Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
EMBO J ; 43(9): 1740-1769, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565949

RESUMEN

The Hippo pathway effectors Yes-associated protein 1 (YAP) and its homolog TAZ are transcriptional coactivators that control gene expression by binding to TEA domain (TEAD) family transcription factors. The YAP/TAZ-TEAD complex is a key regulator of cancer-specific transcriptional programs, which promote tumor progression in diverse types of cancer, including breast cancer. Despite intensive efforts, the YAP/TAZ-TEAD complex in cancer has remained largely undruggable due to an incomplete mechanistic understanding. Here, we report that nuclear phosphoinositides function as cofactors that mediate the binding of YAP/TAZ to TEADs. The enzymatic products of phosphoinositide kinases PIPKIα and IPMK, including phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4,5-trisphosphate (P(I3,4,5)P3), bridge the binding of YAP/TAZ to TEAD. Inhibiting these kinases or the association of YAP/TAZ with PI(4,5)P2 and PI(3,4,5)P3 attenuates YAP/TAZ interaction with the TEADs, the expression of YAP/TAZ target genes, and breast cancer cell motility. Although we could not conclusively exclude the possibility that other enzymatic products of IPMK such as inositol phosphates play a role in the mechanism, our results point to a previously unrecognized role of nuclear phosphoinositide signaling in control of YAP/TAZ activity and implicate this pathway as a potential therapeutic target in YAP/TAZ-driven breast cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Neoplasias de la Mama , Transducción de Señal , Transactivadores , Factores de Transcripción , Proteínas Señalizadoras YAP , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Señalizadoras YAP/metabolismo , Proteínas Señalizadoras YAP/genética , Femenino , Transactivadores/metabolismo , Transactivadores/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Línea Celular Tumoral , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositoles/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Núcleo Celular/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética
2.
Nat Cell Biol ; 24(7): 1099-1113, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35798843

RESUMEN

The tumour suppressor p53 and PI3K-AKT pathways have fundamental roles in the regulation of cell growth and apoptosis, and are frequently mutated in cancer. Here, we show that genotoxic stress induces nuclear AKT activation through a p53-dependent mechanism that is distinct from the canonical membrane-localized PI3K-AKT pathway. Following genotoxic stress, a nuclear PI3K binds p53 in the non-membranous nucleoplasm to generate a complex of p53 and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), which recruits AKT, PDK1 and mTORC2 to activate AKT and phosphorylate FOXO proteins, thereby inhibiting DNA damage-induced apoptosis. Wild-type p53 activates nuclear AKT in an on/off fashion following stress, whereas mutant p53 dose-dependently stimulates high basal AKT activity. The p53-PtdIns(3,4,5)P3 complex is dephosphorylated to p53-phosphatidylinositol 4,5-bisphosphate by PTEN to inhibit AKT activation. The nuclear p53-phosphoinositide signalosome is distinct from the canonical membrane-localized pathway and insensitive to PI3K inhibitors currently in the clinic, which underscores its therapeutic relevance.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Proteína p53 Supresora de Tumor , Núcleo Celular/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositoles , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
3.
Cancers (Basel) ; 13(9)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068608

RESUMEN

Approximately 25% of head and neck squamous cell carcinomas (HNSCC) are associated with human papillomavirus (HPV) infection. In these cancers as well as in HPV-associated anogenital cancers, PI3K signaling is highly activated. We previously showed that IQ motif-containing GTPase activating protein 1 (IQGAP1), a PI3K pathway scaffolding protein, is overexpressed in and contributes to HNSCC and that blocking IQGAP1-mediated PI3K signaling reduces HPV-positive HNSCC cell survival and migration. In this study, we tested whether IQGAP1 promotes papillomavirus (PV)-associated HNSCCs. IQGAP1 was necessary for optimal PI3K signaling induced by HPV16 oncoproteins in transgenic mice and MmuPV1 infection, a mouse papillomavirus that causes HNSCC in mice. Furthermore, we found that, at 6 months post-infection, MmuPV1-infected Iqgap1-/- mice developed significantly less severe tumor phenotypes than MmuPV1-infected Iqgap1+/+ mice, indicating a role of IQGAP1 in MmuPV1-associated HNSCC. The tumors resulting from MmuPV1 infection showed features consistent with HPV infection and HPV-associated cancer. However, such IQGAP1-dependent effects on disease severity were not observed in an HPV16 transgenic mouse model for HNC. This may reflect that IQGAP1 plays a role in earlier stages of viral pathogenesis, or other activities of HPV16 oncogenes are more dominant in driving carcinogenesis than their influence on PI3K signaling.

4.
Nat Cell Biol ; 22(11): 1357-1370, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33139939

RESUMEN

The canonical model of agonist-stimulated phosphatidylinositol-3-OH kinase (PI3K)-Akt signalling proposes that PI3K is activated at the plasma membrane, where receptors are activated and phosphatidylinositol-4,5-bisphosphate is concentrated. Here we show that phosphatidylinositol-3,4,5-trisphosphate generation and activated Akt are instead largely confined to intracellular membranes upon receptor tyrosine kinase activation. Microtubule-associated protein 4 (MAP4) interacts with and controls localization of membrane vesicle-associated PI3Kα to microtubules. The microtubule-binding domain of MAP4 binds directly to the C2 domain of the p110α catalytic subunit. MAP4 controls the interaction of PI3Kα with activated receptors at endosomal compartments along microtubules. Loss of MAP4 results in the loss of PI3Kα targeting and loss of PI3K-Akt signalling downstream of multiple agonists. The MAP4-PI3Kα assembly defines a mechanism for spatial control of agonist-stimulated PI3K-Akt signalling at internal membrane compartments linked to the microtubule network.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Endosomas/enzimología , Proteínas Asociadas a Microtúbulos/metabolismo , Transducción de Señal , Animales , Células COS , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Chlorocebus aethiops , Fosfatidilinositol 3-Quinasa Clase I/genética , Endosomas/efectos de los fármacos , Activación Enzimática , Factor de Crecimiento Epidérmico/farmacología , Receptores ErbB/agonistas , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Insulina/farmacología , Proteínas Asociadas a Microtúbulos/genética , Fosfatos de Fosfatidilinositol/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos
5.
Clin Cancer Res ; 26(1): 301-311, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31597661

RESUMEN

PURPOSE: Head and neck cancer (HNC) is the sixth most common cancer worldwide with a 5-year survival rate of less than 50%. The PI3K/AKT/mTOR signaling pathway is frequently implicated in HNC. Recently, IQ motif-containing GTPase-activating protein 1 (IQGAP1) was discovered to scaffold the PI3K/AKT signaling pathway. IQGAP1 gene expression is increased in HNC, raising the hypothesis that IQGAP1 contributes to HNC. EXPERIMENTAL DESIGN: We performed a combination of in vitro studies using human cancer cell lines treated with a cell-permeable peptide that interferes with IQGAP1's ability to bind to PI3K, and in vivo studies utilizing mice genetically knocked out for the Iqgap1 (Iqgap1 -/-). In vivo EGF stimulation assays were used to evaluate PI3K signaling. To study the role of IQGAP1 in HNC, we used a well-validated mouse model that drives HNC via a synthetic oral carcinogen, 4-nitroquinoline 1-oxide (4NQO). RESULTS: IQGAP1 is necessary for efficient PI3K signaling in vitro and in vivo. Disruption of IQGAP1-scaffolded PI3K/AKT signaling reduced HNC cell survival. Iqgap1 -/- mice had significantly lower cancer incidences, lesser disease severity, and fewer cancer foci. IQGAP1 protein levels were increased in HNC arising in Iqgap1+/+ mice. The level of PI3K signaling in 4NQO-induced HNC arising in Iqgap1 -/- mice was significantly reduced, consistent with the hypothesis that IQGAP1 contributes to HNC at least partly through PI3K signaling. High IQGAP1 expression correlated with reduced survival, and high pS6 levels correlated with high IQGAP1 levels in patients with HNC. CONCLUSIONS: These data demonstrate that IQGAP1 contributes to head and neck carcinogenesis.


Asunto(s)
Carcinogénesis/patología , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Neoplasias de Cabeza y Cuello/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Proteínas Activadoras de ras GTPasa/metabolismo , Animales , Carcinogénesis/metabolismo , Proliferación Celular , Femenino , Neoplasias de Cabeza y Cuello/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
6.
Sci Rep ; 9(1): 9126, 2019 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-31235839

RESUMEN

Epidermal growth factor receptor (EGFR) and its downstream phosphoinositide 3-kinase (PI3K) pathway are commonly deregulated in cancer. Recently, we have shown that the IQ motif-containing GTPase-activating protein 1 (IQGAP1) provides a molecular platform to scaffold all the components of the PI3K-Akt pathway and results in the sequential generation of phosphatidylinositol-3,4,5-trisphosphate (PI3,4,5P3). In addition to the PI3K-Akt pathway, IQGAP1 also scaffolds the Ras-ERK pathway. To define the specificity of IQGAP1 for the control of PI3K signaling, we have focused on the IQ3 motif in IQGAP1 as PIPKIα and PI3K enzymes bind this region. An IQ3 deletion mutant loses interactions with the PI3K-Akt components but retains binding to ERK and EGFR. Consistently, blocking the IQ3 motif of IQGAP1 using an IQ3 motif-derived peptide mirrors the effect of IQ3 deletion mutant by reducing Akt activation but has no impact on ERK activation. Also, the peptide disrupts the binding of IQGAP1 with PI3K-Akt pathway components, while IQGAP1 interactions with ERK and EGFR are not affected. Functionally, deleting or blocking the IQ3 motif inhibits cell proliferation, invasion, and migration in a non-additive manner to a PIPKIα inhibitor, establishing the functional specificity of IQ3 motif towards the PI3K-Akt pathway. Taken together, the IQ3 motif is a specific target for suppressing activation of the PI3K-Akt but not the Ras-ERK pathway. Although EGFR stimulates the IQGAP1-PI3K and -ERK pathways, here we show that IQGAP1-PI3K controls migration, invasion, and proliferation independent of ERK. These data illustrate that the IQ3 region of IQGAP1 is a promising therapeutic target for PI3K-driven cancer.


Asunto(s)
Factor de Crecimiento Epidérmico/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Activadoras de ras GTPasa/química , Proteínas Activadoras de ras GTPasa/metabolismo , Secuencias de Aminoácidos , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Receptores ErbB/metabolismo , Humanos , Invasividad Neoplásica , Eliminación de Secuencia , Proteínas Activadoras de ras GTPasa/genética
7.
Nat Cell Biol ; 21(4): 462-475, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30886346

RESUMEN

The tumour suppressor p53 (encoded by TP53) protects the genome against cellular stress and is frequently mutated in cancer. Mutant p53 acquires gain-of-function oncogenic activities that are dependent on its enhanced stability. However, the mechanisms by which nuclear p53 is stabilized are poorly understood. Here, we demonstrate that the stability of stress-induced wild-type and mutant p53 is regulated by the type I phosphatidylinositol phosphate kinase (PIPKI-α (also known as PIP5K1A)) and its product phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). Nuclear PIPKI-α binds to p53 upon stress, resulting in the production and association of PtdIns(4,5)P2 with p53. PtdIns(4,5)P2 binding promotes the interaction between p53 and the small heat shock proteins HSP27 (also known as HSPB1) and αB-crystallin (also known as HSPB5), which stabilize nuclear p53. Moreover, inhibition of PIPKI-α or PtdIns(4,5)P2 association results in p53 destabilization. Our results point to a previously unrecognized role of nuclear phosphoinositide signalling in regulating p53 stability and implicate this pathway as a promising therapeutic target in cancer.


Asunto(s)
Núcleo Celular/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Proteínas de Choque Térmico Pequeñas/metabolismo , Humanos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Estabilidad Proteica
8.
Trends Cancer ; 2(7): 378-390, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27819060

RESUMEN

Phosphoinositide 3-kinase (PI3K) generation of PI(3,4,5)P3 from PI(4,5)P2 and the subsequent activation of Akt and its downstream signaling cascades (e.g. mTORC1) dominates the landscape of phosphoinositide signaling axis in cancer research. However, PI(4,5)P2 is breaking its boundary as merely a substrate for PI3K and phospholipase C (PLC), and is now an established lipid messenger pivotal for different cellular events in cancer. Here, we review the phosphoinositide signaling axis in cancer, giving due weight to PI(4,5)P2 and its generating enzymes, the phosphatidylinositol phosphate (PIP) kinases (PIPKs). We highlighted how PI(4,5)P2 and PIP kinases serve as a proximal node in phosphoinositide signaling axis and how its interaction with cytoskeletal proteins regulates migratory and invasive nexus of metastasizing tumor cells.


Asunto(s)
Neoplasias/metabolismo , Fosfatidilinositoles/metabolismo , Animales , Movimiento Celular , Polaridad Celular , Citoesqueleto/metabolismo , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
9.
Nat Cell Biol ; 18(12): 1324-1335, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27870828

RESUMEN

Generation of the lipid messenger phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) is crucial for development, cell growth and survival, and motility, and it becomes dysfunctional in many diseases including cancers. Here we reveal a mechanism for PtdIns(3,4,5)P3 generation by scaffolded phosphoinositide kinases. In this pathway, class I phosphatidylinositol-3-OH kinase (PI(3)K) is assembled by IQGAP1 with PI(4)KIIIα and PIPKIα, which sequentially generate PtdIns(3,4,5)P3 from phosphatidylinositol. By scaffolding these kinases into functional proximity, the PtdIns(4,5)P2 generated is selectively used by PI(3)K for PtdIns(3,4,5)P3 generation, which then signals to PDK1 and Akt that are also in the complex. Moreover, multiple receptor types stimulate the assembly of this IQGAP1-PI(3)K signalling complex. Blockade of IQGAP1 interaction with PIPKIα or PI(3)K inhibited PtdIns(3,4,5)P3 generation and signalling, and selectively diminished cancer cell survival, revealing a target for cancer chemotherapy.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Animales , Muerte Celular , Línea Celular , Supervivencia Celular , Humanos , Inmunoprecipitación , Insulina/metabolismo , Ratones , Modelos Biológicos , Neoplasias/patología , Péptidos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Proteínas Activadoras de ras GTPasa/metabolismo
10.
J Biol Chem ; 290(30): 18843-54, 2015 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-26070568

RESUMEN

The assembly of signaling complexes at the plasma membrane is required for the initiation and propagation of cellular signaling upon cell activation. The class I PI3K and the serine/threonine-specific protein kinase Akt signaling pathways (PI3K/Akt) are often activated in tumors. These pathways are initiated by the generation of phosphatidylinositol 3,4,5-triphosphate (PIP3) by PI3K-mediated phosphorylation of phosphatidylinositol 4,5-biphosphate (PIP2), synthesized by phosphatidylinositol 4-phosphate 5-kinase (PIPKI) enzymes. The mechanism of how tumor cells recruit and organize the PIP2-synthesizing enzymes with PI3K in the plasma membrane for activation of PI3K/Akt signaling is not defined. Here, we demonstrated a role for the phosphatidylinositol 4-phosphate 5-kinase Iγ (PIPKIγ) in PI3K/Akt signaling. PIPKIγ is overexpressed in triple-negative breast cancers. Loss of PIPKIγ or its focal adhesion-targeting variant, PIPKIγi2, impaired PI3K/Akt activation upon stimulation with growth factors or extracellular matrix proteins in different tumor cells. PIPKIγi2 assembles into a complex containing Src and PI3K; Src was required for the recruitment of PI3K enzyme into the complex. PIPKIγi2 interaction with Src and its lipid kinase activity were required for promoting PI3K/Akt signaling. These results define a mechanism by which PIPKIγi2 and PI3K are integrated into a complex regulated by Src, resulting in the spatial generation of PIP2, which is the substrate PI3K required for PIP3 generation and subsequent Akt activation. This study elucidates the mechanism by which PIP2-generating enzyme controls Akt activation upstream of a PI3K enzyme. This pathway may represent a signaling nexus required for the survival and growth of metastasizing and circulating tumor cells in vivo.


Asunto(s)
Neoplasias/genética , Fosfatidilinositol 3-Quinasas/biosíntesis , Fosfotransferasas (Aceptor de Grupo Alcohol)/biosíntesis , Proteínas Proto-Oncogénicas c-akt/biosíntesis , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Neoplasias/metabolismo , Neoplasias/patología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositoles/genética , Fosfatidilinositoles/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/genética , Activación Transcripcional/genética , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
11.
J Biol Chem ; 288(48): 34707-18, 2013 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-24151076

RESUMEN

A fundamental property of tumor cells is to defy anoikis, cell death caused by a lack of cell-matrix interaction, and grow in an anchorage-independent manner. How tumor cells organize signaling molecules at the plasma membrane to sustain oncogenic signals in the absence of cell-matrix interactions remains poorly understood. Here, we describe a role for phosphatidylinositol 4-phosphate 5-kinase (PIPK) Iγi2 in controlling anchorage-independent growth of tumor cells in coordination with the proto-oncogene Src. PIPKIγi2 regulated Src activation downstream of growth factor receptors and integrins. PIPKIγi2 directly interacted with the C-terminal tail of Src and regulated its subcellular localization in concert with talin, a cytoskeletal protein targeted to focal adhesions. Co-expression of PIPKIγi2 and Src synergistically induced the anchorage-independent growth of nonmalignant cells. This study uncovers a novel mechanism where a phosphoinositide-synthesizing enzyme, PIPKIγi2, functions with the proto-oncogene Src, to regulate oncogenic signaling.


Asunto(s)
Proliferación Celular , Genes src/genética , Neoplasias/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Secuencia de Aminoácidos , Animales , Anoicis/genética , Adhesiones Focales/genética , Adhesiones Focales/metabolismo , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Ratones , Células 3T3 NIH , Neoplasias/metabolismo , Neoplasias/patología , Fosfatidilinositoles/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proto-Oncogenes Mas , Transducción de Señal/genética , Talina/metabolismo
12.
EMBO J ; 32(19): 2617-30, 2013 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-23982733

RESUMEN

Phosphatidylinositol 4,5 bisphosphate (PIP2) is a key lipid messenger for regulation of cell migration. PIP2 modulates many effectors, but the specificity of PIP2 signalling can be defined by interactions of PIP2-generating enzymes with PIP2 effectors. Here, we show that type Iγ phosphatidylinositol 4-phosphate 5-kinase (PIPKIγ) interacts with the cytoskeleton regulator, IQGAP1, and modulates IQGAP1 function in migration. We reveal that PIPKIγ is required for IQGAP1 recruitment to the leading edge membrane in response to integrin or growth factor receptor activation. Moreover, IQGAP1 is a PIP2 effector that directly binds PIP2 through a polybasic motif and PIP2 binding activates IQGAP1, facilitating actin polymerization. IQGAP1 mutants that lack PIPKIγ or PIP2 binding lose the ability to control directional cell migration. Collectively, these data reveal a synergy between PIPKIγ and IQGAP1 in the control of cell migration.


Asunto(s)
Movimiento Celular/fisiología , Fosfatidilinositol 4,5-Difosfato/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Proteínas Activadoras de ras GTPasa/fisiología , Línea Celular Tumoral , Humanos
13.
J Cell Sci ; 125(Pt 24): 5960-73, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23077174

RESUMEN

Transmembrane 4 L six family member 5 (TM4SF5) plays an important role in cell migration, and focal adhesion kinase (FAK) activity is essential for homeostatic and pathological migration of adherent cells. However, it is unclear how TM4SF5 signaling mediates the activation of cellular migration machinery, and how FAK is activated during cell adhesion. Here, we showed that direct and adhesion-dependent binding of TM4SF5 to FAK causes a structural alteration that may release the inhibitory intramolecular interaction in FAK. In turn, this may activate FAK at the cell's leading edge, to promote migration/invasion and in vivo metastasis. TM4SF5-mediated FAK activation occurred during integrin-mediated cell adhesion. TM4SF5 was localized at the leading edge of the cells, together with FAK and actin-organizing molecules, indicating a signaling link between TM4SF5/FAK and actin reorganization machinery. Impaired interactions between TM4SF5 and FAK resulted in an attenuated FAK phosphorylation (the signaling link to actin organization machinery) and the metastatic potential. Our findings demonstrate that TM4SF5 directly binds to and activates FAK in an adhesion-dependent manner, to regulate cell migration and invasion, suggesting that TM4SF5 is a promising target in the treatment of metastatic cancer.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Quinasa 1 de Adhesión Focal/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Tetraspaninas/genética , Secuencia de Aminoácidos , Animales , Carcinoma Hepatocelular/enzimología , Adhesión Celular/fisiología , Movimiento Celular/fisiología , Activación Enzimática , Femenino , Xenoinjertos , Humanos , Neoplasias Hepáticas/enzimología , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Metástasis de la Neoplasia , Fosforilación , Transducción de Señal , Tetraspaninas/metabolismo
14.
Biochem J ; 443(3): 691-700, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22292774

RESUMEN

The EMT (epithelial-mesenchymal transition) is involved in fibrosis and cancer, and is regulated by different signalling pathways mediated through soluble factors, actin reorganization and transcription factor actions. Because the tetraspan (also called tetraspanin) TM4SF5 (transmembrane 4 L6 family member 5) is highly expressed in hepatocellular carcinoma and induces EMT, understanding how TM4SF5 expression in hepatocytes is regulated is important. We explored the mechanisms that induce TM4SF5 expression and whether impaired signalling pathways for TM4SF5 expression inhibit the acquisition of mesenchymal cell features, using human and mouse normal hepatocytes. We found that TGFß1 (transforming growth factor ß1)-mediated Smad activation caused TM4SF5 expression and EMT, and activation of the EGFR [EGF (epidermal growth factor) receptor] pathway. Inhibition of EGFR activity following TGFß1 treatment abolished acquisition of EMT, suggesting a link from Smads to EGFR for TM4SF5 expression. Further, TGFß1-mediated EGFR activation and TM4SF5 expression were abolished by EGFR suppression or extracellular EGF depletion. Smad overexpression mediated EGFR activation and TM4SF5 expression in the absence of serum, and EGFR kinase inactivation or EGF depletion abolished Smad-overexpression-induced TM4SF5 and mesenchymal cell marker expression. Inhibition of Smad, EGFR or TM4SF5 using Smad7 or small compounds also blocked TM4SF5 expression and/or EMT. These results indicate that TGFß1- and growth factor-mediated signalling activities mediate TM4SF5 expression leading to acquisition of mesenchymal cell features, suggesting that TM4SF5 induction may be involved in the development of liver pathologies.


Asunto(s)
Transición Epitelial-Mesenquimal , Receptores ErbB/metabolismo , Proteínas de la Membrana/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo , Línea Celular Tumoral , Humanos
15.
Dev Cell ; 22(1): 116-30, 2012 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-22264730

RESUMEN

Polarized delivery of signaling and adhesion molecules to the leading edge is required for directional migration of cells. Here, we describe a role for the PIP(2)-synthesizing enzyme, PIPKIγi2, in regulation of exocyst complex control of cell polarity and polarized integrin trafficking during migration. Loss of PIPKIγi2 impaired directional migration, formation of cell polarity, and integrin trafficking to the leading edge. Upon initiation of directional migration, PIPKIγi2 via PIP(2) generation controls the integration of the exocyst complex into an integrin-containing trafficking compartment that requires the talin-binding ability of PIPKIγi2, and talin for integrin recruitment to the leading edge. A PIP(2) requirement is further emphasized by inhibition of PIPKIγi2-regulated directional migration by an Exo70 mutant deficient in PIP(2) binding. These results reveal how phosphoinositide generation orchestrates polarized trafficking of integrin in coordination with talin that links integrins to the actin cytoskeleton, processes that are required for directional migration.


Asunto(s)
Movimiento Celular/fisiología , Adhesiones Focales/fisiología , Integrina beta1/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Transducción de Señal , Talina/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Adhesión Celular , Comunicación Celular , Membrana Celular/metabolismo , Polaridad Celular , Exocitosis , Femenino , Técnica del Anticuerpo Fluorescente , Células HeLa , Humanos , Inmunoprecipitación , Fosfatidilinositoles/metabolismo , Fosforilación , Células Tumorales Cultivadas , Cicatrización de Heridas
16.
Biochim Biophys Acta ; 1793(5): 781-91, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19339212

RESUMEN

Cell adhesion to the extracellular matrix (ECM) can activate signaling via focal adhesion kinase (FAK) leading to dynamic regulation of cellular morphology. Mechanistic basis for the lack of effective intracellular signaling by non-attached epithelial cells is poorly understood. To examine whether signaling in suspended cells is regulated by Fer cytoplasmic tyrosine kinase, we investigated the effect of ectopic Fer expression on signaling in suspended or adherent hepatocytes. We found that ectopic Fer expression in Huh7 hepatocytes in suspension or on non-permissive poly-lysine caused significant phosphorylation of FAK Tyr577, Tyr861, or Tyr925, but not Tyr397 or Tyr576. Fer-mediated FAK phosphorylation in suspended cells was independent of c-Src activity or growth factor stimulation, but dependent of cortactin expression. Consistent with these results, complex formation between FAK, Fer, and cortactin was observed in suspended cells. The Fer-mediated effect correlated with multiple membrane protrusions, even on poly-lysine. Together, these observations suggest that Fer may allow a bypass of anchorage-dependency for intracellular signal transduction in hepatocytes.


Asunto(s)
Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Hepatocitos/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal/fisiología , Tirosina/metabolismo , Animales , Adhesión Celular/fisiología , Técnicas de Cultivo de Célula , Membrana Celular/metabolismo , Extensiones de la Superficie Celular/metabolismo , Células Cultivadas , Cortactina/genética , Cortactina/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Hepatocitos/citología , Humanos , Fosforilación , Proteínas Tirosina Quinasas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Familia-src Quinasas/metabolismo
17.
Hepatology ; 49(4): 1316-25, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19177595

RESUMEN

UNLABELLED: We previously reported that the four-transmembrane L6 family member 5 (TM4SF5) was highly expressed in hepatocarcinoma, induced morphological elongation and epithelial-mesenchymal transition, and caused abnormal cell growth in multilayers in vitro and tumor formation in vivo. In this study, we identified a synthetic compound, 4'-(p-toluenesulfonylamido)-4-hydroxychalcone (TSAHC) that antagonized both the TM4SF5-mediated multilayer growth and TM4SF5-enhanced migration/invasion. TSAHC treatment induced multilayer-growing cells to grow in monolayers, recovering contact inhibition without accompanying apoptosis, and inhibited chemotactic migration and invasion. Tumor formation in nude mice injected with TM4SF5-expressing cells and the growth of cells expressing endogenous TM4SF5, but not of TM4SF5-null cells, was suppressed by treatment with TSAHC, but not by treatment with its analogs. The structure-activity relationship indicated the significance of 4'-p-toluenesulfonylamido and 4-hydroxy groups for the anti-TM4SF5 effects of TSAHC. Point mutations of the putative N-glycosylation sites abolished the TM4SF5-specific TSAHC responsiveness. CONCLUSION: These observations suggest that TM4SF5-enhanced tumorigenic proliferation and metastatic potential can be blocked by TSAHC, likely through targeting the extracellular region of TM4SF5, which is important for protein-protein interactions.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Chalcona/análogos & derivados , Chalconas/farmacología , Hepatocitos/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Sulfonamidas/farmacología , Animales , Pruebas de Carcinogenicidad , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Chalcona/farmacología , Inhibición de Contacto/efectos de los fármacos , Glicosilación , Humanos , Proteínas de la Membrana/genética , Ratones , Fenotipo , Mutación Puntual , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad
18.
Blood ; 113(8): 1845-55, 2009 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-19036703

RESUMEN

Tetraspan TM4SF5 is highly expressed in a diverse number of tumor types. Here we explore the mechanistic roles of TM4SF5 in angiogenesis. We found that TM4SF5 overexpression correlates with vascular endothelial growth factor (VEGF) expression in SNU449 hepatocytes and with vessel formation in clinical hepatocarcinoma samples. Conditioned media from TM4SF5-expressing cells enhanced viability and tube formation of primary human umbilical vein endothelial cells, and outgrowth of endothelial cells from aorta ring segments, which was abolished by treatment with an anti-VEGF antibody. TM4SF5 retained integrin alpha(5) on the cell surface for VEGF induction, and preincubation with anti-integrin alpha(5) antibody abolished TM4SF5-mediated VEGF expression and secretion. TM4SF5-mediated effects required integrin alpha(5), c-Src, and signal transducer and activator of transcription 3 (STAT3). In addition, tumors from nude mice injected with TM4SF5-expressing cells and from clinical human hepatocarcinoma tissues showed enhanced integrin alpha(5) expression, vessel formation, and signaling activity, which were inhibited by administration of anti-integrin alpha(5) or -VEGF antibody. This study suggests that TM4SF5 facilitates angiogenesis of neighboring endothelial cells through VEGF induction, mediated by cooperation between TM4SF5 and integrin alpha(5) of epithelial cells.


Asunto(s)
Carcinoma Hepatocelular/irrigación sanguínea , Integrina alfa5/metabolismo , Neoplasias Hepáticas/irrigación sanguínea , Proteínas de la Membrana/metabolismo , Neovascularización Fisiológica/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Anticuerpos/farmacología , Aorta/citología , Proteína Tirosina Quinasa CSK , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Medios de Cultivo Condicionados/farmacología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Integrina alfa5/inmunología , Neoplasias Hepáticas/metabolismo , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Trasplante de Neoplasias , Proteínas Tirosina Quinasas/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/fisiología , Transfección , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/inmunología , Familia-src Quinasas
19.
Exp Cell Res ; 314(11-12): 2238-48, 2008 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-18570920

RESUMEN

O-GlcNAc transferase (OGT)-mediated modification of protein Ser/Thr residues with O-GlcNAc influences protein activity, similar to the effects of phosphorylation. The anti-apoptotic Akt1 is both activated by phosphorylation and modified with O-GlcNAc. However, the nature and significance of the Akt1 O-GlcNAc modification is unknown. The relationship of O-GlcNAc modification and phosphorylation at Akt1 Ser473 was examined with respect to apoptosis of murine beta-pancreatic cells. Glucosamine treatment induced apoptosis, which correlated with enhanced O-GlcNAc modification of Akt1 and concomitant reduction in Ser473 phosphorylation. Pharmacological inhibition of OGT or O-GlcNAcase revealed an inverse correlation between O-GlcNAc modification and Ser473 phosphorylation of Akt1. MALDI-TOF/TOF mass spectrometry analysis of Akt1 immunoprecipitates from glucosamine-treated cells, but not untreated controls, showed a peptide containing S473/T479 that was presumably modified with O-GlcNAc. Furthermore, in vitro O-GlcNAc-modification analysis of wildtype and mutant Akt1 revealed that S473 was targeted by recombinant OGT. A S473A Akt1 mutant demonstrated reduced basal and glucosamine-induced Akt1 O-GlcNAc modification compared with wildtype Akt1. Furthermore, wildtype Akt1, but not the S473A mutant, appeared to be associated with OGT following glucosamine treatment. Together, these observations suggest that Akt1 Ser473 may undergo both phosphorylation and O-GlcNAc modification, and the balance between these may regulate murine beta-pancreatic cell fate.


Asunto(s)
Acetilglucosamina/metabolismo , Apoptosis/fisiología , Células Secretoras de Insulina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina/metabolismo , Aloxano/metabolismo , Animales , Línea Celular , Glucosamina/metabolismo , Glucosa/metabolismo , Humanos , Hiperglucemia , Insulina/metabolismo , Células Secretoras de Insulina/citología , Manitol/metabolismo , Ratones , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , N-Acetilglucosaminiltransferasas/metabolismo , Mutación Puntual , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Treonina/metabolismo
20.
Biochim Biophys Acta ; 1783(9): 1632-41, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18501196

RESUMEN

mRNA for four-transmembrane L6 family member 5 (TM4SF5), a homolog of tumor antigen L6, was previously shown to be highly expressed in diverse tumors. We recently found that human hepatocarcinoma tissues also overexpressed TM4SF5 protein, in comparison to normal liver tissues. We also found that tiarellic acid (TA) caused cell detachment-related apoptosis in cells expressing endogenous or stably-overexpressing TM4SF5. When cells expressing TM4SF5 were treated with TA, we observed reduced phosphorylation of focal adhesion kinase, paxillin, and p130Cas, but not c-Src. TA treatment also caused focal adhesion loss and reduced cell adhesion, and increased the numbers of floating cells and apoptotic cells. These effects were blocked by overexpression of focal adhesion molecules, suggesting that treatment with TA mediates anoikis of TM4SF5-expressing cells. However, TM4SF5-null cells were not affected by TA, indicating that these effects occur specifically in TM4SF5-positive cells. TA administration reduced tumor formation in nude mice injected with TM4SF5-expressing cells, presumably through increased apoptosis in TM4SF5-positive tumors. These observations indicate that TM4SF5-positive tumorigenesis can be inhibited by TA via induction of cell detachment-related apoptosis, and suggest that TA may be developed as a putative therapeutic reagent against TM4SF5-positive tumorigenesis.


Asunto(s)
Antineoplásicos/farmacología , Proteínas de la Membrana/antagonistas & inhibidores , Neoplasias/metabolismo , Triterpenos/farmacología , Animales , Antineoplásicos/antagonistas & inhibidores , Antineoplásicos/química , Apoptosis , Adhesión Celular , Línea Celular Tumoral , Proteína Sustrato Asociada a CrK/metabolismo , Femenino , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Adhesiones Focales/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Ratones Desnudos , Neoplasias/etiología , Neoplasias/patología , Paxillin/metabolismo , Triterpenos/antagonistas & inhibidores , Triterpenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA