Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39062993

RESUMEN

Since the emergence of the first cerebral organoid (CO) in 2013, advancements have transformed central nervous system (CNS) research. Initial efforts focused on studying the morphogenesis of COs and creating reproducible models. Numerous methodologies have been proposed, enabling the design of the brain organoid to represent specific regions and spinal cord structures. CNS organoids now facilitate the study of a wide range of CNS diseases, from infections to tumors, which were previously difficult to investigate. We summarize the major advancements in CNS organoids, concerning morphogenetic designs and disease models. We examine the development of fabrication procedures and how these advancements have enabled the generation of region-specific brain organoids and spinal cord models. We highlight the application of these organoids in studying various CNS diseases, demonstrating the versatility and potential of organoid models in advancing our understanding of complex conditions. We discuss the current challenges in the field, including issues related to reproducibility, scalability, and the accurate recapitulation of the in vivo environment. We provide an outlook on prospective studies and future directions. This review aims to provide a comprehensive overview of the state-of-the-art CNS organoid research, highlighting key developments, current challenges, and prospects in the field.


Asunto(s)
Sistema Nervioso Central , Organoides , Humanos , Animales , Enfermedades del Sistema Nervioso Central/patología , Morfogénesis , Modelos Biológicos
2.
Tissue Eng Regen Med ; 21(2): 309-318, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37812329

RESUMEN

BACKGROUND: Mammalian target of rapamycin (mTOR) is known to regulate self-renewal ability and potency of embryonic stem cells (ESCs) and adult stem cells in opposite manners. However, its effects vary even among adult stem cells and are not reported in fetal stem/progenitor cells. This study investigated the role of mTOR in the function of human fetal cartilage-derived progenitor cells (hFCPCs). METHODS: mTOR activity in hFCPCs was first examined via the level of phosphor-mTOR until passage 19, together with doubling time of cells and senescence-associated b-galactosidase (SA-bGal). Then, the effect of 100 nM rapamycin, the inhibitor of mTOR, was investigated on self-renewal ability, proliferation rate and osteogenic/adipogenic potential of hFCPCs in vitro. Expression of stemness genes (Oct-4, Sox2 and Nanog) and cell cycle regulators (CDK4 and Cyclin D1) was measured at mRNA or protein levels. RESULTS: mTOR activity was maintained constantly at high levels in hFCPCs until passage 19, while their proliferation rate was decreasing from 48 h at passage 13 to 70 h at passage 9 and senescent cells were observed at passage 18 (8.3 ± 1.2%) and 19 (15.6 ± 1.9%). Inhibition of mTOR in hFCPCs impaired their colony forming frequency (CFU-F) by 4 folds, while showing no change in their doubling time and expression of CDK4 and Cyclin D1. Upon mTOR inhibition, Oct4 expression decreased by 2 folds and 4 folds at the mRNA and protein levels, respectively, while that of Sox2 and Nanog did not change significantly. Finally, mTOR inhibition reduced osteogenic and adipogenic differentiation of hFCPCs in vitro. CONCLUSION: This study has shown that mTOR plays an important role in the self-renewal ability of hFCPCS but not in their proliferation, The effect of mTOR appears to be associated with Oct-4 expression and important in the osteogenic and adipogenic differentiation ability of hFCPCs.


Asunto(s)
Ciclina D1 , Serina-Treonina Quinasas TOR , Adulto , Humanos , Cartílago , Células Madre Embrionarias , ARN Mensajero , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo
3.
PLoS One ; 17(9): e0274126, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36054162

RESUMEN

This study was undertaken to investigate the inhibitory effects of granulocyte-macrophage colony-stimulating factor (GM-CSF) on dimethylnitrosamine (DMN)-induced liver fibrosis in rats. Liver fibrosis was induced in Sprague-Dawley rats by injecting DMN intraperitoneally (at 10 mg/kg of body weight) daily for three consecutive days per week for 4 weeks. To investigate the effect of GM-CSF on disease onset, GM-CSF (50 µg/kg of body weight) was co-treated with DMN for 2 consecutive days per week for 4 weeks (4-week groups). To observe the effect of GM-CSF on the progression of liver fibrosis, GM-CSF was post-treated alone at 5-8 weeks after the 4 weeks of DMN injection (8-week groups). We found that DMN administration for 4 weeks produced molecular and pathological manifestations of liver fibrosis, that is, it increased the expressions of collagen type I, alpha-smooth muscle actin (α-SMA), and transforming growth factor-ß1 (TGF-ß1), and decreased peroxisome proliferator-activated receptor gamma (PPAR-γ) expression. In addition, elevated serum levels of aspartate aminotransferase (AST), total bilirubin level (TBIL), and decreased albumin level (ALB) were observed. In both the 4-week and 8-week groups, GM-CSF clearly improved the pathological liver conditions in the gross and histological observations, and significantly recovered DMN-induced increases in AST and TBIL and decreases in ALB serum levels to normal. GM-CSF also significantly decreased DMN-induced increases in collagen type I, α-SMA, and TGF-ß1 and increased DMN-induced decreases in PPAR-γ expression. In the DMN groups, survival decreased continuously for 8 weeks after DMN treatment for the first 4 weeks. GM-CSF showed a survival benefit when co-treated for the first 4 weeks but a marginal effect when post-treated for 5-8 weeks. In conclusion, co-treatment of GM-CSF showed therapeutic effects on DMN-induced liver fibrosis and survival rates in rats, while post-treatment efficiently blocked liver fibrosis.


Asunto(s)
Dimetilnitrosamina , Factor de Crecimiento Transformador beta1 , Animales , Peso Corporal , Colágeno Tipo I/metabolismo , Dimetilnitrosamina/toxicidad , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Hígado/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Ratas , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta1/metabolismo
4.
Tissue Eng Regen Med ; 19(6): 1237-1250, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35932427

RESUMEN

BACKGROUND: In this study, we have investigated whether human fetal cartilage progenitor cells (hFCPCs) have anti-inflammatory activity and can alleviate osteoarthritis (OA) phenotypes in vitro. METHODS: hFCPCs were stimulated with various cytokines and their combinations and expression of paracrine factors was examined to find an optimal priming factor. Human chondrocytes or SW982 synoviocytes were treated with interleukin-1ß (IL-1ß) to produce OA phenotype, and co-cultured with polyinosinic-polycytidylic acid (poly(I-C))-primed hFCPCs to address their anti-inflammatory effect by measuring the expression of OA-related genes. The effect of poly(I-C) on the surface marker expression and differentiation of hFCPCs into 3 mesodermal lineages was also examined. RESULTS: Among the priming factors tested, poly(I-C) (1 µg/mL) most significantly induced the expression of paracrine factors such as indoleamine 2,3-dioxygenase, histocompatibility antigen, class I, G, tumor necrosis factor- stimulated gene-6, leukemia inhibitory factor, transforming growth factor-ß1 and hepatocyte growth factor from hFCPCs. In the OA model in vitro, co-treatment of poly(I-C)-primed hFCPCs significantly alleviated IL-1ß-induced expression of inflammatory factors such as IL-6, monocyte chemoattractant protein-1 and IL-1ß, and matrix metalloproteinases in SW982, while it increased the expression of cartilage extracellular matrix such as aggrecan and collagen type II in human chondrocytes. We also found that treatment of poly(I-C) did not cause significant changes in the surface marker profile of hFCPCs, while showed some changes in the 3 lineages differentiation. CONCLUSION: These results suggest that poly(I-C)-primed hFCPCs have an ability to modulate inflammatory response and OA phenotypes in vitro and encourage further studies to apply them in animal models of OA in the future.


Asunto(s)
Osteoartritis , Poli I-C , Animales , Humanos , Interleucina-1beta/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/genética , Cartílago , Células Madre/metabolismo , Fenotipo
5.
Materials (Basel) ; 15(10)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35629498

RESUMEN

Rubus ellipticus fruits aqueous extract derived ZnO-nanoparticles (NPs) were synthesized through a green synthesis method. The structural, optical, and morphological properties of ZnO-NPs were investigated using XRD, FTIR, UV-vis spectrophotometer, XPS, FESEM, and TEM. The Rietveld refinement confirmed the phase purity of ZnO-NPs with hexagonal wurtzite crystalline structure and p-63-mc space group with an average crystallite size of 20 nm. XPS revealed the presence of an oxygen chemisorbed species on the surface of ZnO-NPs. In addition, the nanoparticles exhibited significant in vitro antioxidant activity due to the attachment of the hydroxyl group of the phenols on the surface of the nanoparticles. Among all microbial strains, nanoparticles' maximum antibacterial and antifungal activity in terms of MIC was observed against Bacillus subtilis (31.2 µg/mL) and Rosellinia necatrix (15.62 µg/mL), respectively. The anticancer activity revealed 52.41% of A549 cells death (IC50: 158.1 ± 1.14 µg/mL) at 200 µg/mL concentration of nanoparticles, whereas photocatalytic activity showed about 17.5% degradation of the methylene blue within 60 min, with a final dye degradation efficiency of 72.7%. All these results suggest the medicinal potential of the synthesized ZnO-NPs and therefore can be recommended for use in wastewater treatment and medicinal purposes by pharmacological industries.

6.
Tissue Eng Regen Med ; 19(2): 417-429, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35122585

RESUMEN

BACKGROUND: Restoration of the bone defects caused by infection or disease remains a challenge in orthopedic surgery. In recent studies, scaffold-free engineered tissue with a self-secreted extracellular matrix has been proposed as an alternative strategy for tissue regeneration and reconstruction. Our study aimed to engineer and fabricate self-assembled osteogenic and scaffold-free tissue for bone regeneration. METHODS: Osteogenic scaffold-free tissue was engineered and fabricated using fetal cartilage-derived progenitor cells, which are capable of osteogenic differentiation. They were cultured in osteogenic induction environments or using demineralized bone powder for differentiation. The fabricated tissue was subjected to real-time qPCR, biochemical, and histological analyses to estimate the degree of in vitro osteogenic differentiation. To demonstrate bone formation in an in vivo environment, scaffold-free tissue was transplanted into the dorsal subcutaneous site of nude mice. Bone development was monitored postoperatively over 8 weeks by the observation of calcium deposition in the matrix. RESULTS: In the in vitro experiments, engineered osteogenically induced scaffold-free tissue demonstrated three-dimensional morphological characteristics, and sufficient osteogenic differentiation was confirmed through the quantification of specific osteogenic gene markers expressed and calcium accumulation within the matrix. Following the evaluation of differentiation efficacy, in vivo experiments revealed distinct bone formation, and that blood vessels had penetrated the fabricated tissue. CONCLUSION: The novel engineering of scaffold-free tissue with osteogenic potential can be used as an optimal bone graft substitute for bone regeneration.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Animales , Regeneración Ósea , Ratones , Ratones Desnudos , Osteogénesis/genética , Andamios del Tejido
7.
J Tissue Eng Regen Med ; 16(3): 279-289, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34788485

RESUMEN

After an injury, soft tissue structures in the body undergo a natural healing process through specific phases of healing. Adhesions occur as abnormal attachments between tissues and organs through the formation of blood vessels and/or fibrinous adhesions during the regenerative repair process. In this study, we developed an adhesion-preventing membrane with an improved physical protection function by modifying the surface of chondrocyte-derived extracellular matrices (CECM) with anti-adhesion function. We attempted to change the negative charge of the CECM surface to neutral using poly-L-lysine (PLL) and investigated whether it blocked fibroblast adhesion to it and showed an improved anti-adhesion effect in animal models of tissue adhesion. The surface of the membrane was modified with PLL coating (PLL 10), which neutralized the surface charge. We confirmed that the surface characteristics except for the potential difference were maintained after the modification and tested cell attachment in vitro. Adhesion inhibition was identified in a peritoneal adhesion animal model at 1 week and in a subcutaneous adhesion model for 4 weeks. Neutralized CECM (N-CECM) suppressed fibroblast and endothelial cell adhesion in vitro and inhibited abdominal adhesions in vivo. The CECM appeared to actively inhibit the infiltration of endothelial cells into the injured site, thereby suppressing adhesion formation, which differed from conventional adhesion barriers in the mode of action. Furthermore, the N-CECM remained intact without degradation for more than 4 weeks in vivo and exerted anti-adhesion effects for a long time. This study demonstrated that PLL10 surface modification rendered a neutral charge to the polymer on the extracellular matrix surface, thereby inhibiting cell and tissue adhesion. Furthermore, this study suggests a means to modify extracellular matrix surfaces to meet the specific requirements of the target tissue in preventing post-surgical adhesions.


Asunto(s)
Condrocitos , Polilisina , Adhesivos/análisis , Adhesivos/metabolismo , Animales , Células Endoteliales , Matriz Extracelular/metabolismo , Polilisina/análisis , Polilisina/metabolismo , Polilisina/farmacología , Adherencias Tisulares/metabolismo , Adherencias Tisulares/prevención & control
8.
Free Radic Res ; 55(11-12): 1037-1047, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34814783

RESUMEN

We have previously shown that low-intensity ultrasound (LIUS) can modulate mitochondrial complex I activity and the generation of mitochondrial reactive oxygen species (mtROS) in PC12 cells. This study investigated the mechanism of LIUS by comparing its effect on mitochondrial dysfunction by three different pathways. LIUS was shown to reverse the effects of rotenone, a Q-site blocker, on the complex I inhibition, mtROS generation, and drop of mitochondrial membrane potential (Δψm). In contrast, common antioxidants, N-acetyl cysteine (NAC), and uric acid (UA) blocked rotenone-induced mtROS generation and Δψm drop without recovering the complex I activity, which suggested that Δψm drop is correlated with mtROS generation rather than complex I inhibition itself. Ionomycin, an ionophore for Ca2+, and L-buthionine-S,R-sulfoximine (BSO), an inhibitor of glutathione (GSH) biosynthesis, induced mtROS generation and Δψm drop without inhibiting complex I activity via different mechanisms. LIUS showed no effect on ionomycin-induced Δψm drop but showed partial inhibition on the other effects of ionomycin and BSO. These results suggest that LIUS might have redundant mechanisms but acted mainly on the complex I activity thereby modulating mtROS and Δψm levels. LIUS appeared to act on the Q-module of complex I because it showed no inhibitory effect on Zn2+, an inhibitor of the proton transporting P-module of complex I. Interestingly, pretreatment of LIUS for up to an hour in advance blocked the rotenone effect as efficiently as the co-treatment. Further studies are needed to reveal the exact mechanism of LIUS to inhibit complex I activity.


Asunto(s)
Mitocondrias , Rotenona , Animales , Glutatión/metabolismo , Ionomicina/metabolismo , Mitocondrias/metabolismo , Células PC12 , Ratas , Especies Reactivas de Oxígeno/metabolismo , Rotenona/farmacología
9.
Biochem Biophys Res Commun ; 571: 188-194, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34330063

RESUMEN

Osteoarthritis (OA) is an incurable joint disease affecting 240 million elderly population, and major unmet medical needs exist for better therapeutic options for OA. During skeletal development, Nkx3.2 has been shown to promote chondrocyte differentiation and survival, but to suppress cartilage hypertrophy and blood vessel invasion. Here we show that Nkx3.2 plays a key role in osteoarthritis (OA) pathogenesis. Marked reduction of Nkx3.2 expression was observed in three different murine OA models. Consistent with these findings, analyses of surgery-induced and age-driven OA models revealed that cartilage-specific post-natal induction of Nkx3.2 can suppress OA progression in mice. These results suggest that Nkx3.2 may serve as a promising target for OA drug development.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Osteoartritis/metabolismo , Factores de Transcripción/metabolismo , Animales , Modelos Animales de Enfermedad , Proteínas de Homeodominio/genética , Ratones , Osteoartritis/patología , Osteoartritis/cirugía , Factores de Transcripción/genética
10.
Tissue Eng Regen Med ; 18(4): 525-536, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33495946

RESUMEN

BACKGROUND: Exosomes from mesenchymal stem cells (MSCs) show anti-inflammatory effect on osteoarthritis (OA); however, their biological effect and mechanism are not yet clearly understood. This study investigated the anti-inflammatory effect and mechanism of MSC-derived exosomes (MSC-Exo) primed with IL-1ß in osteoarthritic SW982 cells. METHODS: SW982 cells were treated with interleukin (IL)-1ß and tumor necrosis factor (TNF)-α to induce the OA phenotype. The effect of exosomes without priming (MSC-Exo) or with IL-1ß priming (MSC-IL-Exo) was examined on the expression of pro- or anti-inflammatory factors, and the amount of IκBα was examined in SW982 cells. Exosomes were treated with RNase to remove RNA. The role of miR-147b was examined using a mimic and an inhibitor. RESULTS: MSC-IL-Exo showed stronger inhibitory effects on the expression of pro-inflammatory cytokines (IL-1ß, IL-6, and monocyte chemoattractant protein-1) than MSC-Exo. The expression of anti-inflammatory factors (SOCS3 and SOCS6) was enhanced by MSCs-IL-Exo. Priming with IL-1ß increased RNA content in MSC-IL-Exo, and pretreatment with RNase abolished anti-inflammatory effect in SW982 cells. miR-147b was found in much larger amounts in MSC-IL-Exo than in MSC-Exo. The miR-147b mimic significantly inhibited the expression of inflammatory cytokines, while the miR-147b inhibitor only partially blocked the anti-inflammatory effect of MSC-IL-Exo. MSC-IL-Exo and miR-147b mimic inhibited the reduction of IκBα, an nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibitor, by IL-1ß and TNF-α. CONCLUSION: This study showed that MSC exosomes with IL-1ß priming exhibit significantly enhanced anti-inflammatory activity in osteoarthritic SW982 cells. The effect of IL-1ß-primed MSC exosomes is mediated by miRNAs such as miR-147b and involves inhibition of the NF-κB pathway.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , MicroARNs , Línea Celular Tumoral , Humanos , Interleucina-1/farmacología , MicroARNs/genética , Factor de Necrosis Tumoral alfa/farmacología
11.
Sci Rep ; 10(1): 5722, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32235934

RESUMEN

The aim of this study was to develop a fetal cartilage-derived progenitor cell (FCPC) based cartilage gel through self-assembly for cartilage repair surgery, with clinically useful properties including adhesiveness, plasticity, and continued chondrogenic remodeling after transplantation. Characterization of the gels according to in vitro self-assembly period resulted in increased chondrogenic features over time. Adhesion strength of the cartilage gels were significantly higher compared to alginate gel, with the 2-wk group showing a near 20-fold higher strength (1.8 ± 0.15 kPa vs. 0.09 ± 0.01 kPa, p < 0.001). The in vivo remodeling process analysis of the 2 wk cultured gels showed increased cartilage repair characteristics and stiffness over time, with higher integration-failure stress compared to osteochondral autograft controls at 4 weeks (p < 0.01). In the nonhuman primate investigation, cartilage repair scores were significantly better in the gel group compared to defects alone after 24 weeks (p < 0.001). Cell distribution analysis at 24 weeks showed that human cells remained within the transplanted defects only. A self-assembled, FCPC-based cartilage gel showed chondrogenic repair potential as well as adhesive properties, beneficial for cartilage repair.


Asunto(s)
Cartílago Articular/citología , Cartílago Articular/trasplante , Condrocitos/citología , Condrogénesis/fisiología , Células Madre Fetales/citología , Ingeniería de Tejidos/métodos , Alginatos , Animales , Condrocitos/trasplante , Células Madre Fetales/trasplante , Humanos , Macaca fascicularis , Masculino , Ratones , Trasplante de Células Madre
12.
Tissue Eng Regen Med ; 17(2): 165-181, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32193874

RESUMEN

BACKGROUND: To regenerate tissue-engineered cartilage as a source of material for the restoration of cartilage defects, we used a human fetal cartilage progenitor cell pellet to improve chondrogenesis and modulation of the immune response in an in vivo bioreactor (IVB) system. METHODS: IVB was buried subcutaneously in the host and then implanted into a cartilage defect. The IVB was composed of a silicone tube and a cellulose nano pore-sized membrane. First, fetal cartilage progenitor cell pellets were cultured in vitro for 3 days, then cultured in vitro, subcutaneously, and in an IVB for 3 weeks. First, the components and liquidity of IVB fluid were evaluated, then the chondrogenesis and immunogenicity of the pellets were evaluated using gross observation, cell viability assays, histology, biochemical analysis, RT-PCR, and Western blots. Finally, cartilage repair and synovial inflammation were evaluated histologically. RESULTS: The fluid color and transparency of the IVB were similar to synovial fluid (SF) and the components were closer to SF than serum. The IVB system not only promoted the synthesis of cartilage matrix and maintained the cartilage phenotype, it also delayed calcification compared to the subcutaneously implanted pellets. CONCLUSION: The IVB adopted to study cell differentiation was effective in preventing host immune rejection.


Asunto(s)
Reactores Biológicos , Celulosa/química , Condrogénesis , Inmunidad , Ingeniería de Tejidos , Animales , Cartílago Articular , Diferenciación Celular , Supervivencia Celular , Condrocitos/citología , Humanos , Masculino , Células Madre Mesenquimatosas/citología , Conejos , Células Madre , Líquido Sinovial
13.
Biol Pharm Bull ; 42(12): 1988-1995, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31787714

RESUMEN

Rich in bioactive substances such as amino acids and peptides, Laennec (human placenta hydrolysate) has been widely used to control various types of musculoskeletal pain. However, the effects of Laennec on tendon and ligament injuries are not clearly understood. In the present study, Laennec was tested to identify its in vivo effects on ligament injury in an animal model and its in vitro effects on tendon-derived fibrocytes. A total of 99 Sprague Dawley rats were divided into the negative control (normal) group (n = 11) and the ligament injury group (n = 88). The ligament injury group was subdivided into normal saline-treated group, Laennec-treated group, polydeoxyribonucleotide-treated group, and 20% dextrose-treated group. Ligaments were collected at 1 week and 4 weeks after treatment. Histologic and biomechanical properties were analyzed. In vitro effects of Laennec and polydeoxyribonucleotide on fibrocytes were also analyzed. Although all other treatment groups showed increased inflammatory cells, the Laennec-treated group maintained cell counts and activated macrophage levels that were similar to the normal group. Unlike the saline-treated group and dextrose-treated group, the Laennec-treated group had low levels of degenerative changes at 4 weeks after treatment. Supportively, in vitro results showed that the Laennec-treated group had increased collagen type I, scleraxis (Scx) and tenomodulin (Tnmd) expression (p < 0.05). Our study demonstrates that Laennec treatment enhances wound healing of damaged ligament by suppressing immune responses and reducing degenerative changes of damaged ligament. In addition, we found that Laennec induces the gene expression of type I collagen, Scx and Tnmd in fibrocytes, suggesting that Laennec may facilitate regeneration of damaged ligaments. Therefore, we expect that Laennec can be a useful drug to treat injured ligament.


Asunto(s)
Mezclas Complejas/farmacología , Ligamentos/efectos de los fármacos , Ligamentos/lesiones , Placenta/química , Tendón Calcáneo/citología , Animales , Femenino , Humanos , Ligamentos/inmunología , Ligamentos/fisiología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Masculino , Embarazo , Ratas Sprague-Dawley , Resistencia a la Tracción
14.
Cell Transplant ; 28(7): 932-942, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30983392

RESUMEN

We have previously reported human fetal cartilage progenitor cells (hFCPCs) as a novel source of therapeutic cells showing high proliferation and stem cell properties superior to those of adult mesenchymal stem cells (MSCs). In this study, we investigated the immunophenotype and immune-modulatory activities of hFCPCs. With institutional review board approval, hFCPCs were isolated from fetuses at 11-13 weeks of gestation. hFCPCs showed strong expression of HLA class I molecules but low or no expression of HLA class II and co-stimulatory molecules, which was not changed significantly after 4 days of IFN-γ treatment. In a mixed lymphocyte reaction (MLR), hFCPCs showed no allogeneic immune response to peripheral blood lymphocytes (PBLs) and suppressed concanavalin A (Con A)-mediated proliferation of PBLs in a dose-dependent manner. In addition, hFCPCs inhibited Con A-induced secretion of pro-inflammatory cytokines TNF-α and IFN-γ from PBLs but showed no significant decrease of secretion of IL-10, anti-inflammatory cytokine. Co-culture of hFCPCs with stimulated PBLs for 4 days resulted in a significant increase in CD4+CD25+FoxP3+ T regulatory cells (Tregs). hFCPCs expressed LIF, TGF-ß1, TSG-6, and sHLA-G5 but did not express IDO and HGF. Stimulation of hFCPCs with TNF-α for 12 h showed slight induction in the expression of LIF, TSG-6, IDO, and HGF, whereas stimulation with IFN-γ did not affect expression of any of these factors. These results suggest that hFCPCs have low allogeneic immunogenicity and immune-modulatory activity in vitro, comparable to those of MSCs. However, compared with MSCs, hFCPCs were less responsive to TNF-α and IFN-γ, and the mechanisms underlying responses to these two cell types appeared distinct.


Asunto(s)
Feto/citología , Inmunofenotipificación/métodos , Células Madre Mesenquimatosas/citología , Células Madre/citología , Cartílago/citología , Células Cultivadas , Femenino , Células Madre Fetales/citología , Factores de Transcripción Forkhead/metabolismo , Humanos , Interleucina-10/metabolismo , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Embarazo , Linfocitos T Reguladores/metabolismo
15.
Tissue Eng Regen Med ; 16(1): 59-68, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30815351

RESUMEN

BACKGROUND: This study was conducted to investigate the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on the mobilization of mesenchymal stem cells (MSCs) from the bone marrow (BM) into the peripheral blood (PB) in rats. METHODS: GM-CSF was administered subcutaneously to rats at 50 µg/kg body weight for 5 consecutive days. The BM and PB of rats were collected at 1, 3, and 5 days during the administration for analysis. RESULTS: Upon GM-CSF administration, the number of mononuclear cells increased rapidly at day 1 both in the BM and PB. This number decreased gradually over time in the BM to below the initial amount by day 5, but was maintained at a high level in the PB until day 5. The colony-forming unit-fibroblasts were increased in the PB by 10.3-fold at day 5 of GM-CSF administration, but decreased in the BM. Compared to GM-CSF, granulocyte-colony stimulating factor (G-CSF) stimulated lower levels of MSC mobilization from the BM to the PB. Immunohistochemical analysis revealed that GM-CSF induced a hypoxic and proteolytic microenvironment and increased C-X-C chemokine receptor type 4 (CXCR4) expression in the BM. GM-CSF added to BM MSCs in vitro dose-dependently increased CXCR4 expression and cell migration. G-CSF and stromal cell derived factor-1 (SDF-1) showed similar results in these in vitro assays. Know-down of CXCR4 expression with siRNA significantly abolished GM-CSF- and G-CSF-induced MSC migration in vitro, indicating the involvement of the SDF-1-CXCR4 interaction in the mechanism. CONCLUSION: These results suggest that GM-CSF is a useful tool for mobilizing BM MSCs into the PB.

16.
Artif Organs ; 43(3): 278-287, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30374978

RESUMEN

This study introduces an implantable scaffold-free cartilage tissue construct (SF) that is composed of chondrocytes and their self-produced extracellular matrix (ECM). Chondrocytes were grown in vitro for up to 5 weeks and subjected to various assays at different time points (1, 7, 21, and 35 days). For in vivo implantation, full-thickness defects (n = 5) were manually created on the trochlear groove of the both knees of rabbits (16-week old) and 3 week-cultured SF construct was implanted as an allograft for a month. The left knee defects were implanted with 1, 7, and 21 days in vitro cultured scaffold-free engineered cartilages. (group 2, 3, and 4, respectively). The maturity of the engineered cartilages was evaluated by histological, chemical and mechanical assays. The repair of damaged cartilages was also evaluated by gross images and histological observations at 4, 8, and 12 weeks postsurgery. Although defect of groups 1, 2, and 3 were repaired with fibrocartilage tissues, group 4 (21 days) showed hyaline cartilage in the histological observation. In particular, mature matrix and columnar organization of chondrocytes and highly expressed type II collagen were observed only in 21 days in vitro cultured SF cartilage (group 4) at 12 weeks. As a conclusion, cartilage repair with maturation was recapitulated when implanted the 21 day in vitro cultured scaffold-free engineered cartilage. When implanting tissue-engineered cartilage, the maturity of the cartilage tissue along with the cultivation period can affect the cartilage repair.


Asunto(s)
Enfermedades de los Cartílagos/cirugía , Cartílago Articular/cirugía , Cultivo Primario de Células/métodos , Ingeniería de Tejidos/métodos , Animales , Enfermedades de los Cartílagos/patología , Cartílago Articular/citología , Cartílago Articular/lesiones , Cartílago Articular/patología , Condrocitos/trasplante , Modelos Animales de Enfermedad , Matriz Extracelular/trasplante , Humanos , Masculino , Conejos , Resultado del Tratamiento
17.
Ultrasound Med Biol ; 44(3): 647-656, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29307443

RESUMEN

Diabetic retinopathy (DR) is a severe micro-vascular complication of diabetes. High glucose (HG)-evoked nitric oxide (NO) production mediated by increased oxidative stress is a key factor in DR pathogenesis. In this study, we examined whether low-intensity ultrasound (LIUS) stimulation can reduce HG-induced NO generation. We determined that LIUS stimulation decreased the HG-induced NO generation possibly via inhibition of reactive oxygen species (ROS) and subsequently diminished the associated pro-inflammatory pathway involving the induced expression of inducible nitric oxide synthase, cyclooxygenase-2 and vascular endothelial growth factor. In addition, we determined that LIUS stimulation reduced the quantity of NO produced by N-acetylcysteine, which was not mediated by ROS. These results indicate that LIUS can inhibit both ROS-dependent and -independent NO generation processes in ARPE-19 cells. We envision LIUS as a potential therapeutic alternative to treat DR. Further studies are required to understand the underlying mechanism of the LIUS-induced reduction of NO generation for DR therapy.


Asunto(s)
Células Epiteliales/metabolismo , Óxido Nítrico/metabolismo , Pigmentos Retinianos/metabolismo , Ultrasonido/métodos , Western Blotting , Células Cultivadas , Humanos
18.
J Tissue Eng Regen Med ; 12(2): e1034-e1045, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28112873

RESUMEN

This study aimed to evaluate the therapeutic effect on tissue repair and scar formation of human bone marrow-derived clonal mesenchymal stem cells (hcMSCs) homogeneously isolated by using a subfractionation culturing method, in comparison with the non-clonal MSCs (hMSCs), in a rat spinal cord injury (SCI) model. The SCI was made using a vascular clip at the T9 level. Cells were transplanted into the lesion site 3 days after injury. A functional test was performed over 4 weeks employing a BBB score. Rats were killed for histological analysis at 3 days, 1 week and 4 weeks after injury. The transplantation of hMSCs and hcMSCs significantly reduced lesion size and the fluid-filled cavity at 4 weeks in comparison with the control group injected with phosphate buffered saline (PBS) (p < 0.01). Transplantation of hcMSCs showed more axons reserved than that of hMSCs in the lesion epicentre filled with non-neuronal tissues. In addition, hMSCs and hcMSCs clearly reduced the inflammatory reaction and intraparenchymal hemorrhaging, compared with the PBS group. Interestingly, hcMSCs largely decreased Col IV expression, one of the markers of fibrotic scars. hcMSCs yielded therapeutic effects more than equal to those of hMSCs on the SCI. Both hMSCs and hcMSCs created an increase in axon regeneration and reduced scar formation around the SCI lesion. Copyright © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Células de la Médula Ósea/citología , Cicatriz/terapia , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Traumatismos de la Médula Espinal/terapia , Animales , Axones/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cicatriz/complicaciones , Cicatriz/patología , Cicatriz/fisiopatología , Células Clonales , Modelos Animales de Enfermedad , Fibrosis , Gliosis/patología , Gliosis/fisiopatología , Gliosis/terapia , Humanos , Masculino , Actividad Motora , Vaina de Mielina/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Regeneración Nerviosa , Ratas Sprague-Dawley , Recuperación de la Función , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología
19.
Clin Exp Rheumatol ; 35(5): 837-843, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28375831

RESUMEN

OBJECTIVES: The full effect of anti-TNF therapy on new bone formation is still in debate in spondylitis fields. We sought to obtain circulating osteoblast-lineage cells in peripheral blood from ankylosing spondylitis (AS) patients and healthy control subjects, and to evaluate the effect of before and after anti TNF-α therapy on osteoblastogenesis in patients with AS. METHODS: Sixteen male patients with AS slated for infliximab therapy and 19 controls were recruited. We cultured osteoblast-lineage cells from peripheral blood and measured the optical density of their Alizarin red S staining. We also measured serum P1NP (procollagen type 1 N-terminal propeptide) as an early osteoblast differentiation marker, osteocalcin as a late osteoblast differentiation marker, and inflammatory markers. RESULTS: There were significantly more circulating osteoblast-lineage cells in patients than in controls. The number of circulating osteoblast-lineage cells and optical density of Alizarin red S staining decreased 14 weeks after infliximab therapy (p=0.028); serum level of P1NP decreased, but that of osteocalcin increased (p=0.002 and 0.007, respectively). CONCLUSIONS: Our data reveals that first, the circulating osteoblast-lineage cells are recoverable and increased in AS patients, and also that they decrease after infliximab therapy; second, infliximab therapy resolves early inflammation, but allows mature osteoblast differentiation in late inflammation. The culture of osteoblast-lineage cells in peripheral blood may be a candidate for a new modality with which to study spondylitis and other autoimmune diseases.


Asunto(s)
Antiinflamatorios/uso terapéutico , Productos Biológicos/uso terapéutico , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula , Infliximab/uso terapéutico , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Espondilitis Anquilosante/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Antiinflamatorios/efectos adversos , Productos Biológicos/efectos adversos , Estudios de Casos y Controles , Células Cultivadas , Humanos , Mediadores de Inflamación/sangre , Infliximab/efectos adversos , Masculino , Osteoblastos/patología , Osteocalcina/sangre , Fragmentos de Péptidos/sangre , Procolágeno/sangre , Espondilitis Anquilosante/inmunología , Espondilitis Anquilosante/patología , Factores de Tiempo , Resultado del Tratamiento , Factor de Necrosis Tumoral alfa/inmunología
20.
Mol Neurobiol ; 54(8): 6235-6244, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-27714630

RESUMEN

Many studies have shown that mitochondrial dysfunction and the subsequent oxidative stress caused by excessive reactive oxygen species (ROS) generation play a central role in the pathogenesis of Parkinson's disease (PD). We have previously shown that low-intensity ultrasound (LIUS) could reduce ROS generation by L-buthionine-(S,R)-sulfoximine (BSO) in retinal pigment epithelial cells. In this study, we studied the effects of LIUS stimulation on the ROS-dependent α-synuclein aggregation in 1-methyl-4-phenylpyridinium ion (MPP+)-treated PC12 cells. We found that LIUS stimulation suppressed the MPP+-induced ROS generation and inhibition of mitochondrial complex I activity in PC12 cells in an intensity-dependent manner at 30, 50, and 100 mW/cm2. Furthermore, LIUS stimulation at 100 mW/cm2 suppressed inhibition of mitochondrial complex activity by MPP+ and actually resulted in a decrease of α-synuclein phosphorylation and aggregation induced by MMP+ treatment in PC12 cells. LIUS stimulation also inhibited expression of casein kinase 2 (CK2) that appears to mediate ROS-dependent α-synuclein aggregation. Finally, LIUS stimulation alleviated the death of PC12 cells by MPP+ treatment in an intensity-dependent manner. We, hence, suggest that LIUS stimulation inhibits ROS generation by MPP+ treatment, thereby suppressing α-synuclein aggregation in PC12 cells.


Asunto(s)
1-Metil-4-fenilpiridinio/farmacología , Mitocondrias/metabolismo , Neuronas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ondas Ultrasónicas , alfa-Sinucleína/metabolismo , Animales , Mitocondrias/efectos de los fármacos , Neuronas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Células PC12 , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA