Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nanoscale Adv ; 6(3): 947-959, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38298598

RESUMEN

Multivalent ligands hold promise for enhancing avidity and selectivity to simultaneously target multimeric proteins, as well as potentially modulating receptor signaling in pharmaceutical applications. Essential for these manipulations are nanosized scaffolds that precisely control ligand display patterns, which can be achieved by using polyproline oligo-helix macrocyclic nanoscaffolds via selective binding to protein oligomers and cell surface receptors. This work focuses on synthesis and structural characterization of different-sized polyproline tri-helix macrocyclic (PP3M) scaffolds. Through combined analysis of circular dichroism (CD), small- and wide-angle X-ray scattering (SWAXS), electron spin resonance (ESR) spectroscopy, and molecular modeling, a non-coplanar tri-helix loop structure with partially crossover helix ends is elucidated. This structural model aligns well with scanning tunneling microscopy (STM) imaging. The present work enhances the precision of nanoscale organic synthesis, offering prospects for controlled ligand positioning on scaffolds. This advancement paves the way for further applications in nanomedicine through selective protein interaction, manipulation of cell surface receptor functions, and developments of more complex polyproline-based nanostructures.

2.
Environ Toxicol ; 37(1): 131-141, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34664771

RESUMEN

Bisphenol A (BPA) is an estrogen-like compound, and an environmental hormone, that is commonly used in daily life. Therefore, it may enter the human body through food or direct contact, causing BPA residues in blood and urine. Because most studies focused on the analysis of BPA in reproductive cells or tissues, regarding evidence the effect of BPA on human retinal pigment epithelium (ARPE-19) cells unavailable. Accordingly, the present study explored the cytotoxicity of BPA on ARPE-19 cells. After BPA treatment, the expression of Bcl-XL an antiapoptotic protein, in the mitochondria decreased, and the expression of Bax, a proapoptotic protein increased. Then the mitochondrial membrane potential was affected. BPA changed in mitochondrial membrane potential led to the release of cytochrome C, which activated caspase-9 to promote downstream caspase-3 leading to cytotoxicity. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase 1 (HO-1) pathway play a major role in age-related macular degeneration. Our results showed that expression of HO-1 and Nrf2 suppressed by BPA. Superoxide dismutase and catalase, which Nrf2 downstream antioxidants, were degraded by BPA. AMP-activated kinase (AMPK), which can regulate the phosphorylation of Nrf2, and the phosphorylation of AMPK expression was reduced by BPA. Finally, BPA-induced ROS generation and cytotoxicity were reduced by N-acetyl-l-cysteine. Taken together, these results suggest that BPA induced ARPE-19 cells via oxidative stress, which was associated with down regulated Nrf2/HO-1 pathway, and the mitochondria dependent apoptotic signaling pathway.


Asunto(s)
Hemo-Oxigenasa 1 , Factor 2 Relacionado con NF-E2 , Antioxidantes/metabolismo , Apoptosis , Compuestos de Bencidrilo , Supervivencia Celular , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Humanos , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Fenoles , Epitelio Pigmentado de la Retina/metabolismo
3.
Ecotoxicol Environ Saf ; 213: 112062, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33618169

RESUMEN

Genotoxic stress from environmental pollutants plays a critical role in cytotoxicity. The most abundant nitro-polycyclic aromatic hydrocarbon in environmental pollutants, 1-nitropyrene (1-NP), is generated during fossil fuel, diesel, and biomass combustion under sunlight. Macrophages, the key regulators of the innate immune system, provide the first line of defense against pathogens. The toxic effects of 1-NP on macrophages remain unclear. Through a lactate dehydrogenase assay, we measured the cytotoxicity induced by 1-NP. Our results revealed that 1-NP induced genotoxicity also named DNA damage, including micronucleus formation and DNA strand breaks, in a concentration-dependent manner. Furthermore, 1-NP induced p53 phosphorylation and nuclear accumulation; mitochondrial cytochrome c release; caspase-3 and -9 activation and cleavage; and poly (ADP-ribose) polymerase-1 (PARP-1) cleavage in a concentration-dependent manner. Pretreatment with the PARP inhibitor, 3-aminobenzamide, significantly reduced cytotoxicity, genotoxicity, and PARP-1 cleavage induced by 1-NP. Pretreatment with the caspase-3 inhibitor, z-DEVD-fmk, significantly reduced cytotoxicity, genotoxicity, PARP-1 cleavage, and caspase 3 activation induced by 1-NP. Pretreatment with the p53 inhibitor, pifithrin-α, significantly reduced cytotoxicity, genotoxicity, PARP-1 cleavage, caspase 3 activation, and p53 phosphorylation induced by 1-NP. We propose that cytotoxicity and genotoxicity induced by 1-NP by PARP-1 cleavage via caspase-3 and -9 activation through cytochrome c release from mitochondria and its upstream p53-dependent pathway in macrophages.


Asunto(s)
Caspasas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Pirenos/toxicidad , Apoptosis/efectos de los fármacos , Caspasa 9/metabolismo , Citocromos c/metabolismo , Daño del ADN , Humanos , Macrófagos/metabolismo , Mitocondrias/efectos de los fármacos , Fosforilación/efectos de los fármacos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
4.
Commun Biol ; 3(1): 668, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33184407

RESUMEN

BCL-2, a key protein in inhibiting apoptosis, has a 65-residue-long highly flexible loop domain (FLD) located on the opposite side of its ligand-binding groove. In vivo phosphorylation of the FLD enhances the affinity of BCL-2 for pro-apoptotic ligands, and consequently anti-apoptotic activity. However, it remains unknown as to how the faraway, unstructured FLD modulates the affinity. Here we investigate the protein-ligand interactions by fluorescence techniques and monitor protein dynamics by DEER and NMR spectroscopy tools. We show that phosphomimetic mutations on the FLD lead to a reduction in structural flexibility, hence promoting ligand access to the groove. The bound pro-apoptotic ligands can be displaced by the BCL-2-selective inhibitor ABT-199 efficiently, and thus released to trigger apoptosis. We show that changes in structural flexibility on an unstructured loop can activate an allosteric protein that is otherwise structurally inactive.


Asunto(s)
Proteínas Proto-Oncogénicas c-bcl-2/química , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Regulación Alostérica/genética , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Humanos , Ligandos , Simulación de Dinámica Molecular , Fosforilación , Dominios Proteicos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sulfonamidas/farmacología
5.
Polymers (Basel) ; 12(6)2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32580382

RESUMEN

Urethane dimethacrylate (UDMA) is a dimethacrylate-based resin monomer that can react with other related monomers and inorganic particles, causing hydrophobic polymerization through cross-linking upon light activation. UDMA polymers are commonly used for the reconstruction and reinforcement of teeth and bones. UDMA can become unbound and be released from light-cured polymer resins. Thus far, no evidence exists on the toxic effects of UDMA and its related working mechanisms for macrophages. Therefore, in the present study, we investigated the cytotoxicity, mode of cell death, DNA damage, caspase activities, mitochondrial dysfunction, and reactive oxygen species (ROS) generation in RAW264.7 macrophages treated with UDMA using the lactate dehydrogenase (LDH) assay kit, Annexin V-FITC and PI assays, micronucleus formation and comet assay, caspase fluorometric assay, JC-1 assay, and 2',7'-dichlorofluorescin diacetate (DCFH-DA) assay, respectively. Our results show that UDMA induced cytotoxicity; apoptosis and necrosis; genotoxicity, which is also called DNA damage; increased caspase-3, -8, and -9 activities; mitochondrial dysfunction; and intracellular ROS generation in a concentration-dependent manner in RAW264.7 macrophages. Thus, based on the observed inhibited concentration parallel trends, we concluded that UDMA induces toxic effects in macrophages. Furthermore, UDMA-induced intracellular ROS generation, cytotoxicity, and DNA damage were reduced by N-acetyl-L-cysteine.

6.
J Am Chem Soc ; 139(1): 67-70, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-28030770

RESUMEN

To carry and deliver nitric oxide with a controlled redox state and rate is crucial for its pharmaceutical/medicinal applications. In this study, the capability of cationic {Fe(NO)2}9 dinitrosyl iron complexes (DNICs) [(RDDB)Fe(NO)2]+ (R = Me, Et, Iso; RDDB = N,N'-bis(2,6-dialkylphenyl)-1,4-diaza-2,3-dimethyl-1,3-butadiene) carrying nearly unperturbed nitric oxide radical to form [(RDDB)Fe(NO)2(•NO)]+ was demonstrated and characterized by IR, UV-vis, EPR, NMR, and single-crystal X-ray diffractions. The unique triplet ground state of [(RDDB)Fe(NO)2(•NO)]+ results from the ferromagnetic coupling between two strictly orthogonal orbitals, one from Fe dz2 and the other a π*op orbital of a unique bent axial NO ligand, which is responsible for the growth of a half-field transition (ΔMS = 2) from 70 to 4 K in variable-temperature EPR measurements. Consistent with the NO radical character of coordinated axial NO ligand in complex [(MeDDB)Fe(NO)2(•NO)]+, the simple addition of MeCN/H2O into CH2Cl2 solution of complexes [(RDDB)Fe(NO)2(•NO)]+ at 25 °C released NO as a neutral radical, as demonstrated by the formation of [S5Fe(NO)2]- from [S5Fe(µ-S)2FeS5]2-.


Asunto(s)
Hierro/química , Óxido Nítrico/química , Óxidos de Nitrógeno/química , Radicales Libres/química , Conformación Molecular , Teoría Cuántica
7.
Chemistry ; 22(28): 9768-76, 2016 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-27246459

RESUMEN

Molecular mechanisms underlying the repair of nitrosylated [Fe-S] clusters by the microbial protein YtfE remain poorly understood. The X-ray crystal structure of YtfE, in combination with EPR, magnetic circular dichroism (MCD), UV, and (17) O-labeling electron spin echo envelope modulation measurements, show that each iron of the oxo-bridged Fe(II) -Fe(III) diiron core is coordinatively unsaturated with each iron bound to two bridging carboxylates and two terminal histidines in addition to an oxo-bridge. Structural analysis reveals that there are two solvent-accessible tunnels, both of which converge to the diiron center and are critical for capturing substrates. The reactivity of the reduced-form Fe(II) -Fe(II) YtfE toward nitric oxide demonstrates that the prerequisite for N2 O production requires the two iron sites to be nitrosylated simultaneously. Specifically, the nitrosylation of the two iron sites prior to their reductive coupling to produce N2 O is cooperative. This result suggests that, in addition to any repair of iron centers (RIC) activity, YtfE acts as an NO-trapping scavenger to promote the NO to N2 O transformation under low NO flux, which precedes nitrosative stress.


Asunto(s)
Hierro/química , Metaloproteínas/química , Óxido Nítrico/química , Dicroismo Circular , Cristalografía por Rayos X , Metaloproteínas/metabolismo , Modelos Moleculares , Óxido Nítrico/metabolismo
8.
J Phys Chem B ; 120(10): 2751-60, 2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26913490

RESUMEN

Apoptotic BAX protein functions as a critical gateway to mitochondria-mediated apoptosis. A diversity of stimuli has been implicated in initiating BAX activation, but the triggering mechanism remains elusive. Here we study the interaction of BAX with an intrinsically disordered BH3 motif of Bim protein (BimBH3) using ESR techniques. Upon incubation with BAX, BimBH3 binds to BAX at helices 1/6 trigger site to initiate conformational changes of BAX, which in turn promotes the formation of BAX oligomers. The study strategy is twofold: while BAX oligomerization was monitored through spectral changes of spin-labeled BAX, the binding kinetics was studied by observing time-dependent changes of spin-labeled BimBH3. Meanwhile, conformational transition between the unstructured and structured BimBH3 was measured. We show that helical propensity of the BimBH3 is increased upon binding to BAX but is then reduced after being released from the activated BAX; the release is due to the BimBH3-induced conformational change of BAX that is a prerequisite for the oligomer assembling. Intermediate states are identified, offering a key snapshot of the coupled folding and binding process. Our results provide a quantitative mechanistic description of the BAX activation and reveal new insights into the mechanism underlying the interactions between BAX and BH3-mimetic peptide.


Asunto(s)
Apoptosis , Proteína 11 Similar a Bcl2/química , Proteína 11 Similar a Bcl2/metabolismo , Péptidos/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Cinética , Modelos Moleculares , Péptidos/química , Proteína X Asociada a bcl-2/química
9.
Structure ; 23(1): 139-148, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25497728

RESUMEN

BAX protein plays a key role in the mitochondria-mediated apoptosis. However, it remains unclear by what mechanism BAX is triggered to initiate apoptosis. Here, we reveal the mechanism using electron spin resonance (ESR) techniques. An inactive BAX monomer was found to exhibit conformational heterogeneity and exist at equilibrium in two conformations, one of which has never been reported. We show that upon apoptotic stimulus by BH3-only peptides, BAX can be induced to convert into either a ligand-bound monomer or an oligomer through a conformational selection mechanism. The kinetics of reaction is studied by means of time-resolved ESR, allowing a direct in situ observation for the transformation of BAX from the native to the bound states. In vitro mitochondrial assays provide further discrimination between the proposed BAX states, thereby revealing a population-shift allosteric mechanism in the process. BAX's apoptotic function is shown to critically depend on excursions between different structural conformations.


Asunto(s)
Apoptosis , Pliegue de Proteína , Proteína X Asociada a bcl-2/química , Proteína X Asociada a bcl-2/fisiología , Animales , Ratones , Modelos Moleculares , Fragmentos de Péptidos/química , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/química , Proteína X Asociada a bcl-2/metabolismo
10.
Biochim Biophys Acta ; 1844(10): 1851-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25117899

RESUMEN

Electrostatic interaction is a major driving force in the binding of proteins to highly acidic glycosaminoglycan, such as heparin. Although NMR backbone chemical shifts have generally been used to identify the heparin-binding site on a protein, however, there is no correlation between the binding free energies and the perturbed backbone chemical shifts for individual residues. The binding event occurs at the end of a side chain of basic residue, and does not require causing significant alterations in the backbone environment at a distance of multiple bonds. We used the H2CN NMR pulse sequence to detect heparin binding through the side-chain resonances Hε-Cε-Nζ of Lys and Hδ-Cδ-Nε of Arg in the two proteins of hepatoma-derived growth factor (HDGF) and basic fibroblast growth factor (FGF2). H2CN titration experiments revealed chemical shift perturbations in the side chains, which were correlated with the free energy changes in various mutants. The residues K19 in HDGF and K125 in FGF2 demonstrated the most significant perturbations, consistent with our previous observation that the two residues are crucial for binding. The result suggests that H2CN NMR provides a precise evaluation for the electrostatic interactions. The discrepancy observed between backbone and side chain chemical shifts is correlated to the solvent accessibility of residues that the K19 and K125 backbones are highly buried with the restricted backbone conformation and are not strongly affected by the events at the end of the side chains.

11.
Langmuir ; 29(45): 13865-72, 2013 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-24138087

RESUMEN

Under nanoconfinement the formation of crystalline ice is suppressed, allowing the study of water dynamics at subfreezing temperatures. Here we report a temperature-dependent investigation (170-260 K) of the behavior of hydration water under nanoconfinement by ESR techniques. A 26-mer-long peptide and the Bax protein are studied. This study provides site-specific information about the different local hydrations concurrently present in the protein/peptide solution, enabling a decent comparison of the hydration molecules-those that are buried inside, in contact with, and detached from the protein surface. Such a comparison is not possible without employing ESR under nanoconfinement. Though the confined bulk and surface hydrations behave differently, they both possess a transition similar to the reported fragile-to-strong crossover transition around 220 K. On the contrary, this transition is absent for the hydration near the buried sites of the protein. The activation energy determined under nanoconfinement is found to be lower in surface hydration than in bulk hydration. The protein structural flexibility, derived from the interspin distance distributions P(r) at different temperatures, is obtained by dipolar ESR spectroscopy. The P(r) result demonstrates that the structural flexibility is strongly correlated with the transition in the surface water, corroborating the origin of the protein dynamical transition at subfreezing temperatures.


Asunto(s)
Nanotecnología/métodos , Péptidos/química , Agua/química , Proteína X Asociada a bcl-2/química , Animales , Espectroscopía de Resonancia por Spin del Electrón , Ratones , Modelos Moleculares , Conformación Proteica , Propiedades de Superficie , Temperatura
12.
PLoS One ; 8(6): e68264, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23840841

RESUMEN

There is considerable evidence for the essential role of surface water in protein function and structure. However, it is unclear to what extent the hydration water and protein are coupled and interact with each other. Here, we show by ESR experiments (cw, DEER, ESEEM, and ESE techniques) with spin-labeling and nanoconfinement techniques that the vitrified hydration layers can be evidently recognized in the ESR spectra, providing nanoscale understanding for the biological interfacial water. Two peptides of different secondary structures and lengths are studied in vitrified bulk solvents and in water-filled nanochannels of different pore diameter (6.1~7.6 nm). The existence of surface hydration and bulk shells are demonstrated. Water in the immediate vicinity of the nitroxide label (within the van der Waals contacts, ~0.35 nm) at the water-peptide interface is verified to be non-crystalline at 50 K, and the water accessibility changes little with the nanochannel dimension. Nevertheless, this water accessibility for the nanochannel cases is only half the value for the bulk solvent, even though the peptide structures remain largely the same as those immersed in the bulk solvents. On the other hand, the hydration density in the range of ~2 nm from the nitroxide spin increases substantially with decreasing pore size, as the density for the largest pore size (7.6 nm) is comparable to that for the bulk solvent. The results demonstrate that while the peptides are confined but structurally unaltered in the nanochannels, their surrounding water exhibits density heterogeneity along the peptide surface normal. The causes and implications, especially those involving the interactions between the first hydration water and peptides, of these observations are discussed. Spin-label ESR techniques are proven useful for studying the structure and influences of interfacial hydration.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Nanotecnología/métodos , Péptidos/química , Proteínas/química , Solventes/química , Agua/química , Porosidad , Estructura Secundaria de Proteína , Marcadores de Spin
13.
Prion ; 6(5): 489-97, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22987112

RESUMEN

In prion diseases, the normal prion protein is transformed by an unknown mechanism from a mainly α-helical structure to a ß-sheet-rich, disease-related isomer. In this study, we surprisingly found that a slow, spontaneous α-to-coil-to-ß transition could be monitored by circular dichroism spectroscopy in one full-length mouse recombinant prion mutant protein, denoted S132C/N181C, in which the endogenous cysteines C179 and C214 were replaced by Ala and S132 and N181 were replaced by Cys, during incubation in a non-denaturing neutral buffer. No denaturant was required to destabilize the native state for the conversion. The product after this structural conversion is toxic ß-oligomers with high fluorescence intensity when binding with thioflavin T. Site-directed spin-labeling ESR data suggested that the structural conversion involves the unfolding of helix 2. After examining more protein mutants, it was found that the spontaneous structural conversion is due to the disulfide-deletion (C to A mutations). The recombinant wild-type mouse prion protein could also be transformed into ß-oligomers and amyloid fibrils simply by dissolving and incubating the protein in 0.5 mM NaOAc (pH 7) and 1 mM DTT at 25°C with no need of adding any denaturant to destabilize the prion protein. Our findings indicate the important role of disulfide bond reduction on the structural conversion of the recombinant prion protein, and highlight the special "intrinsically disordered" conformational character of the recombinant prion protein.


Asunto(s)
Disulfuros/química , Priones/química , Pliegue de Proteína , Animales , Sitios de Unión , Tampones (Química) , Dicroismo Circular , Ratones , Fragmentos de Péptidos/química , Proteínas Priónicas , Priones/metabolismo , Conformación Proteica , Desnaturalización Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Termodinámica
14.
Phys Chem Chem Phys ; 13(39): 17521-31, 2011 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-21892486

RESUMEN

Nanochannels of mesoporous silica materials were previously found useful for reducing the tumbling motion of encapsulated biomolecules while leaving the biomolecular structure undisturbed. Here we show that experiments of cw-ESR distance measurement in nano-confinement can benefit immediately from the above mentioned features of sufficiently slow molecular tumbling, enabling more accurate determination of interspin distances throughout the temperature range, from 200 to 300 K. A 26-residue prion protein peptide, which can fold into either a helical or hairpin structure, as well as its variants, are studied by using ESR. By comparing the spectra obtained in vitrified bulk solutions vs. mesopores, the spectra from the latter display typical slow-motional lineshapes, thereby enabling dipolar anisotropy to be unambiguously revealed throughout the temperature range, whereas the spectra from the former are dominated by the disordering of the side chain and the rotational tumbling of the peptide. The spectral changes regarding the two secondary structures in nano-confinement are found to show a strong correlation with the dynamic properties of the backbones. The effect of viscosity agent perturbation on the motion of an R1 nitroxide side chain, a commonly employed probe, could be substantial in a bulk solution condition, though it is absolutely absent in nanochannels. Under nano-confinement, the probe is proven sufficiently sensitive to the backbone motions. Overall, the distance distributions determined from the mesopore studies not only describe the conformational structures (by average distances), but also the backbone dynamics (by distribution widths) of the spin-labeled peptides.


Asunto(s)
Nanoestructuras/química , Péptidos/química , Termodinámica , Espectroscopía de Resonancia por Spin del Electrón , Modelos Moleculares , Conformación Proteica
15.
Proc Natl Acad Sci U S A ; 108(34): 14145-50, 2011 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-21844377

RESUMEN

In nano-confinements, aqueous solutions can be found to remain in a liquid state at subfreezing temperatures. The finding provides a means of entering into previously inaccessible temperature regions for studying the dynamics and structure of bulk liquid. Here we show that studying biomolecular structures in nano-confinements improves the accuracy of cryostructures and provides better insight into the relationship between hydration water and biomolecules. Synthetic prion protein peptides are studied in two experimental conditions: (i) in confined nanochannels within mesoporous materials, and (ii) in vitrified bulk solvents, with a temperature range of 50-275 K, using cw/pulse ESR techniques. A large inhomogeneous lineshape broadening is only observed for the spectra from the vitrified bulk solvent below 70 K, suggesting a possible peptide clustering in the solution. The spin-counting and distance measurements by DEER-ESR provide further evidence that peptides are dispersed homogeneously in mesopores but heterogeneously in vitrified solvents wherein the biomolecular structure is disturbed due to heterogeneity in the bulk solvent structure. Our study demonstrates that the nanospace within mesoporous materials provides an amorphous environment that is better than vitrified bulk solvent for studying biostructures at cryogenic temperatures.


Asunto(s)
Frío , Conformación Molecular , Espectroscopía de Resonancia por Spin del Electrón , Nanopartículas/química , Péptidos/química , Porosidad , Soluciones , Solventes , Marcadores de Spin , Factores de Tiempo , Vitrificación
16.
J Phys Chem B ; 115(35): 10462-9, 2011 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-21780815

RESUMEN

2D electron-electron double resonance (2D-ELDOR) with the "full Sc-" method of analysis is applied to the study of plasma membrane vesicles. Membrane structural changes upon antigen cross-linking of IgE receptors (IgE-FcεRI) in plasma membrane vesicles (PMVs) isolated from RBL-2H3 mast cells are investigated, for the first time, by means of these 2D-ELDOR techniques. Spectra of 1-palmitoyl-2-(16-doxyl stearoyl) phosphatidylcholine (16-PC) from PMVs before and after this stimulation at several temperatures are reported. The results demonstrate a coexistence of liquid-ordered (L(o)) and liquid-disordered (L(d)) components. We find that upon cross-linking, the membrane environment is remodeled to become more disordered, as shown by a moderate increase in the population of the L(d) component. This change in the relative amount of the L(o) versus L(d) components upon cross-linking is consistent with a model wherein the IgE receptors, which when clustered by antigen to cause cell stimulation, lead to more disordered lipids, and their dynamic and structural properties are slightly altered. This study demonstrates that 2D-ELDOR, analyzed by the full Sc- method, is a powerful approach for capturing the molecular dynamics in biological membranes. This is a particular case showing how 2D-ELDOR can be applied to study physical processes in complex systems that yield subtle changes.


Asunto(s)
Membrana Celular/química , Receptores de IgE/química , Animales , Línea Celular Tumoral , Reactivos de Enlaces Cruzados/química , Espectroscopía de Resonancia por Spin del Electrón/métodos , Ratas
17.
Biophys J ; 97(3): 930-6, 2009 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-19651052

RESUMEN

Cw-ESR distance measurement method is extremely valuable for studying the dynamics-function relationship of biomolecules. However, extracting distance distributions from experiments has been a highly technique-demanding procedure. It has never been conclusively identified, to our knowledge, that the problems involved in the analysis are ill posed and are best solved using Tikhonov regularization. We treat the problems from a novel point of view. First of all, we identify the equations involved and uncover that they are actually two linear first-kind Fredholm integral equations. They can be combined into one single linear inverse problem and solved in a Tikhonov regularization procedure. The improvement with our new treatment is significant. Our approach is a direct and reliable mathematical method capable of providing an unambiguous solution to the ill-posed problem. It need not perform nonlinear least-squares fitting to infer a solution from noise-contaminated data and, accordingly, substantially reduces the computation time and the difficulty of analysis. Numerical tests and experimental data of polyproline II peptides with variant spin-labeled sites are provided to demonstrate our approach. The high resolution of the distance distributions obtainable with our new approach enables a detailed insight into the flexibility of dynamic structure and the identification of conformational species in solution state.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Simulación por Computador , Glicerol/química , Análisis de los Mínimos Cuadrados , Modelos Lineales , Modelos Teóricos , Péptidos/química , Probabilidad , Estructura Secundaria de Proteína , Marcadores de Spin , Sacarosa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA