Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
Plant J ; 73(3): 483-95, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23067202

RESUMEN

The role of AtMYB44, an R2R3 MYB transcription factor, in signaling mediated by jasmonic acid (JA) and salicylic acid (SA) is examined. AtMYB44 is induced by JA through CORONATINE INSENSITIVE 1 (COI1). AtMYB44 over-expression down-regulated defense responses against the necrotrophic pathogen Alternaria brassicicola, but up-regulated WRKY70 and PR genes, leading to enhanced resistance to the biotrophic pathogen Pseudomonas syringae pv. tomato DC3000. The knockout mutant atmyb44 shows opposite effects. Induction of WRKY70 by SA is reduced in atmyb44 and npr1-1 mutants, and is totally abolished in atmyb44 npr1-1 double mutants, showing that WRKY70 is regulated independently through both NPR1 and AtMYB44. AtMYB44 over-expression does not change SA content, but AtMYB44 over-expression phenotypes, such as retarded growth, up-regulated PR1 and down-regulated PDF1.2 are reversed by SA depletion. The wrky70 mutation suppressed AtMYB44 over-expression phenotypes, including up-regulation of PR1 expression and down-regulation of PDF1.2 expression. ß-estradiol-induced expression of AtMYB44 led to WRKY70 activation and thus PR1 activation. AtMYB44 binds to the WRKY70 promoter region, indicating that AtMYB44 acts as a transcriptional activator of WRKY70 by directly binding to a conserved sequence element in the WRKY70 promoter. These results demonstrate that AtMYB44 modulates antagonistic interaction by activating SA-mediated defenses and repressing JA-mediated defenses through direct control of WRKY70.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Arabidopsis/genética , Regulación hacia Abajo , Genes de Plantas , Regiones Promotoras Genéticas
2.
Mol Cells ; 29(1): 71-6, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20016937

RESUMEN

The Arabidopsis thaliana transcription factor gene AtMYB44 was induced within 10 min by treatment with methyl jasmonate (MeJA). Wound-induced expression of the gene was observed in local leaves, but not in distal leaves, illustrating jasmonate-independent induction at wound sites. AtMYB44 expression was not abolished in Arabidopsis mutants insensitive to jasmonate (coi1), ethylene (etr1), or abscisic acid (abi3-1) when treated with the corresponding hormones. Moreover, various growth hormones and sugars also induced rapid AtMYB44 transcript accumulation. Thus, AtMYB44 gene activation appears to not be induced by any specific hormone. MeJA-induced activation of jasmonate-responsive genes such as JR2, VSP, LOXII, and AOS was attenuated in transgenic Arabidopsis plants overexpressing the gene (35S:AtMYB44), but significantly enhanced in atmyb44 knockout mutants. The 35S:MYB44 and atmyb44 plants did not show defectiveness in MeJA-induced primary root growth inhibition, indicating that the differences in jasmonate-responsive gene expression observed was not due to alterations in the jasmonate signaling pathway. 35S:AtMYB44 seedlings exhibited slightly elevated chlorophyll levels and less jasmonate- induced anthocyanin accumulation, demonstrating suppression of jasmonate-mediated responses and enhancement of ABA-mediated responses. These observations support the hypothesis of mutual antagonistic actions between jasmonate- and abscisic acid-mediated signaling pathways.


Asunto(s)
Ácido Abscísico/metabolismo , Acetatos/metabolismo , Proteínas de Arabidopsis/biosíntesis , Arabidopsis/genética , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Factores de Transcripción/biosíntesis , Antocianinas/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes abl/genética , Plantas Modificadas Genéticamente , Receptores de Superficie Celular/biosíntesis , Receptores de Superficie Celular/genética , Transducción de Señal , Factores de Transcripción/genética , Activación Transcripcional
3.
Planta ; 230(5): 959-71, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19690885

RESUMEN

Soybean SE60 belongs to the gamma-thionin family of proteins. We recently demonstrated that SE60 plays a role in defense during soybean development. Here, we show that SE60 is expressed in a tissue-specific and developmentally regulated manner. The expression of SE60 is distinct from that of the glycinin (Gy2) and extensin (SbHRGP3) genes of soybean during embryogenesis and germination. A SE60::GUS(-809) transgene, comprising -809 bp of the 5'-flanking region of SE60 fused to the GUS reporter gene, was expressed specifically in developing embryos, but not in the endosperms, from the globular stage of transgenic tobacco and Arabidopsis seeds. Furthermore, light affected the SE60::GUS(-809) expression pattern in germinating seedlings. Electrophoretic mobility shift assay (EMSA) revealed that soybean nuclear proteins as well as E. coli-expressed SB16, a high mobility group protein (HMG), were bound sequence-specifically to the fragment containing AT-rich motifs identified in the SE60 promoter. Interestingly, the soybean nuclear proteins binding to the two G-boxes and RY repeat were prevalent in seeds of 2-4 mm in size. In contrast, the nuclear proteins binding to the AT-rich motif and SE60 RNA expression were more prominent in seeds of 4-6 mm in size. Therefore, we propose that factors binding to the G-boxes or RY repeat initiate SE60 expression during embryogenesis.


Asunto(s)
Desarrollo Embrionario/genética , Ambiente , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Glycine max/embriología , Glycine max/genética , Proteínas de Soja/genética , Secuencia Rica en At/genética , Secuencia de Bases , Sondas de ADN/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Regulación del Desarrollo de la Expresión Génica , Genes de Plantas , Glucuronidasa/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Plantones/genética , Semillas/embriología , Semillas/genética , Proteínas de Soja/metabolismo , Factores de Tiempo
4.
Mol Cells ; 27(1): 75-81, 2009 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-19214436

RESUMEN

The Arabidopsis gene AtLEC (At3g15356) gene encodes a putative 30-kDa protein with a legume lectin-like domain. Likely to classic legume lectin family of genes, AtLEC is expressed in rosette leaves, primary inflorescences, and roots, as observed in Northern blot analysis. The accumulation of AtLEC transcript is induced very rapidly, within 30 min, by chitin, a fungal wall-derived oligosaccharide elictor of the plant defense response. Transgenic Arabidopsis carrying an AtLEC promoter-driven beta-glucuronidase (GUS) construct exhibited GUS activity in the leaf veins, secondary inflorescences, carpel heads, and silique receptacles, in which no expression could be seen in Northern blot analysis. This observation suggests that AtLEC expression is induced transiently and locally during developmental processes in the absence of an external signal such as chitin. In addition, mechanically wounded sites showed strong GUS activity, indicating that the AtLEC promoter responds to jasmonate. Indeed, methyl jasmonate and ethylene exposure induced AtLEC expression within 3-6 h. Thus, the gene appears to play a role in the jasmonate-/ethylene-responsive, in addition to the chitin-elicited, defense responses. However, chitin-induced AtLEC expression was also observed in jasmonate-insensitive (coi1) and ethylene-insensitive (etr1-1) Arabidopsis mutants. Thus, it appears that chitin promotes AtLEC expression via a jasmonate- and/or ethylene-independent pathway.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Quitina/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Lectinas de Plantas/genética , Regulación hacia Arriba/efectos de los fármacos , Acetatos/farmacología , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/química , Northern Blotting , Ciclopentanos/farmacología , Etilenos/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Glucuronidasa/metabolismo , Datos de Secuencia Molecular , Especificidad de Órganos/efectos de los fármacos , Oxilipinas/farmacología , Lectinas de Plantas/química , Transducción de Señal/efectos de los fármacos
5.
Biochem Biophys Res Commun ; 375(2): 230-4, 2008 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-18700134

RESUMEN

The SE60, a low molecular weight, sulfur-rich protein in soybean, is known to be homologous to wheat gamma-purothionin. To elucidate the functional role of SE60, we expressed SE60 cDNA in Escherichia coli and in tobacco plants. A single protein band was detected by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) after anti-FLAG affinity purification of the protein from transformed E. coli. While the control E. coli cells harboring pFLAG-1 showed standard growth with Isopropyl beta-d-1-thiogalactopyranoside (IPTG) induction, E. coli cells expressing the SE60 fusion protein did not grow at all, suggesting that SE60 has toxic effects on E. coli growth. Genomic integration and the expression of transgene in the transgenic tobacco plants were confirmed by Southern and Northern blot analysis, respectively. The transgenic plants demonstrated enhanced resistance against the pathogen Pseudomonas syringae. Taken together, these results strongly suggest that SE60 has antimicrobial activity and play a role in the defense mechanism in soybean plants.


Asunto(s)
Escherichia coli/crecimiento & desarrollo , Nicotiana/microbiología , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente/microbiología , Pseudomonas syringae , Proteínas de Soja/biosíntesis , Escherichia coli/genética , Plantas Modificadas Genéticamente/genética , Glycine max/genética , Glycine max/microbiología , Nicotiana/genética
6.
Artículo en Inglés | MEDLINE | ID: mdl-18255361

RESUMEN

We developed a quantitative method for the determination of methyl esterase activity, analyzing substrate specificity against three major signal molecules, jasmonic acid methyl ester (MeJA), salicylic acid methyl ester (MeSA), and indole-3-acetic acid methyl ester (MeIAA). We used a silylation reagent for chemical derivatization and used gas chromatography (GC)-mass spectroscopy in analyses, for high precision. To test this method, an Arabidopsis esterase gene, AtME8, was expressed in Escherichia coli, and then the kinetic parameters of the recombinant enzyme were determined for three substrates. Finally, this method was also applied to the direct quantification of phytohormones in petals from lilies and roses.


Asunto(s)
Hidrolasas de Éster Carboxílico/análisis , Arabidopsis/química , Cromatografía en Capa Delgada , Escherichia coli/química , Cromatografía de Gases y Espectrometría de Masas , Concentración de Iones de Hidrógeno , Indicadores y Reactivos , Cinética , Reguladores del Crecimiento de las Plantas/análisis , Plantas/química , Estándares de Referencia , Compuestos de Trimetilsililo
7.
Biotechnol Lett ; 29(6): 913-8, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17450323

RESUMEN

The Arabidopsis AHL gene encodes a 3'(2'),5'-bisphosphate nucleotidase (BPNTase) involved in the reductive sulfate activation pathway. A bacterial expression vector containing AHL cDNA was randomly mutagenized with hydroxylamine and transformed into the E. coli cysteine auxotrophic mutant cysQ. Bacterial colonies that did not show evidence of complementation, i.e. those that exhibited slower growth on cysteine-free medium, were selected for further study. Sequencing of the AHL cDNA in one such clone revealed the conversion of cytosine 635 (C635) to thymine, resulting in an Alanine (A212) to Valine substitution. This microbial complementation procedure is useful in BPNTase structure-activity studies for biotechnological applications.


Asunto(s)
Proteínas de Arabidopsis/genética , Cisteína/metabolismo , Escherichia coli/genética , Mutación , Nucleotidasas/genética , Alanina/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Cisteína/genética , Citosina/química , Citosina/metabolismo , Escherichia coli/enzimología , Escherichia coli/crecimiento & desarrollo , Prueba de Complementación Genética , Datos de Secuencia Molecular , Mutagénesis , Nucleotidasas/química , Nucleotidasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Homología de Secuencia de Aminoácido , Timina/química , Timina/metabolismo , Valina/genética
8.
Plant Physiol ; 131(3): 985-97, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12644651

RESUMEN

Expansin is a family of proteins that catalyze long-term expansion of cell walls and has been considered a principal protein that affects cell expansion in plants. We have identified the first root-specific expansin gene in soybean (Glycine max), GmEXP1, which may be responsible for root elongation. Expression levels of GmEXP1 were very high in the roots of 1- to 5-d-old seedlings, in which rapid root elongation takes place. Furthermore, GmEXP1 mRNA was most abundant in the root tip region, where cell elongation occurs, but scarce in the region of maturation, where cell elongation ceases, implying that its expression is closely related to root development processes. In situ hybridization showed that GmEXP1 transcripts were preferentially present in the epidermal cells and underlying cell layers in the root tip of the primary and secondary roots. Ectopic expression of GmEXP1 accelerated the root growth of transgenic tobacco (Nicotiana tabacum) seedlings, and the roots showed insensitivity to obstacle-touching stress. These results imply that the GmEXP1 gene plays an important role in root development in soybean, especially in the elongation and/or initiation of the primary and secondary roots.


Asunto(s)
Glycine max/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , División Celular/genética , División Celular/fisiología , ADN Complementario/química , ADN Complementario/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hibridación in Situ , Datos de Secuencia Molecular , Familia de Multigenes , Epidermis de la Planta/genética , Epidermis de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ADN , Proteínas de Soja/genética , Proteínas de Soja/metabolismo , Glycine max/crecimiento & desarrollo , Nicotiana/genética , Nicotiana/metabolismo
9.
Plant Physiol ; 131(2): 516-24, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12586876

RESUMEN

Trehalose plays an important role in stress tolerance in plants. Trehalose-producing, transgenic rice (Oryza sativa) plants were generated by the introduction of a gene encoding a bifunctional fusion (TPSP) of the trehalose-6-phosphate (T-6-P) synthase (TPS) and T-6-P phosphatase (TPP) of Escherichia coli, under the control of the maize (Zea mays) ubiquitin promoter (Ubi1). The high catalytic efficiency (Seo et al., 2000) of the fusion enzyme and the single-gene engineering strategy make this an attractive candidate for high-level production of trehalose; it has the added advantage of reducing the accumulation of potentially deleterious T-6-P. The trehalose levels in leaf and seed extracts from Ubi1::TPSP plants were increased up to 1.076 mg g fresh weight(-1). This level was 200-fold higher than that of transgenic tobacco (Nicotiana tabacum) plants transformed independently with either TPS or TPP expression cassettes. The carbohydrate profiles were significantly altered in the seeds, but not in the leaves, of Ubi1::TPSP plants. It has been reported that transgenic plants with E. coli TPS and/or TPP were severely stunted and root morphology was altered. Interestingly, our Ubi1::TPSP plants showed no growth inhibition or visible phenotypic alterations despite the high-level production of trehalose. Moreover, trehalose accumulation in Ubi1::TPSP plants resulted in increased tolerance to drought, salt, and cold, as shown by chlorophyll fluorescence and growth inhibition analyses. Thus, our results suggest that trehalose acts as a global protectant against abiotic stress, and that rice is more tolerant to trehalose synthesis than dicots.


Asunto(s)
Escherichia coli/genética , Glucosiltransferasas/genética , Oryza/genética , Monoéster Fosfórico Hidrolasas/genética , Trehalosa/biosíntesis , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Secuencia de Aminoácidos , Secuencia de Bases , Clorofila/metabolismo , Frío , Desastres , Escherichia coli/enzimología , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/metabolismo , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Fenotipo , Monoéster Fosfórico Hidrolasas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Cloruro de Sodio/farmacología , Nicotiana/efectos de los fármacos , Nicotiana/genética , Nicotiana/metabolismo , Trehalasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA