Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Exp Zool B Mol Dev Evol ; 334(7-8): 405-422, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32488995

RESUMEN

Carotenoids are lipid-soluble yellow to orange pigments produced by plants, bacteria, and fungi. They are consumed by animals and metabolized to produce molecules essential for gene regulation, vision, and pigmentation. Cave animals represent an interesting opportunity to understand how carotenoid utilization evolves. Caves are devoid of light, eliminating primary production of energy through photosynthesis and, therefore, limiting carotenoid availability. Moreover, the selective pressures that favor carotenoid-based traits, like pigmentation and vision, are relaxed. Astyanax mexicanus is a species of fish with multiple river-adapted (surface) and cave-adapted populations (i.e., Tinaja, Pachón, Molino). Cavefish exhibit regressive features, such as loss of eyes and melanin pigment, and constructive traits, like increased sensory neuromasts and starvation resistance. Here, we show that, unlike surface fish, Tinaja and Pachón cavefish accumulate carotenoids in the visceral adipose tissue. Carotenoid accumulation is not observed in Molino cavefish, indicating that it is not an obligatory consequence of eye loss. We used quantitative trait loci mapping and RNA sequencing to investigate genetic changes associated with carotenoid accumulation. Our findings suggest that multiple stages of carotenoid processing may be altered in cavefish, including absorption and transport of lipids, cleavage of carotenoids into unpigmented molecules, and differential development of intestinal cell types involved in carotenoid assimilation. Our study establishes A. mexicanus as a model to study the genetic basis of natural variation in carotenoid accumulation and how it impacts physiology.


Asunto(s)
Carotenoides/metabolismo , Characidae/genética , Animales , Evolución Biológica , Carotenoides/análisis , Cuevas , Characidae/anatomía & histología , Characidae/metabolismo , Cromatografía Líquida de Alta Presión , Mapeo Cromosómico , Ojo/anatomía & histología , Femenino , Grasa Intraabdominal/química , Masculino , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN , Transcriptoma
2.
Bioorg Med Chem Lett ; 30(8): 127014, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32081448

RESUMEN

Robust transport of therapeutic peptides and other medicinal molecules across tight epithelial barriers would overcome the major obstacle to oral delivery. We have already demonstrated that peptides conjugated to gangliosides (GM1 and GM3) having non-native short N-acyl groups hijack the endogenous process of intracellular lipid sorting resulting in transcytosis and delivery across epithelial barriers in vitro and in vivo. Here, we report synthetic methodologies to covalently conjugate peptides directly to short-acyl-chain C6-ceramides. We found that the short-acyl-chain ceramide domain is solely responsible for transcytosis in vitro. This clarifies and expands the platform of short-acyl-chain sphingolipids for conjugated peptide delivery across tight mucosal cell barriers from gangliosides to just the ceramide itself.


Asunto(s)
Ceramidas/metabolismo , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Péptidos/metabolismo , Transporte Biológico Activo , Células Cultivadas , Ceramidas/química , Relación Dosis-Respuesta a Droga , Células Epiteliales/química , Humanos , Mucosa Intestinal/química , Mucosa Intestinal/citología , Estructura Molecular , Péptidos/química , Relación Estructura-Actividad
3.
Elife ; 72018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29851380

RESUMEN

Transport of biologically active molecules across tight epithelial barriers is a major challenge preventing therapeutic peptides from oral drug delivery. Here, we identify a set of synthetic glycosphingolipids that harness the endogenous process of intracellular lipid-sorting to enable mucosal absorption of the incretin hormone GLP-1. Peptide cargoes covalently fused to glycosphingolipids with ceramide domains containing C6:0 or smaller fatty acids were transported with 20-100-fold greater efficiency across epithelial barriers in vitro and in vivo. This was explained by structure-function of the ceramide domain in intracellular sorting and by the affinity of the glycosphingolipid species for insertion into and retention in cell membranes. In mice, GLP-1 fused to short-chain glycosphingolipids was rapidly and systemically absorbed after gastric gavage to affect glucose tolerance with serum bioavailability comparable to intraperitoneal injection of GLP-1 alone. This is unprecedented for mucosal absorption of therapeutic peptides, and defines a technology with many other clinical applications.


Asunto(s)
Absorción Fisiológica , Glicoesfingolípidos/metabolismo , Membrana Mucosa/metabolismo , Péptidos/uso terapéutico , Animales , Transporte Biológico Activo , Glucemia/metabolismo , Núcleo Celular/metabolismo , Ceramidas/química , Perros , Células Epiteliales/metabolismo , Gangliósido G(M1)/química , Gangliósido G(M1)/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Células de Riñón Canino Madin Darby , Masculino , Ratones Endogámicos C57BL , Oligosacáridos/química , Oligosacáridos/metabolismo , Reproducibilidad de los Resultados , Soluciones , Relación Estructura-Actividad , Transcitosis
4.
J Microbiol ; 56(3): 183-188, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29492875

RESUMEN

Mucosal surfaces that line our gastrointestinal tract are continuously exposed to trillions of bacteria that form a symbiotic relationship and impact host health and disease. It is only beginning to be understood that the cross-talk between the host and microbiome involve dynamic changes in commensal bacterial population, secretion, and absorption of metabolites between the host and microbiome. As emerging evidence implicates dysbiosis of gut microbiota in the pathology and progression of various diseases such as inflammatory bowel disease, obesity, and allergy, conventional treatments that either overlook the microbiome in the mechanism of action, or eliminate vast populations of microbes via wide-spectrum antibiotics need to be reconsidered. It is also becoming clear the microbiome can influence the body's response to therapeutic treatments for cancers. As such, targeting the microbiome as treatment has garnered much recent attention and excitement from numerous research labs and biotechnology companies. Treatments range from fecal microbial transplantation to precision-guided molecular approaches. Here, we survey recent progress in the development of innovative therapeutics that target the microbiome to treat disease, and highlight key findings in the interplay between host microbes and therapy.


Asunto(s)
Disbiosis/terapia , Enfermedades Gastrointestinales/terapia , Microbioma Gastrointestinal , Tracto Gastrointestinal/efectos de los fármacos , Probióticos/uso terapéutico , Antibacterianos/efectos adversos , Antibacterianos/uso terapéutico , Disbiosis/microbiología , Trasplante de Microbiota Fecal , Enfermedades Gastrointestinales/etiología , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/fisiopatología , Humanos , Hipersensibilidad/etiología , Hipersensibilidad/terapia , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/terapia , Neoplasias/terapia , Obesidad/etiología , Obesidad/terapia , Simbiosis
5.
Artículo en Inglés | MEDLINE | ID: mdl-28213463

RESUMEN

Polarized epithelial cells line diverse surfaces throughout the body forming selective barriers between the external environment and the internal milieu. To cross these epithelial barriers, large solutes and other cargoes must undergo transcytosis, an endocytic pathway unique to polarized cell types, and significant for the development of cell polarity, uptake of viral and bacterial pathogens, transepithelial signaling, and immunoglobulin transport. Here, we review recent advances in our knowledge of the transcytotic pathway for proteins and lipids. We also discuss briefly the promise of harnessing the molecules that undergo transcytosis as vehicles for clinical applications in drug delivery.


Asunto(s)
Endocitosis , Células Epiteliales/metabolismo , Transporte Biológico/fisiología , Polaridad Celular , Sistemas de Liberación de Medicamentos , Endosomas/metabolismo , Endosomas/fisiología , Humanos , Metabolismo de los Lípidos , Modelos Biológicos
6.
Traffic ; 16(6): 572-90, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25690058

RESUMEN

How the plasma membrane is bent to accommodate clathrin-independent endocytosis remains uncertain. Recent studies suggest Shiga and cholera toxin induce membrane curvature required for their uptake into clathrin-independent carriers by binding and cross-linking multiple copies of their glycosphingolipid receptors on the plasma membrane. But it remains unclear if toxin-induced sphingolipid crosslinking provides sufficient mechanical force for deforming the plasma membrane, or if host cell factors also contribute to this process. To test this, we imaged the uptake of cholera toxin B-subunit into surface-derived tubular invaginations. We found that cholera toxin mutants that bind to only one glycosphingolipid receptor accumulated in tubules, and that toxin binding was entirely dispensable for membrane tubulations to form. Unexpectedly, the driving force for tubule extension was supplied by the combination of microtubules, dynein and dynactin, thus defining a novel mechanism for generating membrane curvature during clathrin-independent endocytosis.


Asunto(s)
Membrana Celular/metabolismo , Endocitosis , Microtúbulos/metabolismo , Animales , Células COS , Chlorocebus aethiops , Toxina del Cólera/metabolismo , Clatrina/metabolismo , Dineínas/metabolismo , Células HeLa , Humanos , Unión Proteica , Receptores de Transferrina/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-22919642

RESUMEN

Some bacterial toxins and viruses have evolved the capacity to bind mammalian glycosphingolipids to gain access to the cell interior, where they can co-opt the endogenous mechanisms of cellular trafficking and protein translocation machinery to cause toxicity. Cholera toxin (CT) is one of the best-studied examples, and is the virulence factor responsible for massive secretory diarrhea seen in cholera. CT enters host cells by binding to monosialotetrahexosylganglioside (GM1 gangliosides) at the plasma membrane where it is transported retrograde through the trans-Golgi network (TGN) into the endoplasmic reticulum (ER). In the ER, a portion of CT, the CT-A1 polypeptide, is unfolded and then "retro-translocated" to the cytosol by hijacking components of the ER associated degradation pathway (ERAD) for misfolded proteins. CT-A1 rapidly refolds in the cytosol, thus avoiding degradation by the proteasome and inducing toxicity. Here, we highlight recent advances in our understanding of how the bacterial AB(5) toxins induce disease. We highlight the molecular mechanisms by which these toxins use glycosphingolipid to traffic within cells, with special attention to how the cell senses and sorts the lipid receptors. We also discuss several new studies that address the mechanisms of toxin unfolding in the ER and the mechanisms of CT A1-chain retro-translocation to the cytosol.


Asunto(s)
Toxinas Bacterianas/metabolismo , Glicoesfingolípidos/metabolismo , Animales , Membrana Celular/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Células Eucariotas/metabolismo , Aparato de Golgi/metabolismo , Humanos , Mamíferos , Unión Proteica , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA