Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Biomacromolecules ; 25(5): 2740-2748, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38563478

RESUMEN

A self-immolative radiocontrast polymer agent has been newly designed for this study. The polymer agent is composed of a degradable poly(benzyl ether)-based backbone that enables complete and spontaneous depolymerization upon exposure to a specific stimulus, with iodophenyl pendant groups that confer a radiodensity comparable to that of commercial agents. In particular, when incorporated into a biodegradable polycaprolactone matrix, the agent not only reinforces the matrix and provides prolonged radiopacity without leaching but also governs the overall degradation kinetics of the composite under basic aqueous conditions, allowing for X-ray tracking and exhibiting a predictable degradation until the end of its lifespan. Our design would be advanced with various other components to produce synergistic functions and extended for applications in implantable biodegradable devices and theragnostic systems.


Asunto(s)
Medios de Contraste , Poliésteres , Medios de Contraste/química , Medios de Contraste/síntesis química , Poliésteres/química , Poliésteres/síntesis química , Polímeros/química , Rayos X
2.
Biomimetics (Basel) ; 8(7)2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37999194

RESUMEN

Macrophages, which are part of the mononuclear phagocytic system, possess sensory receptors that enable them to target cancer cells. In addition, they are able to engulf large amounts of particles through phagocytosis, suggesting a potential "Trojan horse" drug delivery approach to tumors by facilitating the engulfment of drug-hidden particles by macrophages. Recent research has focused on the development of macrophage-based microrobots for anticancer therapy, showing promising results and potential for clinical applications. In this review, we summarize the recent development of macrophage-based microrobot research for anticancer therapy. First, we discuss the types of macrophage cells used in the development of these microrobots, the common payloads they carry, and various targeting strategies utilized to guide the microrobots to cancer sites, such as biological, chemical, acoustic, and magnetic actuations. Subsequently, we analyze the applications of these microrobots in different cancer treatment modalities, including photothermal therapy, chemotherapy, immunotherapy, and various synergistic combination therapies. Finally, we present future outlooks for the development of macrophage-based microrobots.

3.
Heliyon ; 9(6): e16962, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37484408

RESUMEN

Exosomes are released by various cells, including natural killer (NK) cells and transport signaling molecules for the intercellular communication. Hepatocellular carcinoma (HCC), also known as primary liver cancer, is often inoperable and difficult to accurate diagnosis. Notably, the prognosis and underlying mechanisms of HCC are not fully understood. Exosomes-derived NK cells (NK-exos) express unique cytotoxic proteins with a killing ability in tumors and can easily penetrate tumor tissues to improve their targeting ability. NK cell functions, inducing cellular cytotoxicity are modulated by cytokines such as interleukin (IL)-15 and IL-21. However, the mechanisms and effects of cytokines-stimulated NK-exos for the treatment of liver cancer, including HCC, are not well known. In this study, we aimed to investigate the synergistic anti-tumor effects of NK-exos stimulated with IL-15 and IL-21 (NK-exosIL-15/21) in Hep3B cells. Our findings revealed that NK-exosIL-15/21 expressed cytotoxic proteins (perforin and granzyme B) and contained typical exosome markers (CD9 and CD63) within the size range of 100-150 nm. Moreover, we demonstrated that NK-exosIL-15/21 induced the enhancement of cytotoxicity and apoptotic activity in Hep3B cells by activating the specific pro-apoptotic proteins (Bax, cleaved caspase 3, cleaved PARP, perforin, and granzyme B) and inhibiting the anti-apoptotic protein (Bcl-2). In summary, our results suggest that NK-exosIL-15/21 regulate strong anti-tumor effects of HCC cells, by increasing the cytotoxicity and apoptosis through the activation of specific cytotoxic molecules.

4.
Micromachines (Basel) ; 15(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38276841

RESUMEN

Microrobots driven by multiple external power sources have emerged as promising tools for targeted drug and stem cell delivery in tissue regeneration. However, navigating and imaging these devices within a complex colloidal vascular system at a clinical scale is challenging. Ultrasonic actuators have gained interest in the field of non-contact manipulation of micromachines due to their label-free biocompatible nature and safe operation history. This research presents experimentally validated simulation results of ultrasonic actuation using a novel ultrasonic transducer array with a hemispherical arrangement that generates active traveling waves with phase modulation. Blood flow is used as a carrier force while the direction and path are controlled by blocking undesirable paths using a highly focused acoustic field. In the experiments, the microrobot cluster was able to follow a predefined trajectory and reach the target. The microrobot size, maximum radiation pressure, and focus position were optimized for certain blood flow conditions. The outcomes suggest that this acoustic manipulation module has potential applications in targeted tumor therapy.

5.
Sci Adv ; 8(46): eabq8545, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36399561

RESUMEN

Microrobots that can be precisely guided to target lesions have been studied for in vivo medical applications. However, existing microrobots have challenges in vivo such as biocompatibility, biodegradability, actuation module, and intra- and postoperative imaging. This study reports microrobots visualized with real-time x-ray and magnetic resonance imaging (MRI) that can be magnetically guided to tumor feeding vessels for transcatheter liver chemoembolization in vivo. The microrobots, composed of a hydrogel-enveloped porous structure and magnetic nanoparticles, enable targeted delivery of therapeutic and imaging agents via magnetic guidance from the actuation module under real-time x-ray imaging. In addition, the microrobots can be tracked using MRI as postoperative imaging and then slowly degrade over time. The in vivo validation of microrobot system-mediated chemoembolization was demonstrated in a rat liver with a tumor model. The proposed microrobot provides an advanced medical robotic platform that can overcome the limitations of existing microrobots and current liver chemoembolization.


Asunto(s)
Neoplasias Hepáticas , Robótica , Humanos , Imagen por Resonancia Magnética , Magnetismo , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/terapia
6.
Pharmaceutics ; 14(11)2022 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-36365211

RESUMEN

The use of untethered microrobots for precise synergistic anticancer drug delivery and controlled release has attracted attention over the past decade. A high surface area of the microrobot is desirable to achieve greater therapeutic effect by increasing the drug load. Therefore, various nano- or microporous microrobot structures have been developed to load more drugs. However, as most porous structures are not interconnected deep inside, the drug-loading efficiency may be reduced. Here, we propose a magnetically guided helical microrobot with a Gyroid surface for high drug-loading efficiency and precise drug delivery. All spaces inside the proposed microrobot are interconnected, thereby enabling drug loading deep inside the structure. Moreover, we introduce gold nanostars on the microrobot structure for near-infrared-induced photothermal therapy and triggering drug release. The results of this study encourage further exploration of a high loading efficiency in cell-based therapeutics, such as stem cells or immune cells, for microrobot-based drug-delivery systems.

7.
Pharmaceutics ; 14(10)2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36297578

RESUMEN

Targeted drug delivery using microrobots manipulated by an external actuator has significant potential to be a practical approach for wireless delivery of therapeutic agents to the targeted tumor. This work aimed to develop a novel acoustic manipulation system and macrophage-based microrobots (Macbots) for a study in targeted tumor therapy. The Macbots containing superparamagnetic iron oxide nanoparticles (SPIONs) can serve as drug carriers. Under an acoustic field, a microrobot cluster of the Macbots is manipulated by following a predefined trajectory and can reach the target with a different contact angle. As a fundamental validation, we investigated an in vitro experiment for targeted tumor therapy. The microrobot cluster could be manipulated to any point in the 4 × 4 × 4 mm region of interest with a position error of less than 300 µm. Furthermore, the microrobot could rotate in the O-XY plane with an angle step of 45 degrees without limitation of total angle. Finally, we verified that the Macbots could penetrate a 3D tumor spheroid that mimics an in vivo solid tumor. The outcome of this study suggests that the Macbots manipulated by acoustic actuators have potential applications for targeted tumor therapy.

8.
Drug Deliv ; 29(1): 2897-2911, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36068970

RESUMEN

Exosomes are nanosized extracellular vesicles secreted by various cell types, including those of the immune system, such as natural killer (NK) cells. They play a role in intercellular communication by transporting signal molecules between the cells. Recent studies have reported that NK cell-derived exosomes (NK-exo) contain cytotoxic proteins-induced cell death. However, the characteristics and potential functions of NK-exo, especially for the liver cancer are poorly understood. In this study, we investigated the anti-tumor effects of NK-exo in the primary liver cancer, hepatocellular carcinoma (HCC), using the orthotopic and subcutaneous tumor model. We found that NK-exo expressed both typical exosomal markers (e.g. CD63, CD81, and Alix) and cytotoxic proteins (e.g. perforin, granzyme B, FasL, and TRAIL). NK-exo were selectively taken up by HCC cells (e.g. Hep3B, HepG2, and Huh 7). Interestingly, Hep3B cells induced the highest cytotoxicity compared with HepG2 and Huh7 cells, and substantially enhanced the apoptosis by NK-exo. Furthermore, we demonstrated that NK-exo inhibited the phosphorylation of serine/threonine protein kinases (e.g. AKT and ERK1/2), and enhanced the activation of specific apoptosis markers (e.g. caspase-3, -7, -8, -9, and PARP) in Hep3B cells. NK-exo also exhibit the active targeting ability and potent therapeutic effects in both orthotopic and subcutaneous HCC mouse models. Overall, these results suggest that NK-exo indicate strong anti-tumor effects in HCC, which are mediated by novel regulatory mechanisms involved in serine/threonine kinase pathway-associated cell proliferation and caspase activation pathway-associated apoptosis.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Exosomas , Neoplasias Hepáticas , Animales , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Exosomas/metabolismo , Humanos , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/patología , Neoplasias Hepáticas/metabolismo , Ratones , Modelos Animales , Serina/metabolismo
9.
Drug Deliv ; 29(1): 2621-2631, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35941835

RESUMEN

Colorectal cancer remains one of the main causes of cancer-related deaths worldwide. Although numerous nanomedicine formulations have been developed to tackle the disease, their low selectivity still limits effective therapeutic outcomes. In this study, we isolated extracellular vesicles (EVs) from CT26 colorectal cancer cells and 4T1 murine mammary carcinoma cells, loaded them with the chemotherapeutic agent (doxorubicin, DOX). Then we evaluated the cellular uptake of the extracellular vesicles both in 2D monolayer and 3D tumor spheroid setups using confocal laser scanning microscope and flow cytometry. In vivo tumor homing of the extracellular vesicles was verified on CT26 tumor bearing BALB/c mice using in vivo imaging system. Finally, in vivo therapeutic effects were evaluated and compared using the same animal models treated with five doses of EV formulations. CT26-EV-DOX exhibited excellent biocompatibility, a high drug-loading capacity, controlled drug release behavior, and a high capability for targeting colorectal cancer cells. In particular, we verified that CT26-EV-DOX could preferentially be up taken by their parent cells and could effectively target and penetrate 3D tumor spheroids resembling colorectal tumors in vivo in comparison with their 4T1 derived EV partner. Additionally, treatment of colorectal tumor-bearing BALB/c mice with of CT26-EV-DOX significantly inhibited the growth of the tumors during the treatment course. The developed CT26-EV-DOX nanoparticles may present a novel and effective strategy for the treatment of colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Vesículas Extracelulares , Nanopartículas , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Ratones , Ratones Endogámicos BALB C
10.
J Mater Chem B ; 10(23): 4509-4518, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35616358

RESUMEN

Stomach cancer is a global health concern as millions of cases are reported each year. In the present study, we developed a pH-responsive microrobot with good biocompatibility, magnetic-field controlled movements, and the ability to be visualized via X-ray imaging. The microrobot consisted of composite resin and a pH-responsive layer. This microrobot was found to fold itself in high pH environments and unfold itself in low pH environments. In addition, the neodymium (NdFeB) magnetic nanoparticles present inside the composite resin provided the microrobot with an ability to be controlled by a magnetic field through an electromagnetic actuation system, and the monomeric triiodobenzoate-based particles were found to act as contrast agents for real-time X-ray imaging. The doxorubicin coating on the microrobot's surface resulted in a high cancer-cell killing effect. Finally, we demonstrated the proposed microrobot under an ex vivo environment using a pig's stomach. Thus, this approach can be a potential alternative to targeted drug carriers, especially for stomach cancer applications.


Asunto(s)
Neoplasias Gástricas , Resinas Compuestas , Doxorrubicina/farmacología , Humanos , Magnetismo , Neoplasias Gástricas/diagnóstico por imagen , Rayos X
11.
ACS Sens ; 7(2): 632-640, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35147414

RESUMEN

Embedded sensors for endoscopy devices have been studied toward a convenient and decision-supportive methodology in colorectal cancer (CRC) diagnosis, but no device could provide direct CRC screening with in situ measurements. In this study, we proposed a millimeter-scale electrical impedance spectroscopy (EIS) device that can be integrated into a biopsy tool in endoscopy for colorectal tumor detection. A minimally invasive tripolar electrode was designed to sense the tissue impedance, and a multilayer neural network was implemented for the classification algorithm. The sensor performance was investigated in terms of sensitivity, reliability, and repeatability using dummy tissues made of agarose hydrogels at various saline concentrations. In addition, an in vivo study was conducted in mice with an implanted CT-26 colon tumor line. The results demonstrated that the prototyped EIS device and algorithm can detect the tumor tissue in suspicious lesions with high sensitivity and specificity of 87.2 and 92.5%, respectively, and a low error of 7.1%. The findings of this study are promising for in situ CRC screening and may advance the diagnostic efficacy of CRC detection during endoscopic procedures.


Asunto(s)
Neoplasias Colorrectales , Espectroscopía Dieléctrica , Animales , Neoplasias Colorrectales/diagnóstico , Espectroscopía Dieléctrica/métodos , Detección Precoz del Cáncer/métodos , Electrodos , Ratones , Reproducibilidad de los Resultados
12.
Sci Rep ; 11(1): 19756, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34611180

RESUMEN

Chemotherapy is an important method in the field of cancer treatment and often follows surgery and/or radiotherapy to remove as many tumor cells as possible. In particular, among the chemotherapy methods, treatment using electromagnetic-based actuation systems is considered an effective method owing to the remote control of nanorobots. The existing electromagnetic-based actuation systems, however, have certain disadvantages such as the lack of degrees of freedom and the difficulty of manipulating large numbers of nanorobots (i.e., nanorobot clusters). Herein, we report that nanorobot clusters can be manipulated with high degrees of freedom through a simple parameter alpha that easily controls the gradient of the magnetic field of a multi-coil electromagnetic actuation system. The simulation results show that the gradient of the magnetic field is controlled using an introduced parameter, alpha, and the corresponding velocity is also controlled. Not only the velocity of the nanorobot cluster but also the unrestricted spatial control is enabled in two- and three-dimensions. We believe this study highlights an efficient method of electromagnetic control for cluster-based drug delivery.

13.
Pharmaceutics ; 13(10)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34683982

RESUMEN

Various cell therapy strategies, including chimeric antigen receptor-expressing T or natural killer (NK) cells and cell-mediated drug delivery, have been developed for tumor eradication. However, the efficiency of these strategies against solid tumors remains unclear. We hypothesized that real-time control and visualization of therapeutic cells, such as NK cells, would improve their therapeutic efficacy against solid tumors. In this study, we engineered Sonazoid microbubble-conjugated NK (NK_Sona) cells and demonstrated that they were detectable by ultrasound imaging in real-time and maintained their functions. The Sonazoid microbubbles on the cell membrane did not affect the cytotoxicity and viability of the NK cells in vitro. Additionally, the NK_Sona cells could be visualized by ultrasound imaging and inhibited tumor growth in vivo. Taken together, our findings demonstrate the feasibility of this new approach in the use of therapeutic cells, such as NK cells, against solid tumors.

14.
Adv Healthc Mater ; 10(19): e2100068, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34369079

RESUMEN

Various magnetic microcarrier systems capable of transporting cells to target lesions are developed for therapeutic agent-based tissue regeneration. However, the need for bioactive molecules and cells, the potential toxicity of the microcarrier, and the large volume and limited workspace of the magnetic targeting device remain challenging issues associated with microcarrier systems. Here, a multifunctional magnetic implant system is presented for targeted delivery, secure fixation, and induced differentiation of stem cells. This magnetic implant system consists of a biomaterial-based microcarrier containing bioactive molecules, a portable magnet array device, and a biocompatible paramagnetic implant. Among biomedical applications, the magnetic implant system is developed for knee cartilage repair. The various functions of these components are verified through in vitro, phantom, and ex vivo tests. As a result, a single microcarrier can load ≈1.52 ng of transforming growth factor ß (TGF-ß1) and 3.3 × 103 of stem cells and stimulate chondrogenic differentiation without extra bioactive molecule administration. Additionally, the implant system demonstrates high targeting efficiency (over 90%) of the microcarriers in a knee phantom and ex vivo pig knee joint. The results show that this implant system, which overcomes the limitations of the existing magnetic targeting system, represents an important advancement in the field.


Asunto(s)
Células Madre Mesenquimatosas , Animales , Diferenciación Celular , Células Cultivadas , Condrogénesis , Células Madre , Porcinos
15.
Sci Rep ; 11(1): 15122, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34302003

RESUMEN

Magnetic nanorobots (MNRs) based on paramagnetic nanoparticles/nanoclusters for the targeted therapeutics of anticancer drugs have been highlighted for their efficiency potential. Controlling the locomotion of the MNRs is a key challenge for effective delivery to the target legions. Here, we present a method for controlling paramagnetic nanoclusters through enhanced tumbling and disaggregation motions with a combination of rotating field and gradient field generated by external electromagnets. The mechanism is carried out via an electromagnetic actuation system capable of generating MNR motions with five degrees of freedom in a spherical workspace without singularity. The nanocluster swarm structures can successfully pass through channels to the target region where they can disaggregate. The results show significantly faster response and higher targeting rate by using rotating magnetic and gradient fields. The mean velocities of the enhanced tumbling motion are twice those of the conventional tumbling motion and approximately 130% higher than the gradient pulling motion. The effects of each fundamental factor on the locomotion are investigated for further MNR applications. The locomotion speed of the MNR could be predicted by the proposed mathematical model and agrees well with experimental results. The high access rate and disaggregation performance insights the potentials for targeted drug delivery application.

16.
ACS Nano ; 15(5): 8492-8506, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-33973786

RESUMEN

Macrophages (MΦs) have the capability to sense chemotactic cues and to home tumors, therefore presenting a great approach to engineer these cells to deliver therapeutic agents to treat diseases. However, current cell-based drug delivery systems usually use commercial cell lines that may elicit an immune response when injected into a host animal. Furthermore, premature off-target drug release also remains an enormous challenge. Here, we isolated and differentiated MΦs from the spleens of BALB/c mice and developed dual-targeting MΦ-based microrobots, regulated by chemotaxis and an external magnetic field, and had a precise spatiotemporal controlled drug release at the tumor sites in response to the NIR laser irradiation. These microrobots were prepared by coloading citric acid (CA)-coated superparamagnetic nanoparticles (MNPs) and doxorubicin (DOX)-containing thermosensitive nanoliposomes (TSLPs) into the MΦs. CA-MNPs promoted a magnetic targeting function to the microrobots and also permitted photothermal heating in response to the NIR irradiation, triggering drug release from TSLPs. In vitro experiments showed that the microrobots effectively infiltrated tumors in 3D breast cancer tumor spheroids, particularly in the presence of the magnetic field, and effectively induced tumor cell death, further enhanced by the NIR laser irradiation. In vivo experiments confirmed that the application of the magnetic field and NIR laser could markedly inhibit the growth of tumors with a subtherapeutic dose of DOX and a single injection of the microrobots. In summary, the study proposes a strategy for the effective anticancer treatment using the developed microrobots.


Asunto(s)
Doxorrubicina , Nanopartículas , Animales , Línea Celular Tumoral , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Macrófagos , Ratones , Ratones Endogámicos BALB C , Fototerapia
17.
Adv Healthc Mater ; 10(6): e2001681, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33506630

RESUMEN

Targeted drug delivery using a microrobot is a promising technique capable of overcoming the limitations of conventional chemotherapy that relies on body circulation. However, most studies of microrobots used for drug delivery have only demonstrated simple mobility rather than precise targeting methods and prove the possibility of biodegradation of implanted microrobots after drug delivery. In this study, magnetically guided self-rolled microrobot that enables autonomous navigation-based targeted drug delivery, real-time X-ray imaging, and microrobot retrieval is proposed. The microrobot, composed of a self-rolled body that is printed using focused light and a surface with magnetic nanoparticles attached, demonstrates the loading of doxorubicin and an X-ray contrast agent for cancer therapy and X-ray imaging. The microrobot is precisely mobilized to the lesion site through automated targeting using magnetic field control of an electromagnetic actuation system under real-time X-ray imaging. The photothermal effect using near-infrared light reveals rapid drug release of the microrobot located at the lesion site. After drug delivery, the microrobot is recovered without potential toxicity by implantation or degradation using a magnetic-field-switchable coiled catheter. This microrobotic approach using automated control method of the therapeutic agents-loaded microrobot has potential use in precise localized drug delivery systems.


Asunto(s)
Sistemas de Liberación de Medicamentos , Preparaciones Farmacéuticas , Doxorrubicina , Liberación de Fármacos , Rayos X
18.
ACS Nano ; 15(1): 1059-1076, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33290042

RESUMEN

We described a magnetic chitosan microscaffold tailored for applications requiring high biocompatibility, biodegradability, and monitoring by real-time imaging. Such magnetic microscaffolds exhibit adjustable pores and sizes depending on the target application and provide various functions such as magnetic actuation and enhanced cell adhesion using biomaterial-based magnetic particles. Subsequently, we fabricated the magnetic chitosan microscaffolds with optimized shape and pore properties to specific target diseases. As a versatile tool, the capability of the developed microscaffold was demonstrated through in vitro laboratory tasks and in vivo therapeutic applications for liver cancer therapy and knee cartilage regeneration. We anticipate that the optimal design and fabrication of the presented microscaffold will advance the technology of biopolymer-based microscaffolds and micro/nanorobots.


Asunto(s)
Materiales Biocompatibles , Quitosano , Cartílago
19.
Micromachines (Basel) ; 11(11)2020 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-33233414

RESUMEN

Targeted drug delivery (TDD) based on magnetic nanoparticles (MNPs) and external magnetic actuation is a promising drug delivery technology compared to conventional treatments usually utilized in cancer therapy. However, the implementation of a TDD system at a clinical site based on considerations for the actual size of the human body requires a simplified structure capable of both external actuation and localization. To address these requirements, we propose a novel approach to localize drug carriers containing MNPs by manipulating the field-free point (FFP) mechanism in the principal magnetic field. To this end, we devise a versatile electromagnetic actuation (EMA) system for FFP generation based on four coils affixed to a movable frame. By the Biot-Savart law, the FFP can be manipulated by appropriately controlling the gradient field strength at the target area using the EMA system. Further, weighted-norm solutions are utilized to correct the positions of FFP to improve the accuracy of FFP displacement in the region of interest (ROI). As MNPs, ferrofluid is used to experiment with 2D and 3D localizations in a blocked phantom placed in the designed ROI. The resultant root mean square error of the localizations is observed to be approximately 1.4 mm in the 2D case and 1.6 mm in the 3D case. Further, the proposed movable EMA is verified to be capable of simultaneously scanning multiple points as well as the actuation and imaging of MNPs. Based on the success of the experiments in this study, further research is intended to be conducted in scale-up system development to design precise TDD systems at clinical sites.

20.
Sensors (Basel) ; 20(20)2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33050155

RESUMEN

Recently an active locomotive capsule endoscope (CE) for diagnosis and treatment in the digestive system has been widely studied. However, real-time localization to achieve precise feedback control and record suspicious positioning in the intestine is still challenging owing to the limitation of capsule size, relatively large diagnostic volume, and compatibility of other devices in clinical site. To address this issue, we present a novel robotic localization sensing methodology based on the kinematics of a planar cable driven parallel robot (CDPR) and measurements of the quasistatic magnetic field of a Hall effect sensor (HES) array. The arrangement of HES and the Levenberg-Marquardt (LM) algorithm are applied to estimate the position of the permanent magnet (PM) in the CE, and the planar CDPR is incorporated to follow the PM in the CE. By tracking control of the planar CDPR, the position of PM in any arbitrary position can be obtained through robot forward kinematics with respect to the global coordinates at the bedside. The experimental results show that the root mean square error (RMSE) for the estimated position value of PM was less than 1.13 mm in the X, Y, and Z directions and less than 1.14° in the θ and φ orientation, where the sensing space could be extended to ±70 mm for the given 34 × 34 mm2 HES array and the average moving distance in the Z-direction is 40 ± 2.42 mm. The proposed method of the robotic sensing with HES and CDPR may advance the sensing space expansion technology by utilizing the provided single sensor module of limited sensible volume.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Endoscopios en Cápsulas , Diseño de Equipo , Magnetismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA