Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Rep ; 14(1): 11124, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750107

RESUMEN

Influenza is a significant public health and economic threat around the world. Epidemiological studies have demonstrated a close association between influenza pandemics and cardiovascular mortality. Moreover, it has been shown that there is a decrease in cardiovascular mortality in high-risk patients following vaccination with the influenza vaccine. Here, we have investigated the role of anti-viral STAT1 signaling in influenza-induced myocarditis. Wild-type mice (C57BL/6) were infected with either influenza A/PR/8/34 or control, and cellular response and gene expression analysis from the heart samples were assessed 7 days later. The expression of interferon response genes STAT1, STAT2, Mx1, OASL2, ISG15, chemokines CCL2, CCL3, CXCL9 and CXCL10, and the frequency of neutrophils (CD45+CD11b+Ly6G+) and CD4+ T cells (CD45+CD4+) were all significantly increased in influenza-infected mice when compared to vehicle controls. These data suggest that influenza infection induces interferons, inflammatory chemokines, and cellular recruitment during influenza infection. We further investigated the role of STAT1 in influenza-induced myocarditis. The frequency of neutrophils and the levels of lipocalin 2 were significantly increased in STAT1-/- mice when compared to WT controls. Finally, we investigated the role of Lcn2 in viral-induced myocarditis. We found that in the absence of Lcn2, there was preserved cardiac function in Lcn2-/- mice when compared to WT controls. These data suggest that the absence of Lcn2 is cardioprotective during viral-induced myocarditis.


Asunto(s)
Lipocalina 2 , Ratones Endogámicos C57BL , Miocarditis , Infecciones por Orthomyxoviridae , Factor de Transcripción STAT1 , Animales , Miocarditis/virología , Miocarditis/metabolismo , Miocarditis/etiología , Lipocalina 2/metabolismo , Lipocalina 2/genética , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/genética , Ratones , Infecciones por Orthomyxoviridae/complicaciones , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/metabolismo , Neutrófilos/metabolismo , Neutrófilos/inmunología , Masculino , Ratones Noqueados
2.
Immunohorizons ; 7(12): 861-871, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38112660

RESUMEN

Influenza is a highly contagious, acute respiratory disease that causes significant public health and economic threats. Influenza infection induces various inflammatory mediators, IFNs, and recruitment of inflammatory cells in the host. This inflammatory "cytokine storm" is thought to play a role in influenza-induced lung pathogenesis. Empagliflozin is a drug primarily used to lower blood glucose in type II diabetes patients by inhibiting the sodium-glucose cotransporter-2 (SGLT-2) found in the proximal tubules in the kidneys. In this study, we have investigated the effects of empagliflozin on the pulmonary immune response to influenza infection. C57BL/6 mice (wild type) were infected with influenza A/PR/8/34 and treated with empagliflozin, and the disease outcomes were analyzed. Empagliflozin treatment decreased the expression of the inflammatory cytokines IL-1ß, IL-6, and CCL2; the percentage of inflammatory monocytes and inducible NO synthase-positive macrophages; and IFN response genes Stat1 and CXCL9 during influenza infection. Further, empagliflozin treatment decreases the expression of IL-6, CCL2, and CCL5 in RAW264.7 macrophages and bone marrow-derived macrophages. However, empagliflozin treatment increased influenza viral titer during infection. Despite fostering an increased viral burden, treatment with empagliflozin decreases the mortality in wild type and high fat diet-induced atherosclerotic LDLR-/- mice. Based on our findings, empagliflozin may have therapeutic implications for use in patients to prevent lung damage and acute respiratory illness.


Asunto(s)
Diabetes Mellitus Tipo 2 , Gripe Humana , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Ratones , Animales , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Gripe Humana/tratamiento farmacológico , Interleucina-6 , Ratones Endogámicos C57BL , Glucemia , Inmunidad , Sodio/uso terapéutico
3.
Biomolecules ; 13(9)2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37759675

RESUMEN

Despite the successes of immunotherapy, melanoma remains one of the deadliest cancers, therefore, the need for innovation remains high. We previously reported anti-melanoma compounds that work by downregulating spliceosomal proteins hnRNPH1 and H2. In a separate study, we reported that these compounds were non-toxic to Balb/C mice at 50 mg/kg suggesting their utility in in vivo studies. In the present study, we aimed to assess the efficacy of these compounds by testing them in A375 cell-line xenograft in nude athymic mice. Animals were randomized into four groups (n = 12/group): 10 mg/kg vemurafenib, and 25 mg/kg 2155-14 and 2155-18 thrice a week for 15 days along with a control group. The results revealed that both 2155-14 and 2155-18 significantly decreased the growth of A375 tumors, which was comparable to vemurafenib. These results were confirmed by tumor volume, weight, and histopathological examination. In conclusion, these results demonstrate the therapeutic potential of targeting spliceosomal proteins hnRNPH1 and H2.


Asunto(s)
Melanoma , Ratones , Animales , Humanos , Vemurafenib/farmacología , Vemurafenib/uso terapéutico , Ratones Desnudos , Xenoinjertos , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Melanoma/patología , Proliferación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA