Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Intervalo de año de publicación
1.
Genes Genomics ; 46(3): 367-378, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38095842

RESUMEN

BACKGROUND: Secondary metabolites such as benzylisoquinoline alkaloids (BIA) have attracted considerable attention because of their pharmacological properties and potential therapeutic applications. Methyltransferases (MTs) can add methyl groups to alkaloid molecules, altering their physicochemical properties and bioactivity, stability, solubility, and recognition by other cellular components. Five types of O-methyltransferases and two types of N-methyltransferases are involved in BIA biosynthesis. OBJECTIVE: Since MTs may be the source for the discovery and development of novel biomedical, agricultural, and industrial compounds, we performed extensive molecular and phylogenetic analyses of O- and N-methyltransferases in BIA-producing plants. METHODS: MTs involved in BIA biosynthesis were isolated from transcriptomes of Berberis koreana and Caulophyllum robustum. We also mined the methyltransferases of Coptis japonica, Papaver somniferum, and Nelumbo nucifera from the National Center for Biotechnology Information protein database. Then, we analyzed the functional motifs and phylogenetic analysis. RESULT: We mined 42 O-methyltransferases and 8 N-methyltransferases from the five BIA-producing plants. Functional motifs for S-adenosyl-L-methionine-dependent methyltransferases were retained in most methyltransferases, except for the three O-methyltransferases from N. nucifera. Phylogenetic analysis revealed that the methyltransferases were grouped into four clades, I, II, III and IV. The clustering patterns in the phylogenetic analysis suggested a monophyletic origin of methyltransferases and gene duplication within species. The coexistence of different O-methyltransferases in the deep branch subclade might support some cases of substrate promiscuity. CONCLUSIONS: Methyltransferases may be a source for the discovery and development of novel biomedical, agricultural, and industrial compounds. Our results contribute to further understanding of their structure and reaction mechanisms, which will require future functional studies.


Asunto(s)
Alcaloides , Bencilisoquinolinas , Metiltransferasas/genética , Metiltransferasas/metabolismo , Filogenia , Alcaloides/metabolismo , Plantas/metabolismo
2.
Molecules ; 27(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35889464

RESUMEN

The annual herb Euphorbia maculata L. produces anti-inflammatory and biologically active substances such as triterpenoids, tannins, and polyphenols, and it is used in traditional Chinese medicine. Of these bioactive compounds, terpenoids, also called isoprenoids, are major secondary metabolites in E. maculata. Full-length cDNA sequencing was carried out to characterize the transcripts of terpenoid biosynthesis reference genes and determine the copy numbers of their isoforms using PacBio SMRT sequencing technology. The Illumina short-read sequencing platform was also employed to identify differentially expressed genes (DEGs) in the secondary metabolite pathways from leaves, roots, and stems. PacBio generated 62 million polymerase reads, resulting in 81,433 high-quality reads. From these high-quality reads, we reconstructed a genome of 20,722 genes, in which 20,246 genes (97.8%) did not have paralogs. About 33% of the identified genes had two or more isoforms. DEG analysis revealed that the expression level differed among gene paralogs in the leaf, stem, and root. Whole sets of paralogs and isoforms were identified in the mevalonic acid (MVA), methylerythritol phosphate (MEP), and terpenoid biosynthesis pathways in the E. maculata L. The nucleotide information will be useful for identifying orthologous genes in other terpenoid-producing medicinal plants.


Asunto(s)
Euphorbia , ADN Complementario/genética , Euphorbia/genética , Euphorbia/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Terpenos/metabolismo , Transcriptoma/genética
3.
Sci Rep ; 8(1): 7353, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29743507

RESUMEN

The concept of U's triangle, which revealed the importance of polyploidization in plant genome evolution, described natural allopolyploidization events in Brassica using three diploids [B. rapa (A genome), B. nigra (B), and B. oleracea (C)] and derived allotetraploids [B. juncea (AB genome), B. napus (AC), and B. carinata (BC)]. However, comprehensive understanding of Brassica genome evolution has not been fully achieved. Here, we performed low-coverage (2-6×) whole-genome sequencing of 28 accessions of Brassica as well as of Raphanus sativus [R genome] to explore the evolution of six Brassica species based on chloroplast genome and ribosomal DNA variations. Our phylogenomic analyses led to two main conclusions. (1) Intra-species-level chloroplast genome variations are low in the three allotetraploids (2~7 SNPs), but rich and variable in each diploid species (7~193 SNPs). (2) Three allotetraploids maintain two 45SnrDNA types derived from both ancestral species with maternal dominance. Furthermore, this study sheds light on the maternal origin of the AC chloroplast genome. Overall, this study clarifies the genetic relationships of U's triangle species based on a comprehensive genomics approach and provides important genomic resources for correlative and evolutionary studies.


Asunto(s)
Brassica/genética , Cloroplastos/genética , Mapeo Cromosómico/métodos , Diploidia , Variación Genética , Genoma del Cloroplasto/genética , Genoma de Planta/genética , Genómica , Filogenia , ARN Ribosómico/genética , Tetraploidía , Secuenciación Completa del Genoma/métodos
4.
PLoS One ; 9(4): e94540, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24759928

RESUMEN

The manipulation of vascular endothelial growth factor (VEGF)-receptors (VEGFRs) in diabetic nephropathy is as controversial as issue as ever. It is known to be VEGF-A and VEGFR2 that regulate most of the cellular actions of VEGF in experimental diabetic nephropathy. On the other hand, such factors as VEGF-A, -B and placenta growth factor bind to VEGFR1 with high affinity. Such notion instigated us to investigate on whether selective VEGFR1 inhibition with GNQWFI hexamer aggravates the progression of diabetic nephropathy in db/db mice. While diabetes suppressed VEGFR1, it did increase VEGFR2 expressions in the glomerulus. Db/db mice with VEGFR1 inhibition showed more prominent features with respect to, albuminuria, mesangial matrix expansion, inflammatory cell infiltration and greater numbers of apoptotic cells in the glomerulus, and oxidative stress than that of control db/db mice. All these changes were related to the suppression of diabetes-induced increases in PI3K activity and Akt phosphorylation as well as the aggravation of endothelial dysfunction associated with the inactivation of FoxO3a and eNOS-NOx. In cultured human glomerular endothelial cells (HGECs), high-glucose media with VEGFR1 inhibition induced more apoptotic cells and oxidative stress than did high-glucose media alone, which were associated with the suppression of PI3K-Akt phosphorylation, independently of the activation of AMP-activated protein kinase, and inactivation of FoxO3a and eNOS-NOx pathway. In addition, transfection with VEGFR1 siRNA in HGECs also suppressed PI3K-Akt-eNOS signaling. In conclusion, the specific blockade of VEGFR1 with GNQWFI caused severe renal injury related to profound suppression of the PI3K-Akt, FoxO3a and eNOS-NOx pathway, giving rise to the oxidative stress-induced apoptosis of glomerular cells in type 2 diabetic nephropathy.


Asunto(s)
Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Células Cultivadas , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo III/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Receptor 1 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores
5.
Mol Genet Genomics ; 287(5): 373-88, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22466714

RESUMEN

Circadian clocks regulate plant growth and development in response to environmental factors. In this function, clocks influence the adaptation of species to changes in location or climate. Circadian-clock genes have been subject of intense study in models such as Arabidopsis thaliana but the results may not necessarily reflect clock functions in species with polyploid genomes, such as Brassica species, that include multiple copies of clock-related genes. The triplicate genome of Brassica rapa retains high sequence-level co-linearity with Arabidopsis genomes. In B. rapa we had previously identified five orthologs of the five known Arabidopsis pseudo-response regulator (PRR) genes that are key regulators of the circadian clock in this species. Three of these B. rapa genes, BrPRR1, BrPPR5, and BrPPR7, are present in two copies each in the B. rapa genome, for a total of eight B. rapa PRR (BrPRR) orthologs. We have now determined sequences and expression characteristics of the eight BrPRR genes and mapped their positions in the B. rapa genome. Although both members of each paralogous pair exhibited the same expression pattern, some variation in their gene structures was apparent. The BrPRR genes are tightly linked to several flowering genes. The knowledge about genome location, copy number variation and structural diversity of these B. rapa clock genes will improve our understanding of clock-related functions in this important crop. This will facilitate the development of Brassica crops for optimal growth in new environments and under changing conditions.


Asunto(s)
Brassica rapa/genética , Genes de Plantas , Secuencia de Aminoácidos , Arabidopsis/genética , Brassica rapa/crecimiento & desarrollo , Brassica rapa/fisiología , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos/genética , Cromosomas de las Plantas/genética , Ritmo Circadiano/genética , ADN de Plantas/genética , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Genes Reguladores , Genoma de Planta , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/genética , Poliploidía , Sitios de Carácter Cuantitativo , Homología de Secuencia de Aminoácido
6.
Artículo en Inglés | MEDLINE | ID: mdl-21612991

RESUMEN

The self-fertilizing hermaphroditic fish, Kryptolebias marmoratus is considered a suitable model species in the fields of eco-biology, developmental biology, endocrinology, environmental genomics, aquatic toxicology, and molecular carcinogenesis. However, more extensive gene information is still needed to improve our understanding of the biology of this fish with respect to toxicological responses. We performed a transcriptomic study in this species using pyrosequencing. Liver and ovary mRNA was reverse synthesized into cDNA and randomly sequenced by a Roche 454, GS-20 sequencer. After quality assessment, the assembled expressed sequence tag (EST) translations were compared with the GenBank non-redundant (nr) amino acid sequence database using BLASTX. In the assembly stage 1, both 59,732 transcripts in liver and 103,526 transcripts in ovary were obtained. To identify the differently expressed genes in the ovary and liver tissues, all transcripts were sorted out with an expected value threshold of 1.00E-05. Consequently, 7168 contigs of ovary ESTs and 3855 contigs of liver ESTs were not overlapped for expression in both tissues, whereas 3763 contigs were commonly found in both tissues. Subsequently, we described the most highly represented genes in the liver and ovary of K. marmoratus. Isoforms of cytochrome P450 (CYP) and receptor-related genes showed tissue-preferential expressed patterns. To identify the potential biomarkers in this species, ovary and liver ESTs were assembled and annotated with the nr amino acid sequence database using BLASTX. Then, 35,471 transcripts were obtained, and 9130 transcripts were hit (26%) at the assembly stage 2. Finally, we identified a number of stress-, antioxidant defense-, and DNA repair-related genes as potential molecular biomarkers for toxicological response using this species. We discuss the potential use for these markers in K. marmoratus for environmental genomics and eco-toxicological studies to uncover mechanisms of environmental stresses and chemical toxicities to K. marmoratus.


Asunto(s)
Etiquetas de Secuencia Expresada , Organismos Hermafroditas/genética , Peces Killi/anatomía & histología , Peces Killi/genética , Hígado/fisiología , Ovario/fisiología , Animales , Biomarcadores , Bases de Datos Genéticas , Femenino , Humanos , Peces Killi/metabolismo , Contaminantes Químicos del Agua
7.
Genome Biol ; 11(9): R94, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20875114

RESUMEN

BACKGROUND: The species Brassica rapa includes important vegetable and oil crops. It also serves as an excellent model system to study polyploidy-related genome evolution because of its paleohexaploid ancestry and its close evolutionary relationships with Arabidopsis thaliana and other Brassica species with larger genomes. Therefore, its genome sequence will be used to accelerate both basic research on genome evolution and applied research across the cultivated Brassica species. RESULTS: We have determined and analyzed the sequence of B. rapa chromosome A3. We obtained 31.9 Mb of sequences, organized into nine contigs, which incorporated 348 overlapping BAC clones. Annotation revealed 7,058 protein-coding genes, with an average gene density of 4.6 kb per gene. Analysis of chromosome collinearity with the A. thaliana genome identified conserved synteny blocks encompassing the whole of the B. rapa chromosome A3 and sections of four A. thaliana chromosomes. The frequency of tandem duplication of genes differed between the conserved genome segments in B. rapa and A. thaliana, indicating differential rates of occurrence/retention of such duplicate copies of genes. Analysis of 'ancestral karyotype' genome building blocks enabled the development of a hypothetical model for the derivation of the B. rapa chromosome A3. CONCLUSIONS: We report the near-complete chromosome sequence from a dicotyledonous crop species. This provides an example of the complexity of genome evolution following polyploidy. The high degree of contiguity afforded by the clone-by-clone approach provides a benchmark for the performance of whole genome shotgun approaches presently being applied in B. rapa and other species with complex genomes.


Asunto(s)
Brassica rapa/genética , Cromosomas de las Plantas , Secuencia Conservada , Análisis de Secuencia de ADN , Sintenía , Arabidopsis/genética , Secuencia de Bases , Mapeo Cromosómico , Estructuras Cromosómicas , Cromosomas Artificiales Bacterianos , Mapeo Contig , ADN de Plantas/genética , Evolución Molecular , Duplicación de Gen , Reordenamiento Génico , Genoma de Planta , Cariotipificación , Anotación de Secuencia Molecular , Poliploidía
8.
Genome Biol ; 10(10): R111, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19821981

RESUMEN

BACKGROUND: Brassica rapa is one of the most economically important vegetable crops worldwide. Owing to its agronomic importance and phylogenetic position, B. rapa provides a crucial reference to understand polyploidy-related crop genome evolution. The high degree of sequence identity and remarkably conserved genome structure between Arabidopsis and Brassica genomes enables comparative tiling sequencing using Arabidopsis sequences as references to select the counterpart regions in B. rapa, which is a strong challenge of structural and comparative crop genomics. RESULTS: We assembled 65.8 megabase-pairs of non-redundant euchromatic sequence of B. rapa and compared this sequence to the Arabidopsis genome to investigate chromosomal relationships, macrosynteny blocks, and microsynteny within blocks. The triplicated B. rapa genome contains only approximately twice the number of genes as in Arabidopsis because of genome shrinkage. Genome comparisons suggest that B. rapa has a distinct organization of ancestral genome blocks as a result of recent whole genome triplication followed by a unique diploidization process. A lack of the most recent whole genome duplication (3R) event in the B. rapa genome, atypical of other Brassica genomes, may account for the emergence of B. rapa from the Brassica progenitor around 8 million years ago. CONCLUSIONS: This work demonstrates the potential of using comparative tiling sequencing for genome analysis of crop species. Based on a comparative analysis of the B. rapa sequences and the Arabidopsis genome, it appears that polyploidy and chromosomal diploidization are ongoing processes that collectively stabilize the B. rapa genome and facilitate its evolution.


Asunto(s)
Brassica rapa/genética , Duplicación de Gen , Genes Duplicados/genética , Genoma de Planta/genética , Arabidopsis/genética , Secuencia de Bases , Cromosomas Artificiales Bacterianos/genética , Cromosomas de las Plantas/genética , Biología Computacional , Secuencia Conservada , Mapeo Contig , Evolución Molecular , Reordenamiento Génico/genética , Cariotipificación , Sistemas de Lectura Abierta/genética , Filogenia , Poliploidía , Secuencias Repetitivas de Ácidos Nucleicos/genética , Sintenía/genética
9.
BMC Plant Biol ; 8: 133, 2008 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-19105811

RESUMEN

BACKGROUND: Soybean lipoxygenases (Lxs) play important roles in plant resistance and in conferring the distinct bean flavor. Lxs comprise a multi-gene family that includes GmLx1, GmLx2 and GmLx3, and many of these genes have been characterized. We were interested in investigating the relationship between the soybean lipoxygenase isozymes from an evolutionary perspective, since soybean has undergone two rounds of polyploidy. Here we report the tetrad genome structure of soybean Lx regions produced by ancient and recent polyploidy. Also, comparative genomics with Medicago truncatula was performed to estimate Lxs in the common ancestor of soybean and Medicago. RESULTS: Two Lx regions in Medicago truncatula showing synteny with soybean were analyzed. Differential evolutionary rates between soybean and Medicago were observed and the median Ks values of Mt-Mt, Gm-Mt, and Gm-Gm paralogs were determined to be 0.75, 0.62, and 0.46, respectively. Thus the comparison of Gm-Mt paralogs (Ks = 0.62) and Gm-Mt orthologs (Ks = 0.45) supports the ancient duplication of Lx regions in the common ancestor prior to the Medicago-Glycine split. After speciation, no Lx regions generated by another polyploidy were identified in Medicago. Instead tandem duplication of Lx genes was observed. On the other hand, a lineage-specific duplication occurred in soybean resulting in two pairs of Lx regions. Each pair of soybean regions was co-orthologous to one Lx region in Medicago. A total of 34 Lx genes (15 MtLxs and 19 GmLxs) were divided into two groups by phylogenetic analysis. Our study shows that the Lx gene family evolved from two distinct Lx genes in the most recent common ancestor. CONCLUSION: This study analyzed two pairs of Lx regions generated by two rounds of polyploidy in soybean. Each pair of soybean homeologous regions is co-orthologous to one region of Medicago, demonstrating the quartet structure of the soybean genome. Differential evolutionary rates between soybean and Medicago were observed; thus optimized rates of Ks per year should be applied for accurate estimation of coalescence times to each case of comparison: soybean-soybean, soybean-Medicago, or Medicago-Medicago. In conclusion, the soybean Lx gene family expanded by ancient polyploidy prior to taxon divergence, followed by a soybean- specific duplication and tandem duplications, respectively.


Asunto(s)
Evolución Molecular , Glycine max/genética , Lipooxigenasa/genética , Medicago truncatula/genética , Familia de Multigenes , Cromosomas Artificiales Bacterianos , Mapeo Contig , ADN de Plantas/genética , Duplicación de Gen , Genes de Plantas , Genoma de Planta , Genómica , Isoenzimas , Medicago truncatula/enzimología , Filogenia , Poliploidía , Análisis de Secuencia de ADN , Glycine max/enzimología , Sintenía
10.
BMC Genomics ; 9: 280, 2008 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-18549474

RESUMEN

BACKGROUND: The genus Brassica includes the most extensively cultivated vegetable crops worldwide. Investigation of the Brassica genome presents excellent challenges to study plant genome evolution and divergence of gene function associated with polyploidy and genome hybridization. A physical map of the B. rapa genome is a fundamental tool for analysis of Brassica "A" genome structure. Integration of a physical map with an existing genetic map by linking genetic markers and BAC clones in the sequencing pipeline provides a crucial resource for the ongoing genome sequencing effort and assembly of whole genome sequences. RESULTS: A genome-wide physical map of the B. rapa genome was constructed by the capillary electrophoresis-based fingerprinting of 67,468 Bacterial Artificial Chromosome (BAC) clones using the five restriction enzyme SNaPshot technique. The clones were assembled into contigs by means of FPC v8.5.3. After contig validation and manual editing, the resulting contig assembly consists of 1,428 contigs and is estimated to span 717 Mb in physical length. This map provides 242 anchored contigs on 10 linkage groups to be served as seed points from which to continue bidirectional chromosome extension for genome sequencing. CONCLUSION: The map reported here is the first physical map for Brassica "A" genome based on the High Information Content Fingerprinting (HICF) technique. This physical map will serve as a fundamental genomic resource for accelerating genome sequencing, assembly of BAC sequences, and comparative genomics between Brassica genomes. The current build of the B. rapa physical map is available at the B. rapa Genome Project website for the user community.


Asunto(s)
Brassica rapa/genética , Cromosomas Artificiales Bacterianos/genética , Mapeo Físico de Cromosoma , Mapeo Contig , Dermatoglifia del ADN , Marcadores Genéticos/genética , Genoma de Planta/genética , Biblioteca Genómica , Genómica , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN , Lugares Marcados de Secuencia
11.
DNA Res ; 15(2): 93-102, 2008 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-18334514

RESUMEN

A single recessive gene, rxp, on linkage group (LG) D2 controls bacterial leaf-pustule resistance in soybean. We identified two homoeologous contigs (GmA and GmA') composed of five bacterial artificial chromosomes (BACs) during the selection of BAC clones around Rxp region. With the recombinant inbred line population from the cross of Pureunkong and Jinpumkong 2, single-nucleotide polymorphism and simple sequence repeat marker genotyping were able to locate GmA' on LG A1. On the basis of information in the Soybean Breeders Toolbox and our results, parts of LG A1 and LG D2 share duplicated regions. Alignment and annotation revealed that many homoeologous regions contained kinases and proteins related to signal transduction pathway. Interestingly, inserted sequences from GmA and GmA' had homology with transposase and integrase. Estimation of evolutionary events revealed that speciation of soybean from Medicago and the recent divergence of two soybean homoeologous regions occurred at 60 and 12 million years ago, respectively. Distribution of synonymous substitution patterns, K(s), yielded a first secondary peak (mode K(s) = 0.10-0.15) followed by two smaller bulges were displayed between soybean homologous regions. Thus, diploidized paleopolyploidy of soybean genome was again supported by our study.


Asunto(s)
Duplicación de Gen , Genoma de Planta , Glycine max/genética , Análisis de Secuencia de ADN , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos , Cromosomas de las Plantas , Evolución Molecular , Datos de Secuencia Molecular , Poliploidía
12.
Plant J ; 49(2): 173-83, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17156411

RESUMEN

We report the identification and characterization of the major repeats in the centromeric and peri-centromeric heterochromatin of Brassica rapa. The analysis involved the characterization of 88 629 bacterial artificial chromosomes (BAC) end sequences and the complete sequences of two BAC clones. We identified centromere-specific retrotransposons of Brassica (CRB) and various peri-centromere-specific retrotransposons (PCRBr). Three copies of the CRB were identified in one BAC clone as nested insertions within a tandem array of 24 copies of a 176 bp centromeric repeat, CentBr. A complex mosaic structure consisting of nine PCRBr elements and large blocks of 238 bp degenerate tandem repeats (TR238) were found in or near a derivative of 5S-25S rDNA sequences. The chromosomal positions of selected repeats were determined using in situ hybridization. These revealed that CRB is a major component of all centromeres in three diploid Brassica species and their allotetraploid relatives. However, CentBr was not detected in the most distantly related of the diploid species analyzed, B. nigra. PCRBr and TR238 were found to be major components in the peri-centromeric heterochromatin blocks of four chromosomes of B. rapa. These repetitive elements were not identified in B. oleracea or B. nigra, indicating that they are A-genome-specific. GenBank accession numbers: KBrH001P13 (AC 166739); KBrH015B20 (AC 166740); end sequences of KBrH BAC library (CW 978640 - CW 988843); end sequences of KBrS BAC library (DU 826965 - DU 835595); end sequences of KBrB BAC library (DX 010661 - DX 083363).


Asunto(s)
Brassica rapa/genética , Centrómero/genética , Retroelementos/genética , Brassica/genética , Bandeo Cromosómico , Cromosomas Artificiales Bacterianos/genética , Cromosomas de las Plantas/genética , Clonación Molecular , ADN de Plantas/química , ADN de Plantas/genética , Genoma de Planta , Hibridación Fluorescente in Situ , Modelos Biológicos , Datos de Secuencia Molecular , Poliploidía , Análisis de Secuencia de ADN , Secuencias Repetidas en Tándem
13.
Plant Cell ; 18(6): 1339-47, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16632644

RESUMEN

Strong evidence exists for polyploidy having occurred during the evolution of the tribe Brassiceae. We show evidence for the dynamic and ongoing diploidization process by comparative analysis of the sequences of four paralogous Brassica rapa BAC clones and the homologous 124-kb segment of Arabidopsis thaliana chromosome 5. We estimated the times since divergence of the paralogous and homologous lineages. The three paralogous subgenomes of B. rapa triplicated 13 to 17 million years ago (MYA), very soon after the Arabidopsis and Brassica divergence occurred at 17 to 18 MYA. In addition, a pair of BACs represents a more recent segmental duplication, which occurred approximately 0.8 MYA, and provides an exception to the general expectation of three paralogous segments within the B. rapa genome. The Brassica genome segments show extensive interspersed gene loss relative to the inferred structure of the ancestral genome, whereas the Arabidopsis genome segment appears little changed. Representatives of all 32 genes in the Arabidopsis genome segment are represented in Brassica, but the hexaploid complement of 96 has been reduced to 54 in the three subgenomes, with compression of the genomic region lengths they occupy to between 52 and 110 kb. The gene content of the recently duplicated B. rapa genome segments is identical, but intergenic sequences differ.


Asunto(s)
Brassica rapa/genética , Diploidia , Genes de Plantas/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Secuencia Conservada/genética , Elementos Transponibles de ADN/genética , Evolución Molecular , Duplicación de Gen , Genoma de Planta/genética , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Eliminación de Secuencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA