolismo , Modelos Moleculares , Péptidos/metabolismo , Pliegue de Proteína , Simulación por Computador , Cinética , Microesferas , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Termodinámica
19.
Biophys J ; 87(3): 1900-18, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15345567

RESUMEN

Modeling the structure of natively disordered peptides has proved difficult due to the lack of structural information on these peptides. In this work, we use a novel application of the host-guest method, combining folding theory with experiments, to model the structure of natively disordered polyglutamine peptides. Initially, a minimalist molecular model (C(alpha)C(beta)) of CI2 is developed with a structurally based potential and captures many of the folding properties of CI2 determined from experiments. Next, polyglutamine "guest" inserts of increasing length are introduced into the CI2 "host" model and the polyglutamine is modeled to match the resultant change in CI2 thermodynamic stability between simulations and experiments. The polyglutamine model that best mimics the experimental changes in CI2 thermodynamic stability has 1), a beta-strand dihedral preference and 2), an attractive energy between polyglutamine atoms 0.75-times the attractive energy between the CI2 host Go-contacts. When free-energy differences in the CI2 host-guest system are correctly modeled at varying lengths of polyglutamine guest inserts, the kinetic folding rates and structural perturbation of these CI2 insert mutants are also correctly captured in simulations without any additional parameter adjustment. In agreement with experiments, the residues showing structural perturbation are located in the immediate vicinity of the loop insert. The simulated polyglutamine loop insert predominantly adopts extended random coil conformations, a structural model consistent with low resolution experimental methods. The agreement between simulation and experimental CI2 folding rates, CI2 structural perturbation, and polyglutamine insert structure show that this host-guest method can select a physically realistic model for inserted polyglutamine. If other amyloid peptides can be inserted into stable protein hosts and the stabilities of these host-guest mutants determined, this novel host-guest method may prove useful to determine structural preferences of these intractable but biologically relevant protein fragments.


Asunto(s)
Biofisica/métodos , Péptidos/química , Amiloide/química , Calibración , Simulación por Computador , Cinética , Modelos Moleculares , Modelos Estadísticos , Modelos Teóricos , Mutación , Conformación Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Proteínas/química , Temperatura , Termodinámica , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA