Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(43): 49964-49973, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37769296

RESUMEN

The clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas) (CRISPR/Cas) systems have recently emerged as powerful molecular biosensing tools based on their collateral cleavage activity due to their simplicity, sensitivity, specificity, and broad applicability. However, the direct application of the collateral cleavage activity for in situ intracellular detection is still challenging. Here, we debut a CRISPR/Cas-assisted nanoneedle sensor (nanoCRISPR) for intracellular adenosine triphosphate (ATP), which avoids the challenges associated with intracellular collateral cleavage by introducing a two-step process of intracellular target recognition, followed by extracellular transduction and detection. ATP recognition occurs by first presenting in the cell cytosol an aptamer-locked Cas12a activator conjugated to nanoneedles; the recognition event unlocks the activator immobilized on the nanoneedles. The nanoneedles are then removed from the cells and exposed to the Cas12a/crRNA complex, where the activator triggers the cleavage of an ssDNA fluorophore-quencher pair, generating a detectable fluorescence signal. NanoCRISPR has an ATP detection limit of 246 nM and a dynamic range from 1.56 to 50 µM. Importantly, nanoCRISPR can detect intracellular ATP in 30 min in live cells without impacting cell viability. We anticipate that the nanoCRISPR approach will contribute to broadening the biomedical applications of CRISPR/Cas sensors for the detection of diverse intracellular molecules in living systems.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Adenosina Trifosfato , Supervivencia Celular , Citosol , ADN de Cadena Simple
2.
Adv Healthc Mater ; 12(27): e2301052, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37499629

RESUMEN

The concept of using two-photon excitation in the NIR for the spatiotemporal control of biological processes holds great promise. However, its use for the delivery of nucleic acids has been very scarcely described and the reported procedures are not optimal as they often involve potentially toxic materials and irradiation conditions. This work prepares a simple system made of biocompatible porous silicon nanoparticles (pSiNP) for the safe siRNA photocontrolled delivery and gene silencing in cells upon two-photon excitation. PSiNP are linked to an azobenzene moiety, which possesses a lysine group (pSiNP@ICPES-azo@Lys) to efficiently complex siRNA. Non-linear excitation of the two-photon absorber system (pSiNP) followed by intermolecular energy transfer (FRET) to trans azobenzene moiety, result in the photoisomerization of the azobenzene from trans to cis and in the destabilization of the azobenzene-siRNA complex, thus inducing the delivery of the cargo siRNA to the cytoplasm of cells. Efficient silencing in MCF-7 expressing stable firefly luciferase with siRNAluc against luciferase is observed. Furthermore, siRNA against inhibitory apoptotic protein (IAP) leads to over 70% of MCF-7 cancer cell death. The developed technique using two-photon light allows a unique high spatiotemporally controlled and safe siRNA delivery in cells in few seconds of irradiation.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , ARN Interferente Pequeño/genética , Silicio , Porosidad , Transfección , Línea Celular Tumoral
3.
J Microsc ; 291(1): 30-42, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36639864

RESUMEN

Multicellular tumour cell spheroids embedded within three-dimensional (3D) hydrogels or extracellular matrices (ECM) are widely used as models to study cancer growth and invasion. Standard methods to embed spheroids in 3D matrices result in random placement in space which limits the use of inverted fluorescence microscopy techniques, and thus the resolution that can be achieved to image molecular detail within the intact spheroid. Here, we leverage UV photolithography to microfabricate PDMS (polydimethylsiloxane) stamps that allow for generation of high-content, reproducible well-like structures in multiple different imaging chambers. Addition of multicellular tumour spheroids into stamped collagen structures allows for precise positioning of spheroids in 3D space for reproducible high-/super-resolution imaging. Embedded spheroids can be imaged live or fixed and are amenable to immunostaining, allowing for greater flexibility of experimental approaches. We describe the use of these spheroid imaging chambers to analyse cell invasion, cell-ECM interaction, ECM alignment, force-dependent intracellular protein dynamics and extension of fine actin-based protrusions with a variety of commonly used inverted microscope platforms. This method enables reproducible, high-/super-resolution live imaging of multiple tumour spheroids, that can be potentially extended to visualise organoids and other more complex 3D in vitro systems.


Asunto(s)
Neoplasias , Humanos , Neoplasias/diagnóstico por imagen , Esferoides Celulares/patología , Colágeno , Matriz Extracelular
4.
Biomed Opt Express ; 13(4): 2278-2285, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35519240

RESUMEN

Confocal laser endomicroscopy (CLE) offers imaging of tissue microarchitecture and has emerged as a promising tool for in vivo clinical diagnosis of cancer across many organs. CLE, however, can show high inter-observer dependency and does not provide information about tissue molecular composition. In contrast, Raman spectroscopy is a label-free optical technique that provides detailed biomolecular compositional information but offers limited or no morphological information. Here we present a novel hybrid fiber-optic confocal Raman endomicroscopy system for morpho-chemical tissue imaging and analysis. The developed confocal endomicroscopy system is based on a novel detection scheme for rejecting Raman silica fiber interference permitting simultaneous CLE imaging and Raman spectral acquisition of tissues through a coherent fiber bundle. We show that this technique enables real-time microscopic visualization of tissue architecture as well as simultaneous pointwise label-free biomolecular characterization and fingerprinting of tissue paving the way for multimodal diagnostics at endoscopy.

5.
Biomater Sci ; 8(24): 6992-7013, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33136109

RESUMEN

Understanding, reproducing, and regulating the cellular and molecular processes underlying human embryogenesis is critical to improve our ability to recapitulate tissues with proper architecture and function, and to address the dysregulation of embryonic programs that underlies birth defects and cancer. The rapid emergence of stem cell technologies is enabling enormous progress in understanding embryogenesis using simple, powerful, and accessible in vitro models. Biomaterials are playing a central role in providing the spatiotemporal organisation of biophysical and biochemical signalling necessary to mimic, regulate and dissect the evolving embryonic niche in vitro. This contribution is rapidly improving our understanding of the mechanisms underlying embryonic patterning, in turn enabling the development of more effective clinical interventions for regenerative medicine and oncology. Here we highlight how key biomaterial approaches contribute to organise signalling in human embryogenesis models, and we summarise the biological insights gained from these contributions. Importantly, we highlight how nanotechnology approaches have remained largely untapped in this space, and we identify their key potential contributions.


Asunto(s)
Materiales Biocompatibles , Medicina Regenerativa , Desarrollo Embrionario , Humanos , Nanotecnología , Células Madre
6.
Biomed Microdevices ; 21(2): 44, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30963305

RESUMEN

In embryogenesis, mesenchymal condensation is a critical event during the formation of many organ systems, including cartilage and bone. During organ formation, mesenchymal cells aggregate and undergo compaction while activating developmental programmes. The final three-dimensional form of the organ, as well as cell fates, can be influenced by the size and shape of the forming condensation. This process is hypothesized to result from multiscale cell interactions within mesenchymal microenvironments; however, these are complex to investigate in vivo. Three-dimensional in vitro models that recapitulate key phenotypes can contribute to our understanding of the microenvironment interactions regulating this fundamental developmental process. Here we devise such models by using image analysis to guide the design of polydimethylsiloxane 3D microstructures as cell culture substrates. These microstructures establish geometrically constrained micromass cultures of mouse embryonic skeletal progenitor cells which influence the development of condensations. We first identify key phenotypes differentiating face and limb bud micromass cultures by linear discriminant analysis of the shape descriptors for condensation morphology, which are used to guide the rational design of a micropatterned polydimethylsiloxane substrate. High-content imaging analysis highlights that the geometry of the microenvironment affects the establishment and growth of condensations. Further, cells commit to establish condensations within the first 5 h; condensations reach their full size within 17 h; following which they increase cell density while maintaining size for at least 7 days. These findings elucidate the value of our model in dissecting key aspects of mesenchymal condensation development.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Madre Mesenquimatosas/citología , Animales , Adhesión Celular , Dimetilpolisiloxanos/química , Células Madre Embrionarias/citología , Fibronectinas/química , Ratones , Imagen Molecular , Nylons/química , Propilaminas/química , Silanos/química
7.
Adv Mater ; 31(12): e1806788, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30680803

RESUMEN

Owing to their ability to efficiently deliver biological cargo and sense the intracellular milieu, vertical arrays of high aspect ratio nanostructures, known as nanoneedles, are being developed as minimally invasive tools for cell manipulation. However, little is known of the mechanisms of cargo transfer across the cell membrane-nanoneedle interface. In particular, the contributions of membrane piercing, modulation of membrane permeability and endocytosis to cargo transfer remain largely unexplored. Here, combining state-of-the-art electron and scanning ion conductance microscopy with molecular biology techniques, it is shown that porous silicon nanoneedle arrays concurrently stimulate independent endocytic pathways which contribute to enhanced biomolecule delivery into human mesenchymal stem cells. Electron microscopy of the cell membrane at nanoneedle sites shows an intact lipid bilayer, accompanied by an accumulation of clathrin-coated pits and caveolae. Nanoneedles enhance the internalization of biomolecular markers of endocytosis, highlighting the concurrent activation of caveolae- and clathrin-mediated endocytosis, alongside macropinocytosis. These events contribute to the nanoneedle-mediated delivery (nanoinjection) of nucleic acids into human stem cells, which distribute across the cytosol and the endolysosomal system. This data extends the understanding of how nanoneedles modulate biological processes to mediate interaction with the intracellular space, providing indications for the rational design of improved cell-manipulation technologies.


Asunto(s)
Sistemas de Liberación de Medicamentos/instrumentación , Endocitosis/fisiología , Nanopartículas/química , Agujas , Silicio/química , Caveolas/metabolismo , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular , Clatrina/administración & dosificación , Clatrina/metabolismo , Citosol/metabolismo , Endosomas/metabolismo , Humanos , Espacio Intracelular/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Microscopía Electrónica/instrumentación , Pinocitosis/efectos de los fármacos , Porosidad , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/metabolismo , Propiedades de Superficie
8.
ACS Nano ; 10(3): 3214-3221, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26816294

RESUMEN

Nanometric field-effect-transistor (FET) sensors are made on the tip of spear-shaped dual carbon nanoelectrodes derived from carbon deposition inside double-barrel nanopipettes. The easy fabrication route allows deposition of semiconductors or conducting polymers to comprise the transistor channel. A channel from electrodeposited poly pyrrole (PPy) exhibits high sensitivity toward pH changes. This property is exploited by immobilizing hexokinase on PPy nano-FETs to give rise to a selective ATP biosensor. Extracellular pH and ATP gradients are key biochemical constituents in the microenvironment of living cells; we monitor their real-time changes in relation to cancer cells and cardiomyocytes. The highly localized detection is possible because of the high aspect ratio and the spear-like design of the nano-FET probes. The accurately positioned nano-FET sensors can detect concentration gradients in three-dimensional space, identify biochemical properties of a single living cell, and after cell membrane penetration perform intracellular measurements.


Asunto(s)
Adenosina Trifosfato/análisis , Técnicas Biosensibles/instrumentación , Análisis de la Célula Individual/instrumentación , Transistores Electrónicos , Adenosina Trifosfato/metabolismo , Línea Celular Tumoral , Disulfuros/química , Electrodos , Enzimas Inmovilizadas/metabolismo , Diseño de Equipo , Hexoquinasa/metabolismo , Humanos , Molibdeno/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Polímeros/química , Pirroles/química , Saccharomyces cerevisiae/enzimología
9.
Adv Mater ; 27(35): 5147-52, 2015 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-26197973

RESUMEN

Porous silicon nanoneedles can map Cathepsin B activity across normal and tumor human esophageal mucosa. Assembling a peptide-based Cathepsin B cleavable sensor over a large array of nano-needles allows the discrimination of cancer cells from healthy ones in mixed culture. The same sensor applied to tissue can map Cathepsin B activity with high resolution across the tumor margin area of esophageal adenocarcinoma.


Asunto(s)
Técnicas Biosensibles/métodos , Catepsina B/metabolismo , Citosol/enzimología , Esófago/citología , Nanotecnología/métodos , Silicio/química , Línea Celular Tumoral , Humanos , Membrana Mucosa/citología , Porosidad
10.
Proc Natl Acad Sci U S A ; 112(7): 1959-64, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25653336

RESUMEN

Gold quantum dots exhibit distinctive optical and magnetic behaviors compared with larger gold nanoparticles. However, their unfavorable interaction with living systems and lack of stability in aqueous solvents has so far prevented their adoption in biology and medicine. Here, a simple synthetic pathway integrates gold quantum dots within a mesoporous silica shell, alongside larger gold nanoparticles within the shell's central cavity. This "quantum rattle" structure is stable in aqueous solutions, does not elicit cell toxicity, preserves the attractive near-infrared photonics and paramagnetism of gold quantum dots, and enhances the drug-carrier performance of the silica shell. In vivo, the quantum rattles reduced tumor burden in a single course of photothermal therapy while coupling three complementary imaging modalities: near-infrared fluorescence, photoacoustic, and magnetic resonance imaging. The incorporation of gold within the quantum rattles significantly enhanced the drug-carrier performance of the silica shell. This innovative material design based on the mutually beneficial interaction of gold and silica introduces the use of gold quantum dots for imaging and therapeutic applications.


Asunto(s)
Oro/química , Imagen Multimodal , Puntos Cuánticos , Dióxido de Silicio/química , Células HeLa , Humanos , Microscopía Electrónica de Transmisión , Fototerapia
11.
Nano Lett ; 14(9): 5229-37, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25157643

RESUMEN

Functionalizing nanoparticles with cell-penetrating peptides is a popular choice for cellular delivery. We investigated the effects of TAT peptide concentration and arrangement in solution on functionalized nanoparticles' efficacy for membrane permeation. We found that cell internalization correlates with the positive charge distribution achieved prior to nanoparticle encountering interactions with membrane. We identified a combination of solution based properties required to maximize the internalization efficacy of TAT-functionalized nanoparticles.


Asunto(s)
Oro/química , Membrana Dobles de Lípidos/química , Nanopartículas/química , Péptidos/química , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/química , Simulación por Computador , Sistemas de Liberación de Medicamentos , Células HeLa , Humanos , Microscopía Electrónica de Transmisión , Simulación de Dinámica Molecular , Nanotecnología/métodos , Temperatura , Agua/química
12.
Chem Commun (Camb) ; 50(73): 10648-50, 2014 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-25075928

RESUMEN

A peptide was designed to generate a sub-nanometric template that guides the growth of fluorescent gold nanoclusters. The peptide was endorsed with nucleating moieties and a three-dimensional structure that arrests the growth of ultrasmall nanoparticles. The nanoclusters are not cytotoxic and can be found in the cytosol of cells.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Péptidos/química , Secuencia de Aminoácidos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Citosol/metabolismo , Humanos , Nanopartículas del Metal/toxicidad , Simulación de Dinámica Molecular
13.
Nat Nanotechnol ; 8(1): 61-8, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23241654

RESUMEN

The therapeutic efficacy of systemic drug-delivery vehicles depends on their ability to evade the immune system, cross the biological barriers of the body and localize at target tissues. White blood cells of the immune system--known as leukocytes--possess all of these properties and exert their targeting ability through cellular membrane interactions. Here, we show that nanoporous silicon particles can successfully perform all these actions when they are coated with cellular membranes purified from leukocytes. These hybrid particles, called leukolike vectors, can avoid being cleared by the immune system. Furthermore, they can communicate with endothelial cells through receptor-ligand interactions, and transport and release a payload across an inflamed reconstructed endothelium. Moreover, leukolike vectors retained their functions when injected in vivo, showing enhanced circulation time and improved accumulation in a tumour.


Asunto(s)
Biomimética/métodos , Leucocitos/química , Membranas Artificiales , Modelos Biológicos , Nanopartículas/química , Animales , Transporte Biológico , Adhesión Celular , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Leucocitos/metabolismo , Hígado/química , Hígado/metabolismo , Neoplasias Hepáticas Experimentales/química , Neoplasias Hepáticas Experimentales/metabolismo , Ratones , Ratones Endogámicos C57BL , Fagocitosis
14.
Adv Funct Mater ; 22(20): 4225-4235, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23227000

RESUMEN

Porous silicon (pSi) is emerging as a promising material in the development of nanovectors for the systemic delivery of therapeutic and imaging agents. The integration of photolithographic patterning, typical of the semiconductor industry, with electrochemical silicon etching provides a highly flexible strategy to fabricate monodisperse and precisely tailored nanovectors. Here, a microfabrication strategy for direct lithographic patterning of discoidal pSi particles is presented that enables precise and independent control over particle size, shape, and porous structure. Discoidal pSi nanovectors with diameters ranging from 500 to 2600 nm, heights from 200 to 700 nm, pore sizes from 5 to 150 nm, and porosities from 40 to 90% are demonstrated. The degradation in serum, interaction with immune and endothelial cells in vitro, and biodistribution in mice bearing breast tumors are assessed for two discoidal nanovectors with sizes of 600 nm × 400 nm and 1000 nm × 400 nm. It is shown that both particle types are degraded after 24 h of continuous gentle agitation in serum, do not stimulate cytokine release from macrophages or affect endothelial cell viability, and accumulate up to about 10% of the injected dose per gram tissue in orthotopic murine models of breast cancer. The accumulation of the discoidal pSi nanovectors into the breast tumor mass is found to be up to five times higher than for spherical silica beads with similar diameters.

15.
Biochim Biophys Acta ; 1810(3): 317-29, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20493927

RESUMEN

BACKGROUND: The daunting task for drug molecules to reach pathological lesions has fueled rapid advances in Nanomedicine. The progressive evolution of nanovectors has led to the development of multi-stage delivery systems aimed at overcoming the numerous obstacles encountered by nanovectors on their journey to the target site. SCOPE OF REVIEW: This review summarizes major findings with respect to silicon-based drug delivery vectors for cancer therapeutics and imaging. Based on rational design, well-established silicon technologies have been adapted for the fabrication of nanovectors with specific shapes, sizes, and porosities. These vectors are part of a multi-stage delivery system that contains multiple nano-components, each designed to achieve a specific task with the common goal of site-directed delivery of therapeutics. MAJOR CONCLUSIONS: Quasi-hemispherical and discoidal silicon microparticles are superior to spherical particles with respect to margination in the blood, with particles of different shapes and sizes having unique distributions in vivo. Cellular adhesion and internalization of silicon microparticles is influenced by microparticle shape and surface charge, with the latter dictating binding of serum opsonins. Based on in vitro cell studies, the internalization of porous silicon microparticles by endothelial cells and macrophages is compatible with cellular morphology, intracellular trafficking, mitosis, cell cycle progression, cytokine release, and cell viability. In vivo studies support superior therapeutic efficacy of liposomal encapsulated siRNA when delivered in multi-stage systems compared to free nanoparticles. This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas/química , Nanopartículas/uso terapéutico , Silicio/química , Animales , Humanos , Porosidad
16.
Small ; 6(23): 2691-700, 2010 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-20957619

RESUMEN

A new generation of nanocarriers, logic-embedded vectors (LEVs), is endowed with the ability to localize components at multiple intracellular sites, thus creating an opportunity for synergistic control of redundant or dual-hit pathways. LEV encoding elements include size, shape, charge, and surface chemistry. In this study, LEVs consist of porous silicon nanocarriers, programmed for cellular uptake and trafficking along the endosomal pathway, and surface-tailored iron oxide nanoparticles, programmed for endosomal sorting and partitioning of particles into unique cellular locations. In the presence of persistent endosomal localization of silicon nanocarriers, amine-functionalized nanoparticles are sorted into multiple vesicular bodies that form novel membrane-bound compartments compatible with cellular secretion, while chitosan-coated nanoparticles escape from endosomes and enter the cytosol. Encapsulation within the porous silicon matrix protects these nanoparticle surface-tailored properties, and enhances endosomal escape of chitosan-coated nanoparticles. Thus, LEVs provide a mechanism for shielded transport of nanoparticles to the lesion, cellular manipulation at multiple levels, and a means for targeting both within and between cells.


Asunto(s)
Portadores de Fármacos/metabolismo , Endosomas/metabolismo , Nanopartículas , Animales , Transporte Biológico , Línea Celular , Portadores de Fármacos/química , Exocitosis/fisiología , Macrófagos/metabolismo , Ratones
17.
J Biomed Mater Res A ; 94(4): 1236-43, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20694990

RESUMEN

Injectable and implantable porosified silicon (pSi) carriers and devices for prolonged and controlled delivery of biotherapeutics offer great promise for treatment of various chronic ailments and acute conditions. Polyethylene glycols (PEGs) are important surface modifiers currently used in clinic mostly to avoid uptake of particulates by reticulo-endothelial system (RES). In this work we show for the first time that covalent attachment of PEGs to the pSi surface can be used as a means to tune degradation kinetics of silicon structures. Seven PEGs with varying molecular weights (245, 333, 509, 686, 1214, 3400, and 5000 Da) were employed and the degradation of PEGylated pSi hemispherical microparticles in simulated physiological conditions was monitored by means of ICP-AES, SEM, and fluorimetry. Biocompatibility of the systems with human macrophages in vitro was also evaluated. The results clearly indicate that controlled PEGylation of silicon microparticles can offer a sensitive tool to finely tune their degradation kinetics and that the systems do not induce release of proinflammatory cytokines IL-6 and IL-8 in THP1 human macrophages.


Asunto(s)
Polietilenglicoles/química , Silicio/química , Línea Celular , Fluorescencia , Humanos , Concentración de Iones de Hidrógeno/efectos de los fármacos , Interleucina-8/metabolismo , Cinética , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Porosidad/efectos de los fármacos , Silicio/farmacología
18.
Cancer Res ; 70(9): 3687-96, 2010 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-20430760

RESUMEN

RNA interference (RNAi) is a powerful approach for silencing genes associated with a variety of pathologic conditions; however, in vivo RNAi delivery has remained a major challenge due to lack of safe, efficient, and sustained systemic delivery. Here, we report on a novel approach to overcome these limitations using a multistage vector composed of mesoporous silicon particles (stage 1 microparticles, S1MP) loaded with neutral nanoliposomes (dioleoyl phosphatidylcholine, DOPC) containing small interfering RNA (siRNA) targeted against the EphA2 oncoprotein, which is overexpressed in most cancers, including ovarian. Our delivery methods resulted in sustained EphA2 gene silencing for at least 3 weeks in two independent orthotopic mouse models of ovarian cancer following a single i.v. administration of S1MP loaded with EphA2-siRNA-DOPC. Furthermore, a single administration of S1MP loaded with-EphA2-siRNA-DOPC substantially reduced tumor burden, angiogenesis, and cell proliferation compared with a noncoding control siRNA alone (SKOV3ip1, 54%; HeyA8, 57%), with no significant changes in serum chemistries or in proinflammatory cytokines. In summary, we have provided the first in vivo therapeutic validation of a novel, multistage siRNA delivery system for sustained gene silencing with broad applicability to pathologies beyond ovarian neoplasms.


Asunto(s)
Nanopartículas/administración & dosificación , ARN Interferente Pequeño/administración & dosificación , Silicio/administración & dosificación , Animales , Línea Celular Tumoral , Femenino , Silenciador del Gen , Terapia Genética/métodos , Humanos , Liposomas/administración & dosificación , Liposomas/química , Liposomas/farmacocinética , Ratones , Ratones Desnudos , Nanopartículas/química , Neoplasias Ováricas/genética , Neoplasias Ováricas/terapia , Fosfatidilcolinas/administración & dosificación , Fosfatidilcolinas/química , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacocinética , Receptor EphA2/genética , Silicio/química , Silicio/farmacocinética , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA