Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Exp Biol Med (Maywood) ; 248(22): 2062-2071, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38235691

RESUMEN

Chagas disease (CD), caused by the protozoan parasite Trypanosoma cruzi, is a neglected disease affecting around 6 million people. About 30% of CD patients develop chronic Chagas disease cardiomyopathy (CCC), an inflammatory cardiomyopathy that occurs decades after the initial infection, while most infected patients (60%) remain asymptomatic in the so-called indeterminate form (IF). Death results from heart failure or arrhythmia in a subset of CCC patients. Myocardial fibrosis, inflammation, and mitochondrial dysfunction are involved in the arrhythmia substrate and triggering events. Survival in CCC is worse than in other cardiomyopathies, which may be linked to a Th1-T cell rich myocarditis with abundant interferon (IFN)-γ and tumor necrosis factor (TNF)-α, selectively lower levels of mitochondrial energy metabolism enzymes in the heart, and reduced levels of high-energy phosphate, indicating poor adenosine triphosphate (ATP) production. IFN-γ and TNF-α signaling, which are constitutively upregulated in CD patients, negatively affect mitochondrial function in cardiomyocytes, recapitulating findings in CCC heart tissue. Genetic studies such as whole-exome sequencing (WES) in nuclear families with multiple CCC/IF cases has disclosed rare heterozygous pathogenic variants in mitochondrial and inflammatory genes segregating in CCC cases. In this minireview, we summarized studies showing how IFN-γ and TNF-α affect cell energy generation, mitochondrial health, and redox homeostasis in cardiomyocytes, in addition to human CD and mitochondria. We hypothesize that cytokine-induced mitochondrial dysfunction in genetically predisposed patients may be the underlying cause of CCC severity and we believe this mechanism may have a bearing on other inflammatory cardiomyopathies.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Chagásica , Enfermedad de Chagas , Enfermedades Mitocondriales , Humanos , Factor de Necrosis Tumoral alfa/metabolismo , Cardiomiopatía Chagásica/genética , Cardiomiopatía Chagásica/metabolismo , Cardiomiopatía Chagásica/patología , Cardiomiopatías/etiología , Miocitos Cardíacos/metabolismo , Inflamación , Arritmias Cardíacas , Enfermedad Crónica
2.
Marin-Neto, José Antonio; Rassi Jr, Anis; Oliveira, Gláucia Maria Moraes; Correia, Luís Claudio Lemos; Ramos Júnior, Alberto Novaes; Luquetti, Alejandro Ostermayer; Hasslocher-Moreno, Alejandro Marcel; Sousa, Andréa Silvestre de; Paola, Angelo Amato Vincenzo de; Sousa, Antônio Carlos Sobral; Ribeiro, Antonio Luiz Pinho; Correia Filho, Dalmo; Souza, Dilma do Socorro Moraes de; Cunha-Neto, Edecio; Ramires, Felix Jose Alvarez; Bacal, Fernando; Nunes, Maria do Carmo Pereira; Martinelli Filho, Martino; Scanavacca, Maurício Ibrahim; Saraiva, Roberto Magalhães; Oliveira Júnior, Wilson Alves de; Lorga-Filho, Adalberto Menezes; Guimarães, Adriana de Jesus Benevides de Almeida; Braga, Adriana Lopes Latado; Oliveira, Adriana Sarmento de; Sarabanda, Alvaro Valentim Lima; Pinto, Ana Yecê das Neves; Carmo, Andre Assis Lopes do; Schmidt, Andre; Costa, Andréa Rodrigues da; Ianni, Barbara Maria; Markman Filho, Brivaldo; Rochitte, Carlos Eduardo; Macêdo, Carolina Thé; Mady, Charles; Chevillard, Christophe; Virgens, Cláudio Marcelo Bittencourt das; Castro, Cleudson Nery de; Britto, Constança Felicia De Paoli de Carvalho; Pisani, Cristiano; Rassi, Daniela do Carmo; Sobral Filho, Dário Celestino; Almeida, Dirceu Rodrigues de; Bocchi, Edimar Alcides; Mesquita, Evandro Tinoco; Mendes, Fernanda de Souza Nogueira Sardinha; Gondim, Francisca Tatiana Pereira; Silva, Gilberto Marcelo Sperandio da; Peixoto, Giselle de Lima; Lima, Gustavo Glotz de; Veloso, Henrique Horta; Moreira, Henrique Turin; Lopes, Hugo Bellotti; Pinto, Ibraim Masciarelli Francisco; Ferreira, João Marcos Bemfica Barbosa; Nunes, João Paulo Silva; Barreto-Filho, José Augusto Soares; Saraiva, José Francisco Kerr; Lannes-Vieira, Joseli; Oliveira, Joselina Luzia Menezes; Armaganijan, Luciana Vidal; Martins, Luiz Cláudio; Sangenis, Luiz Henrique Conde; Barbosa, Marco Paulo Tomaz; Almeida-Santos, Marcos Antonio; Simões, Marcos Vinicius; Yasuda, Maria Aparecida Shikanai; Moreira, Maria da Consolação Vieira; Higuchi, Maria de Lourdes; Monteiro, Maria Rita de Cassia Costa; Mediano, Mauro Felippe Felix; Lima, Mayara Maia; Oliveira, Maykon Tavares de; Romano, Minna Moreira Dias; Araujo, Nadjar Nitz Silva Lociks de; Medeiros, Paulo de Tarso Jorge; Alves, Renato Vieira; Teixeira, Ricardo Alkmim; Pedrosa, Roberto Coury; Aras Junior, Roque; Torres, Rosalia Morais; Povoa, Rui Manoel dos Santos; Rassi, Sergio Gabriel; Alves, Silvia Marinho Martins; Tavares, Suelene Brito do Nascimento; Palmeira, Swamy Lima; Silva Júnior, Telêmaco Luiz da; Rodrigues, Thiago da Rocha; Madrini Junior, Vagner; Brant, Veruska Maia da Costa; Dutra, Walderez Ornelas; Dias, João Carlos Pinto.
Arq. bras. cardiol ; Arq. bras. cardiol;120(6): e20230269, 2023. tab, graf
Artículo en Portugués | LILACS-Express | LILACS | ID: biblio-1447291
3.
Int J Mol Sci ; 25(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38203212

RESUMEN

Parasitemia and inflammatory markers are cross-sectionally associated with chronic Chagas cardiomyopathy (CCC) among patients with Trypanosoma cruzi. However, the prospective association of the parasite load and host immune response-related characteristics with CCC (that is, progressors) among T. cruzi seropositive individuals has only been partially defined. In a cohort of T. cruzi seropositive patients in Montes Claros and São Paulo, Brazil who were followed over 10 years, we identified the association of a baseline T. cruzi parasite load and systemic markers of inflammation with a decline in cardiac function and/or the presence of cardiac congestion 10 years later. The progressors (n = 21) were individuals with a significant decline in the left ventricular ejection fraction and/or elevated markers of cardiac congestion after 10 years. The controls (n = 31) had normal markers of cardiac function and congestion at the baseline and at the follow-up. They were matched with the progressors on age, sex, and genetic ancestry. The progressors had higher mean parasite loads at the baseline than the controls (18.3 vs. 0.605 DNA parasite equivalents/20 mL, p < 0.05). Of the 384 inflammation-related proteins analyzed, 47 differed significantly at a false discovery rate- (FDR-) corrected p < 0.05 between the groups. There were 44 of these 47 proteins that were significantly higher in the controls compared to in the progressors, including the immune activation markers CCL21, CXCL12, and HCLS1 and several of the tumor necrosis factor superfamily of proteins. Among the individuals who were seropositive for T. cruzi at the baseline and who were followed over 10 years, those with incident CCC at the 10-year marker had a comparatively higher baseline of T. cruzi parasitemia and lower baseline markers of immune activation and chemotaxis. These findings generate the hypothesis that the early impairment of pathogen-killing immune responses predisposes individuals to CCC, which merits further study.


Asunto(s)
Enfermedad de Chagas , Parásitos , Trypanosoma cruzi , Humanos , Animales , Trypanosoma cruzi/genética , Brasil/epidemiología , Parasitemia , Volumen Sistólico , Función Ventricular Izquierda , ADN , Inflamación
4.
Front Immunol ; 13: 1020572, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36248819

RESUMEN

Chagas disease is a parasitic disease from South America, affecting around 7 million people worldwide. Decades after the infection, 30% of people develop chronic forms, including Chronic Chagas Cardiomyopathy (CCC), for which no treatment exists. Two stages characterized this form: the moderate form, characterized by a heart ejection fraction (EF) ≥ 0.4, and the severe form, associated to an EF < 0.4. We propose two sets of DNA methylation biomarkers which can predict in blood CCC occurrence, and CCC stage. This analysis, based on machine learning algorithms, makes predictions with more than 95% accuracy in a test cohort. Beyond their predictive capacity, these CpGs are located near genes involved in the immune response, the nervous system, ion transport or ATP synthesis, pathways known to be deregulated in CCCs. Among these genes, some are also differentially expressed in heart tissues. Interestingly, the CpGs of interest are tagged to genes mainly involved in nervous and ionic processes. Given the close link between methylation and gene expression, these lists of CpGs promise to be not only good biomarkers, but also good indicators of key elements in the development of this pathology.


Asunto(s)
Cardiomiopatía Chagásica , Enfermedad de Chagas , Adenosina Trifosfato/metabolismo , Biomarcadores/metabolismo , Cardiomiopatía Chagásica/diagnóstico , Cardiomiopatía Chagásica/genética , Enfermedad de Chagas/genética , Metilación de ADN , Humanos
5.
Immunobiology ; 227(5): 152242, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35870262

RESUMEN

Single nucleotide polymorphisms (SNPs) that do not change the composition of amino acids and cause synonymous mutations (sSNPs) were previously considered to lack any functional roles. However, sSNPs have recently been shown to interfere with protein expression owing to a myriad of factors related to the regulation of transcription, mRNA stability, and protein translation processes. In patients with Chagas disease, the presence of the synonymous mutation rs1129293 in phosphatidylinositol-4,5-bisphosphate 3-kinase gamma (PIK3CG) gene contributes to the development of the chronic Chagas cardiomyopathy (CCC), instead of the digestive or asymptomatic forms. In this study, we aimed to investigate whether rs1129293 is associated with the transcription of PIK3CG mRNA and its activity by quantifying AKT phosphorylation in the heart samples of 26 chagasic patients with CCC. Our results showed an association between rs1129293 and decreased PIK3CG mRNA expression levels in the cardiac tissues of patients with CCC. The phosphorylation levels of AKT, the protein target of PI3K, were also reduced in patients with this mutation, but were not correlated with PI3KCG mRNA expression levels. Moreover, bioinformatics analysis showed that rs1129293 and other SNPs in linkage disequilibrium (LD) were associated with the transcriptional regulatory elements, post-transcriptional modifications, and cell-specific splicing expression of PIK3CG mRNA. Therefore, our data demonstrates that the synonymous SNP rs1129293 is capable of affecting the PIK3CG mRNA expression and PI3Kγ activation.


Asunto(s)
Cardiomiopatía Chagásica , Cardiomiopatía Chagásica/genética , Fosfatidilinositol 3-Quinasa Clase Ib/genética , Humanos , Fosfatidilinositol 3-Quinasas , Polimorfismo de Nucleótido Simple , Proteínas Proto-Oncogénicas c-akt , ARN Mensajero/genética , ARN Mensajero/metabolismo , Mutación Silenciosa
6.
Front Immunol ; 12: 755862, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867992

RESUMEN

Infection by the protozoan Trypanosoma cruzi causes Chagas disease cardiomyopathy (CCC) and can lead to arrhythmia, heart failure and death. Chagas disease affects 8 million people worldwide, and chronic production of the cytokines IFN-γ and TNF-α by T cells together with mitochondrial dysfunction are important players for the poor prognosis of the disease. Mitochondria occupy 40% of the cardiomyocytes volume and produce 95% of cellular ATP that sustain the life-long cycles of heart contraction. As IFN-γ and TNF-α have been described to affect mitochondrial function, we hypothesized that IFN-γ and TNF-α are involved in the myocardial mitochondrial dysfunction observed in CCC patients. In this study, we quantified markers of mitochondrial dysfunction and nitro-oxidative stress in CCC heart tissue and in IFN-γ/TNF-α-stimulated AC-16 human cardiomyocytes. We found that CCC myocardium displayed increased levels of nitro-oxidative stress and reduced mitochondrial DNA as compared with myocardial tissue from patients with dilated cardiomyopathy (DCM). IFN-γ/TNF-α treatment of AC-16 cardiomyocytes induced increased nitro-oxidative stress and decreased the mitochondrial membrane potential (ΔΨm). We found that the STAT1/NF-κB/NOS2 axis is involved in the IFN-γ/TNF-α-induced decrease of ΔΨm in AC-16 cardiomyocytes. Furthermore, treatment with mitochondria-sparing agonists of AMPK, NRF2 and SIRT1 rescues ΔΨm in IFN-γ/TNF-α-stimulated cells. Proteomic and gene expression analyses revealed that IFN-γ/TNF-α-treated cells corroborate mitochondrial dysfunction, transmembrane potential of mitochondria, altered fatty acid metabolism and cardiac necrosis/cell death. Functional assays conducted on Seahorse respirometer showed that cytokine-stimulated cells display decreased glycolytic and mitochondrial ATP production, dependency of fatty acid oxidation as well as increased proton leak and non-mitochondrial oxygen consumption. Together, our results suggest that IFN-γ and TNF-α cause direct damage to cardiomyocytes' mitochondria by promoting oxidative and nitrosative stress and impairing energy production pathways. We hypothesize that treatment with agonists of AMPK, NRF2 and SIRT1 might be an approach to ameliorate the progression of Chagas disease cardiomyopathy.


Asunto(s)
Cardiomiopatía Chagásica/metabolismo , Interferón gamma/metabolismo , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Oxidativo/fisiología , Factor de Necrosis Tumoral alfa/metabolismo , Adolescente , Adulto , Anciano , Cardiomiopatía Chagásica/patología , Cardiomiopatía Chagásica/fisiopatología , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/patología , Miocitos Cardíacos/patología , Adulto Joven
7.
Nat Commun ; 9(1): 1513, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29666415

RESUMEN

Chagas disease is caused by infection with the protozoan Trypanosoma cruzi (T. cruzi) and is an important cause of severe inflammatory heart disease. However, the mechanisms driving Chagas disease cardiomyopathy have not been completely elucidated. Here, we show that the canonical PI3Kγ pathway is upregulated in both human chagasic hearts and hearts of acutely infected mice. PI3Kγ-deficient mice and mutant mice carrying catalytically inactive PI3Kγ are more susceptible to T. cruzi infection. The canonical PI3Kγ signaling in myeloid cells is essential to restrict T. cruzi heart parasitism and ultimately to avoid myocarditis, heart damage, and death of mice. Furthermore, high PIK3CG expression correlates with low parasitism in human Chagas' hearts. In conclusion, these results indicate an essential role of the canonical PI3Kγ signaling pathway in the control of T. cruzi infection, providing further insight into the molecular mechanisms involved in the pathophysiology of chagasic heart disease.


Asunto(s)
Cardiomiopatía Chagásica/inmunología , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Transducción de Señal/inmunología , Trypanosoma cruzi/inmunología , Adulto , Animales , Biopsia , Línea Celular , Cardiomiopatía Chagásica/parasitología , Cardiomiopatía Chagásica/patología , Fosfatidilinositol 3-Quinasa Clase Ib/genética , Modelos Animales de Enfermedad , Femenino , Corazón/parasitología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Células Mieloides/inmunología , Células Mieloides/metabolismo , Miocardio/inmunología , Miocardio/patología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Quinoxalinas/farmacología , Tiazolidinedionas/farmacología , Trypanosoma cruzi/patogenicidad , Regulación hacia Arriba
8.
J Infect Dis ; 214(1): 161-5, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-26951817

RESUMEN

Long noncoding RNAs (lncRNAs) modulate gene expression at the epigenetic, transcriptional, and posttranscriptional levels. Dysregulation of the lncRNA known as myocardial infarction-associated transcript (MIAT) has been associated with myocardial infarction. Chagas disease causes a severe inflammatory dilated chronic cardiomyopathy (CCC). We investigated the role of MIAT in CCC. A whole-transcriptome analysis of heart biopsy specimens and formalin-fixed, paraffin-embedded samples revealed that MIAT was overexpressed in patients with CCC, compared with subjects with noninflammatory dilated cardiomyopathy and controls. These results were confirmed in a mouse model. Results suggest that MIAT is a specific biomarker of CCC.


Asunto(s)
Enfermedad de Chagas/complicaciones , Enfermedad de Chagas/genética , Perfilación de la Expresión Génica , Infarto del Miocardio/etiología , Infarto del Miocardio/genética , ARN Largo no Codificante , Animales , Enfermedad de Chagas/fisiopatología , Femenino , Humanos , Masculino , Ratones , Factores de Transcripción
9.
Infect Immun ; 71(10): 5456-60, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14500462

RESUMEN

Hepatic periportal fibrosis (PPF), associated with portal hypertension, is a major pathological consequence of infections with Schistosoma mansoni and Schistosoma japonicum. Indeed, affected subjects may die from portal hypertension. Previous studies have indicated that tumor necrosis factor alpha (TNF-alpha) may aggravate fibrosis. We therefore investigated whether PPF was associated with certain polymorphisms of the TNF-alpha gene. Four polymorphisms (TNF-alpha -376 G/A, -308 G/A, -238 G/A, and +488 G/A) were investigated in two Sudanese populations living in an area in which S. mansoni is endemic. These polymorphisms were analyzed for 105 Sudanese subjects with various grades of PPF, from mild to advanced; all subjects were from two neighboring villages (Taweela and Umzukra). They were then analyzed for 70 subjects with advanced liver disease and for 345 matched controls from the Gezira region. We found no evidence of associations between these four polymorphisms and PPF in both of these studies. Thus, these four polymorphisms, two of which (TNF-alpha -376 and -308) were found to increase TNF-alpha gene transcription, are unlikely to have a major effect on PPF progression in these populations. However, this result does not exclude the possibility that these polymorphisms have a minor effect on PPF development.


Asunto(s)
Polimorfismo Genético , Esquistosomiasis mansoni/genética , Esquistosomiasis mansoni/inmunología , Factor de Necrosis Tumoral alfa/genética , Secuencia de Bases , ADN/genética , Fibrosis , Frecuencia de los Genes , Humanos , Hipertensión Portal/etiología , Hipertensión Portal/patología , Hígado/patología , Esquistosomiasis mansoni/complicaciones , Sudán
10.
J Immunol ; 169(2): 929-36, 2002 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-12097398

RESUMEN

Hepatic periportal fibrosis, which affects 5-10% of subjects infected by Schistosoma mansoni, is caused by the T cell-dependent granuloma that develop around schistosome eggs. Experimental models of infection have shown that granuloma and fibrosis are tightly regulated by cytokines. However, it is unknown why advanced periportal fibrosis occurs only in certain subjects. The goal of the present study was to evaluate the cytokine response of S. mansoni-infected subjects with advanced liver disease in an attempt to relate susceptibility to periportal fibrosis with an abnormal production of cytokines that regulate granuloma and fibrosis. Fibrosis was evaluated by ultrasound on 795 inhabitants of a Sudanese village in which S. mansoni is endemic: advanced periportal fibrosis was observed in 12% of the population; 35% of the affected subjects exhibited signs of portal hypertension. Age (odds ratio (OR), 11.5), gender (OR, 4.2), and infection levels (OR, 2.2) were significantly (p < or = 0.01) associated with hepatic fibrosis. Cytokines produced by egg-stimulated blood mononuclear cells from 99 subjects were measured (75 with no or mild fibrosis; 24 subjects with advanced fibrosis). Multivariate analysis of cytokine levels showed that high IFN-gamma levels were associated with a marked reduction of the risk of fibrosis (p = 0.01; OR, 0.1); in contrast, high TNF-alpha levels were associated with an increased risk (p = 0.05; OR, 4.6) of periportal fibrosis. Moreover, infection levels were negatively associated with IFN-gamma production. These results with observations in experimental models strongly suggest that IFN-gamma plays a key role in the protection of S. mansoni-infected patients against periportal fibrosis, whereas TNF-alpha may aggravate the disease.


Asunto(s)
Interferón-alfa/fisiología , Cirrosis Hepática/inmunología , Cirrosis Hepática/prevención & control , Esquistosomiasis mansoni/inmunología , Esquistosomiasis mansoni/patología , Factor de Necrosis Tumoral alfa/fisiología , Adulto , Células Cultivadas , Citocinas/biosíntesis , Citocinas/fisiología , Femenino , Granuloma/inmunología , Granuloma/parasitología , Humanos , Interferón-alfa/biosíntesis , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Cirrosis Hepática/parasitología , Cirrosis Hepática/patología , Masculino , Sistema Porta , Factores de Riesgo , Factor de Necrosis Tumoral alfa/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA