Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nat Rev Mol Cell Biol ; 24(11): 777-796, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37528230

RESUMEN

Maintaining proteome integrity is essential for long-term viability of all organisms and is overseen by intrinsic quality control mechanisms. The secretory pathway of eukaryotes poses a challenge for such quality assurance as proteins destined for secretion enter the endoplasmic reticulum (ER) and become spatially segregated from the cytosolic machinery responsible for disposal of aberrant (misfolded or otherwise damaged) or superfluous polypeptides. The elegant solution provided by evolution is ER-membrane-bound ubiquitylation machinery that recognizes misfolded or surplus proteins or by-products of protein biosynthesis in the ER and delivers them to 26S proteasomes for degradation. ER-associated protein degradation (ERAD) collectively describes this specialized arm of protein quality control via the ubiquitin-proteasome system. But, instead of providing a single strategy to remove defective or unwanted proteins, ERAD represents a collection of independent processes that exhibit distinct yet overlapping selectivity for a wide range of substrates. Not surprisingly, ER-membrane-embedded ubiquitin ligases (ER-E3s) act as central hubs for each of these separate ERAD disposal routes. In these processes, ER-E3s cooperate with a plethora of specialized factors, coordinating recognition, transport and ubiquitylation of undesirable secretory, membrane and cytoplasmic proteins. In this Review, we focus on substrate processing during ERAD, highlighting common threads as well as differences between the many routes via ERAD.

3.
Blood Cancer J ; 13(1): 12, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36631435

RESUMEN

Multiple myeloma (MM) is a plasma cell malignancy characterised by aberrant production of immunoglobulins requiring survival mechanisms to adapt to proteotoxic stress. We here show that glutamyl-prolyl-tRNA synthetase (GluProRS) inhibition constitutes a novel therapeutic target. Genomic data suggest that GluProRS promotes disease progression and is associated with poor prognosis, while downregulation in MM cells triggers apoptosis. We developed NCP26, a novel ATP-competitive ProRS inhibitor that demonstrates significant anti-tumour activity in multiple in vitro and in vivo systems and overcomes metabolic adaptation observed with other inhibitor chemotypes. We demonstrate a complex phenotypic response involving protein quality control mechanisms that centers around the ribosome as an integrating hub. Using systems approaches, we identified multiple downregulated proline-rich motif-containing proteins as downstream effectors. These include CD138, transcription factors such as MYC, and transcription factor 3 (TCF3), which we establish as a novel determinant in MM pathobiology through functional and genomic validation. Our preclinical data therefore provide evidence that blockade of prolyl-aminoacylation evokes a complex pro-apoptotic response beyond the canonical integrated stress response and establish a framework for its evaluation in a clinical setting.


Asunto(s)
Aminoacil-ARNt Sintetasas , Mieloma Múltiple , Humanos , Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Aminoacil-ARNt Sintetasas/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo
4.
J Biol Chem ; 298(2): 101542, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34968463

RESUMEN

The monomorphic antigen-presenting molecule major histocompatibility complex-I-related protein 1 (MR1) presents small-molecule metabolites to mucosal-associated invariant T (MAIT) cells. The MR1-MAIT cell axis has been implicated in a variety of infectious and noncommunicable diseases, and recent studies have begun to develop an understanding of the molecular mechanisms underlying this specialized antigen presentation pathway. However, proteins regulating MR1 folding, loading, stability, and surface expression remain to be identified. Here, we performed a gene trap screen to discover novel modulators of MR1 surface expression through insertional mutagenesis of an MR1-overexpressing clone derived from the near-haploid human cell line HAP1 (HAP1.MR1). The most significant positive regulators identified included ß2-microglobulin, a known regulator of MR1 surface expression, and ATP13A1, a P5-type ATPase in the endoplasmic reticulum (ER) not previously known to be associated with MR1-mediated antigen presentation. CRISPR/Cas9-mediated knockout of ATP13A1 in both HAP1.MR1 and THP-1 cell lines revealed a profound reduction in MR1 protein levels and a concomitant functional defect specific to MR1-mediated antigen presentation. Collectively, these data are consistent with the ER-resident ATP13A1 being a key posttranscriptional determinant of MR1 surface expression.


Asunto(s)
Presentación de Antígeno , Antígenos de Histocompatibilidad Clase I , Complejo Mayor de Histocompatibilidad , Antígenos de Histocompatibilidad Menor , ATPasas Tipo P , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Complejo Mayor de Histocompatibilidad/inmunología , Antígenos de Histocompatibilidad Menor/inmunología , ATPasas Tipo P/inmunología
5.
Proc Natl Acad Sci U S A ; 116(47): 23671-23681, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31690657

RESUMEN

Invariant NKT (iNKT) cells have the unique ability to shape immunity during antitumor immune responses and other forms of sterile and nonsterile inflammation. Recent studies have highlighted a variety of classes of endogenous and pathogen-derived lipid antigens that can trigger iNKT cell activation under sterile and nonsterile conditions. However, the context and mechanisms that drive the presentation of self-lipid antigens in sterile inflammation remain unclear. Here we report that endoplasmic reticulum (ER)-stressed myeloid cells, via signaling events modulated by the protein kinase RNA-like ER kinase (PERK) pathway, increase CD1d-mediated presentation of immunogenic endogenous lipid species, which results in enhanced iNKT cell activation both in vitro and in vivo. In addition, we demonstrate that actin cytoskeletal reorganization during ER stress results in an altered distribution of CD1d on the cell surface, which contributes to enhanced iNKT cell activation. These results define a previously unidentified mechanism that controls iNKT cell activation during sterile inflammation.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Células Dendríticas/inmunología , Estrés del Retículo Endoplásmico/inmunología , Activación de Linfocitos , Células T Asesinas Naturales/inmunología , Animales , Presentación de Antígeno , Antígenos CD1d/biosíntesis , Antígenos CD1d/inmunología , Autoantígenos/inmunología , Carcinoma Pulmonar de Lewis/patología , Línea Celular Tumoral , Técnicas de Cocultivo , Citoesqueleto/ultraestructura , Endosomas/inmunología , Glicoesfingolípidos/inmunología , Glicoesfingolípidos/metabolismo , Humanos , Subunidad alfa del Receptor de Interleucina-2/biosíntesis , Lípidos/inmunología , Lisosomas/inmunología , Ratones , Ratones Endogámicos C57BL , Células THP-1 , Tapsigargina/farmacología , Respuesta de Proteína Desplegada/inmunología , eIF-2 Quinasa/deficiencia , eIF-2 Quinasa/fisiología
6.
Nat Commun ; 10(1): 3956, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31477691

RESUMEN

Membranes in cells have defined distributions of lipids in each leaflet, controlled by lipid scramblases and flip/floppases. However, for some intracellular membranes such as the endoplasmic reticulum (ER) the scramblases have not been identified. Members of the TMEM16 family have either lipid scramblase or chloride channel activity. Although TMEM16K is widely distributed and associated with the neurological disorder autosomal recessive spinocerebellar ataxia type 10 (SCAR10), its location in cells, function and structure are largely uncharacterised. Here we show that TMEM16K is an ER-resident lipid scramblase with a requirement for short chain lipids and calcium for robust activity. Crystal structures of TMEM16K show a scramblase fold, with an open lipid transporting groove. Additional cryo-EM structures reveal extensive conformational changes from the cytoplasmic to the ER side of the membrane, giving a state with a closed lipid permeation pathway. Molecular dynamics simulations showed that the open-groove conformation is necessary for scramblase activity.


Asunto(s)
Anoctaminas/metabolismo , Retículo Endoplásmico/metabolismo , Lípidos/química , Proteínas de Transferencia de Fosfolípidos/metabolismo , Secuencia de Aminoácidos , Animales , Anoctaminas/química , Anoctaminas/genética , Células COS , Calcio/química , Línea Celular Tumoral , Chlorocebus aethiops , Cristalografía por Rayos X , Células HEK293 , Humanos , Simulación de Dinámica Molecular , Proteínas de Transferencia de Fosfolípidos/química , Proteínas de Transferencia de Fosfolípidos/genética , Homología de Secuencia de Aminoácido , Células Sf9 , Spodoptera
7.
Elife ; 82019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30869076

RESUMEN

How endoplasmic reticulum (ER) stress leads to cytotoxicity is ill-defined. Previously we showed that HeLa cells readjust homeostasis upon proteostatically driven ER stress, triggered by inducible bulk expression of secretory immunoglobulin M heavy chain (µs) thanks to the unfolded protein response (UPR; Bakunts et al., 2017). Here we show that conditions that prevent that an excess of the ER resident chaperone (and UPR target gene) BiP over µs is restored lead to µs-driven proteotoxicity, i.e. abrogation of HRD1-mediated ER-associated degradation (ERAD), or of the UPR, in particular the ATF6α branch. Such conditions are tolerated instead upon removal of the BiP-sequestering first constant domain (CH1) from µs. Thus, our data define proteostatic ER stress to be a specific consequence of inadequate BiP availability, which both the UPR and ERAD redeem.


Asunto(s)
Estrés del Retículo Endoplásmico , Células Epiteliales/fisiología , Proteínas de Choque Térmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Degradación Asociada con el Retículo Endoplásmico , Células HeLa , Humanos , Proteostasis , Respuesta de Proteína Desplegada
8.
J Cell Sci ; 132(2)2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30578317

RESUMEN

The eukaryotic endoplasmic reticulum (ER) membrane contains essential complexes that oversee protein biogenesis and lipid metabolism, impacting nearly all aspects of cell physiology. The ER membrane protein complex (EMC) is a newly described transmembrane domain (TMD) insertase linked with various phenotypes, but whose clients and cellular responsibilities remain incompletely understood. We report that EMC deficiency limits the cellular boundaries defining cholesterol tolerance, reflected by diminished viability with limiting or excessive extracellular cholesterol. Lipidomic and proteomic analyses revealed defective biogenesis and concomitant loss of the TMD-containing ER-resident enzymes sterol-O-acyltransferase 1 (SOAT1) and squalene synthase (SQS, also known as FDFT1), which serve strategic roles in the adaptation of cells to changes in cholesterol availability. Insertion of the weakly hydrophobic tail-anchor (TA) of SQS into the ER membrane by the EMC ensures sufficient flux through the sterol biosynthetic pathway while biogenesis of polytopic SOAT1 promoted by the EMC provides cells with the ability to store free cholesterol as inert cholesteryl esters. By facilitating insertion of TMDs that permit essential mammalian sterol-regulating enzymes to mature accurately, the EMC is an important biogenic determinant of cellular robustness to fluctuations in cholesterol availability.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Colesterol/biosíntesis , Retículo Endoplásmico/enzimología , Farnesil Difosfato Farnesil Transferasa/metabolismo , Membranas Intracelulares/enzimología , Complejos Multienzimáticos/metabolismo , Esterol O-Aciltransferasa/metabolismo , Línea Celular Tumoral , Colesterol/genética , Retículo Endoplásmico/genética , Farnesil Difosfato Farnesil Transferasa/genética , Humanos , Complejos Multienzimáticos/genética , Esterol O-Aciltransferasa/genética
9.
EMBO J ; 37(4)2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29378775

RESUMEN

Active regulation of protein abundance is an essential strategy to modulate cellular signaling pathways. Within the Wnt signaling cascade, regulated degradation of ß-catenin by the ubiquitin-proteasome system (UPS) affects the outcome of canonical Wnt signaling. Here, we found that abundance of the Wnt cargo receptor Evi (Wls/GPR177), which is required for Wnt protein secretion, is also regulated by the UPS through endoplasmic reticulum (ER)-associated degradation (ERAD). In the absence of Wnt ligands, Evi is ubiquitinated and targeted for ERAD in a VCP-dependent manner. Ubiquitination of Evi involves the E2-conjugating enzyme UBE2J2 and the E3-ligase CGRRF1. Furthermore, we show that a triaging complex of Porcn and VCP determines whether Evi enters the secretory or the ERAD pathway. In this way, ERAD-dependent control of Evi availability impacts the scale of Wnt protein secretion by adjusting the amount of Evi to meet the requirement of Wnt protein export. As Wnt and Evi protein levels are often dysregulated in cancer, targeting regulatory ERAD components might be a useful approach for therapeutic interventions.


Asunto(s)
Adenocarcinoma/metabolismo , Colon/metabolismo , Neoplasias del Colon/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Regulación de la Expresión Génica , Proteínas Wnt/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Adenocarcinoma/genética , Células Cultivadas , Neoplasias del Colon/genética , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Transducción de Señal , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación , Proteína que Contiene Valosina/genética , Proteína que Contiene Valosina/metabolismo , Proteínas Wnt/genética
10.
Mol Cell ; 63(6): 990-1005, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27591049

RESUMEN

The linear ubiquitin chain assembly complex (LUBAC) regulates immune signaling, and its function is regulated by the deubiquitinases OTULIN and CYLD, which associate with the catalytic subunit HOIP. However, the mechanism through which CYLD interacts with HOIP is unclear. We here show that CYLD interacts with HOIP via spermatogenesis-associated protein 2 (SPATA2). SPATA2 interacts with CYLD through its non-canonical PUB domain, which binds the catalytic CYLD USP domain in a CYLD B-box-dependent manner. Significantly, SPATA2 binding activates CYLD-mediated hydrolysis of ubiquitin chains. SPATA2 also harbors a conserved PUB-interacting motif that selectively docks into the HOIP PUB domain. In cells, SPATA2 is recruited to the TNF receptor 1 signaling complex and is required for CYLD recruitment. Loss of SPATA2 increases ubiquitination of LUBAC substrates and results in enhanced NOD2 signaling. Our data reveal SPATA2 as a high-affinity binding partner of CYLD and HOIP, and a regulatory component of LUBAC-mediated NF-κB signaling.


Asunto(s)
FN-kappa B/química , Proteínas/química , Proteínas Supresoras de Tumor/química , Ubiquitina-Proteína Ligasas/química , Ubiquitina/química , Secuencia de Aminoácidos , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Enzima Desubiquitinante CYLD , Endopeptidasas/química , Endopeptidasas/genética , Endopeptidasas/inmunología , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Regulación de la Expresión Génica , Humanos , Inmunidad Innata , Cinética , Simulación del Acoplamiento Molecular , FN-kappa B/genética , FN-kappa B/inmunología , Proteína Adaptadora de Señalización NOD2/química , Proteína Adaptadora de Señalización NOD2/genética , Proteína Adaptadora de Señalización NOD2/inmunología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas/genética , Proteínas/inmunología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Especificidad por Sustrato , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/inmunología , Ubiquitina/genética , Ubiquitina/inmunología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/inmunología
11.
EMBO J ; 35(13): 1400-16, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27234298

RESUMEN

Skp1-Cul1-F-box protein (SCF) ubiquitin ligases direct cell survival decisions by controlling protein ubiquitylation and degradation. Sufu (Suppressor of fused) is a central regulator of Hh (Hedgehog) signaling and acts as a tumor suppressor by maintaining the Gli (Glioma-associated oncogene homolog) transcription factors inactive. Although Sufu has a pivotal role in Hh signaling, the players involved in controlling Sufu levels and their role in tumor growth are unknown. Here, we show that Fbxl17 (F-box and leucine-rich repeat protein 17) targets Sufu for proteolysis in the nucleus. The ubiquitylation of Sufu, mediated by Fbxl17, allows the release of Gli1 from Sufu for proper Hh signal transduction. Depletion of Fbxl17 leads to defective Hh signaling associated with an impaired cancer cell proliferation and medulloblastoma tumor growth. Furthermore, we identify a mutation in Sufu, occurring in medulloblastoma of patients with Gorlin syndrome, which increases Sufu turnover through Fbxl17-mediated polyubiquitylation and leads to a sustained Hh signaling activation. In summary, our findings reveal Fbxl17 as a novel regulator of Hh pathway and highlight the perturbation of the Fbxl17-Sufu axis in the pathogenesis of medulloblastoma.


Asunto(s)
Proteínas F-Box/metabolismo , Proteínas Hedgehog/metabolismo , Meduloblastoma/patología , Procesamiento Proteico-Postraduccional , Proteínas Represoras/metabolismo , Animales , Línea Celular , Proliferación Celular , Modelos Animales de Enfermedad , Humanos , Ratones , Ratas , Transducción de Señal , Ubiquitinación
12.
PLoS One ; 9(6): e92164, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24910992

RESUMEN

Misfolded proteins of the endoplasmic reticulum (ER) are eliminated by the ER-associated degradation (ERAD) in eukaryotes. In S. cerevisiae, ER-resident lectins mediate substrate recognition through bipartite signals consisting of an unfolded local structure and the adjacent glycan. Trimming of the glycan is essential for the directional delivery of the substrates. Whether a similar recognition and delivery mechanism exists in mammalian cells is unknown. In this study, we systematically study the function and substrate specificity of known mammalian ER lectins, including EDEM1/2/3, OS-9 and XTP-3B using the recently identified ERAD substrate sonic hedgehog (SHH), a soluble protein carrying a single N-glycan, as well as its nonglycosylated mutant N278A. Efficient ERAD of N278A requires the core processing complex of HRD1, SEL1L and p97, similar to the glycosylated SHH. While EDEM2 was required for ERAD of both glycosylated and non-glycosylated SHHs, EDEM3 was only necessary for glycosylated SHH and EDEM1 was dispensable for both. Degradation of SHH and N278A also required OS-9, but not the related lectin XTP3-B. Robust interaction of both EDEM2 and OS-9 with a non-glycosylated SHH variant indicates that the misfolded polypeptide backbone, rather than a glycan signature, functions as the predominant signal for recognition for ERAD. Notably, SHH-N278A is the first nonglycosylated substrate to require EDEM2 for recognition and targeting for ERAD. EDEM2 also interacts with calnexin and SEL1L, suggesting a potential avenue by which misfolded glycoproteins may be shunted towards SEL1L and ERAD rather than being released into the secretory pathway. Thus, ER lectins participate in the recognition and delivery of misfolded ER substrates differently in mammals, with an underlying mechanism distinct from that of S. cerevisiae.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Glicoproteínas/metabolismo , Proteínas Hedgehog/metabolismo , Lectinas/metabolismo , Proteínas de Neoplasias/metabolismo , alfa-Manosidasa/metabolismo , Calnexina/metabolismo , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Glicoproteínas/antagonistas & inhibidores , Glicósido Hidrolasas/antagonistas & inhibidores , Glicosilación , Células HEK293 , Humanos , Polisacáridos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , alfa-Manosidasa/antagonistas & inhibidores
13.
J Clin Microbiol ; 52(8): 3130-3, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24899035

RESUMEN

We present what is believed to be the initial report of hard-palate infection caused by Blastomyces dermatitidis. The organism was cultivated from biopsy material obtained from a diabetic patient presenting with complaints of headache and malaise. Radiologic findings revealed a malignant-appearing soft-tissue mass with paranasal sinus base destruction.


Asunto(s)
Blastomyces/aislamiento & purificación , Blastomicosis/diagnóstico , Complicaciones de la Diabetes , Sinusitis/diagnóstico , Estomatitis/diagnóstico , Anciano , Blastomicosis/microbiología , Blastomicosis/patología , Femenino , Cabeza/diagnóstico por imagen , Histocitoquímica , Humanos , Microscopía , Hueso Paladar/patología , Sinusitis/microbiología , Sinusitis/patología , Estomatitis/microbiología , Estomatitis/patología , Tomografía Computarizada por Rayos X
14.
Mol Biol Cell ; 25(15): 2220-34, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24899641

RESUMEN

The tight coupling of protein folding pathways with disposal mechanisms promotes the efficacy of protein production in the endoplasmic reticulum (ER). It has been hypothesized that the ER-resident molecular chaperone glucose-regulated protein 94 (GRP94) is part of this quality control coupling because it supports folding of select client proteins yet also robustly associates with the lectin osteosarcoma amplified 9 (OS-9), a component involved in ER-associated degradation (ERAD). To explore this possibility, we investigated potential functions for the GRP94/OS-9 complex in ER quality control. Unexpectedly, GRP94 does not collaborate with OS-9 in ERAD of misfolded substrates, nor is the chaperone required directly for OS-9 folding. Instead, OS-9 binds preferentially to a subpopulation of GRP94 that is hyperglycosylated on cryptic N-linked glycan acceptor sites. Hyperglycosylated GRP94 forms have nonnative conformations and are less active. As a result, these species are degraded much faster than the major, monoglycosylated form of GRP94 in an OS-9-mediated, ERAD-independent, lysosomal-like mechanism. This study therefore clarifies the role of the GRP94/OS-9 complex and describes a novel pathway by which glycosylation of cryptic acceptor sites influences the function and fate of an ER-resident chaperone.


Asunto(s)
Lectinas/fisiología , Glicoproteínas de Membrana/metabolismo , Proteínas de Neoplasias/fisiología , Procesamiento Proteico-Postraduccional , Proteolisis , Adenosina Trifosfato/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Glicosilación , Células HEK293 , Humanos , Cinética , Lectinas/química , Lisosomas/metabolismo , Glicoproteínas de Membrana/química , Proteínas de Neoplasias/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas
15.
Nat Struct Mol Biol ; 21(4): 325-35, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24699081

RESUMEN

The eukaryotic endoplasmic reticulum (ER) maintains protein homeostasis by eliminating unwanted proteins through the evolutionarily conserved ER-associated degradation (ERAD) pathway. During ERAD, maturation-defective and surplus polypeptides are evicted from the ER lumen and/or lipid bilayer through the process of retrotranslocation and ultimately degraded by the proteasome. An integral facet of the ERAD mechanism is the ubiquitin system, composed of the ubiquitin modifier and the factors for assembling, processing and binding ubiquitin chains on conjugated substrates. Beyond simply marking polypeptides for degradation, the ubiquitin system is functionally intertwined with retrotranslocation machinery to transport polypeptides across the ER membrane.


Asunto(s)
Retículo Endoplásmico/metabolismo , Ubiquitina/fisiología , Animales , Homeostasis , Modelos Biológicos , Complejo de la Endopetidasa Proteasomal/fisiología , Pliegue de Proteína , Proteínas/metabolismo , Proteolisis , Proteasas Ubiquitina-Específicas/metabolismo , Proteasas Ubiquitina-Específicas/fisiología , Ubiquitinas/metabolismo , Ubiquitinas/fisiología
16.
PLoS One ; 8(12): e83212, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24340093

RESUMEN

The Cancer/Testis (CT) antigen family of genes are transcriptionally repressed in most human tissues but are atypically re-expressed in many malignant tumour types. Their restricted expression profile makes CT antigens ideal targets for cancer immunotherapy. As little is known about whether CT antigens may be regulated by post-translational processing, we investigated the mechanisms governing degradation of NY-ESO-1 and MAGE-C1 in selected cancer cell lines. Inhibitors of proteasome-mediated degradation induced the partitioning of NY-ESO-1 and MAGE-C1 into a detergent insoluble fraction. Moreover, this treatment also resulted in increased localisation of NY-ESO-1 and MAGE-C1 at the centrosome. Despite their interaction, relocation of either NY-ESO-1 or MAGE-C1 to the centrosome could occur independently of each other. Using a series of truncated fragments, the regions corresponding to NY-ESO-1(91-150) and MAGE-C1(900-1116) were established as important for controlling both stability and localisation of these CT antigens. Our findings demonstrate that the steady state levels of NY-ESO-1 and MAGE-C1 are regulated by proteasomal degradation and that both behave as aggregation-prone proteins upon accumulation. With proteasome inhibitors being increasingly used as front-line treatment in cancer, these data raise issues about CT antigen processing for antigenic presentation and therefore immunogenicity in cancer patients.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Centrosoma/inmunología , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/inmunología , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Presentación de Antígeno , Línea Celular Tumoral , Centrosoma/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunoterapia , Ratones , Células 3T3 NIH , Inhibidores de Proteasoma/química , Estructura Terciaria de Proteína , ARN Interferente Pequeño/metabolismo
17.
Nat Cell Biol ; 14(1): 93-105, 2011 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-22119785

RESUMEN

Proteins that fail to correctly fold or assemble into oligomeric complexes in the endoplasmic reticulum (ER) are degraded by a ubiquitin- and proteasome-dependent process known as ER-associated degradation (ERAD). Although many individual components of the ERAD system have been identified, how these proteins are organized into a functional network that coordinates recognition, ubiquitylation and dislocation of substrates across the ER membrane is not well understood. We have investigated the functional organization of the mammalian ERAD system using a systems-level strategy that integrates proteomics, functional genomics and the transcriptional response to ER stress. This analysis supports an adaptive organization for the mammalian ERAD machinery and reveals a number of metazoan-specific genes not previously linked to ERAD.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Secuencia de Aminoácidos , Animales , Células HEK293 , Células HeLa , Humanos , Datos de Secuencia Molecular , Complejo de la Endopetidasa Proteasomal/metabolismo , Pliegue de Proteína , Proteínas/metabolismo , Proteolisis , Interferencia de ARN , Receptores del Factor Autocrino de Motilidad , Ubiquitina-Proteína Ligasas/metabolismo
18.
Nat Cell Biol ; 10(3): 272-82, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18264092

RESUMEN

Terminally misfolded or unassembled proteins in the early secretory pathway are degraded by a ubiquitin- and proteasome-dependent process known as ER-associated degradation (ERAD). How substrates of this pathway are recognized within the ER and delivered to the cytoplasmic ubiquitin-conjugating machinery is unknown. We report here that OS-9 and XTP3-B/Erlectin are ER-resident glycoproteins that bind to ERAD substrates and, through the SEL1L adaptor, to the ER-membrane-embedded ubiquitin ligase Hrd1. Both proteins contain conserved mannose 6-phosphate receptor homology (MRH) domains, which are required for interaction with SEL1L, but not with substrate. OS-9 associates with the ER chaperone GRP94 which, together with Hrd1 and SEL1L, is required for the degradation of an ERAD substrate, mutant alpha(1)-antitrypsin. These data suggest that XTP3-B and OS-9 are components of distinct, partially redundant, quality control surveillance pathways that coordinate protein folding with membrane dislocation and ubiquitin conjugation in mammalian cells.


Asunto(s)
Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica , Glicoproteínas de Membrana/fisiología , Mutación , Proteínas de Neoplasias/fisiología , Proteínas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , alfa 1-Antitripsina/metabolismo , Humanos , Lectinas , Modelos Biológicos , Unión Proteica , Desnaturalización Proteica , Pliegue de Proteína , Receptor IGF Tipo 2/química , Ubiquitina/química
19.
Mol Cell ; 22(4): 451-62, 2006 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-16713576

RESUMEN

The AAA-ATPase p97/VCP facilitates protein dislocation during endoplasmic reticulum-associated degradation (ERAD). To understand how p97/VCP accomplishes dislocation, a series of point mutants was made to disrupt distinguishing structural features of its central pore. Mutants were evaluated in vitro for ATPase activity in the presence and absence of synaptotagmin I (SytI) and in vivo for ability to process the ERAD substrate TCRalpha. Synaptotagmin induces a 4-fold increase in the ATPase activity of wild-type p97/VCP (p97/VCP(wt)), but not in mutants that showed an ERAD impairment. Mass spectrometry of crosslinked synaptotagmin . p97/VCP revealed interactions near Trp551 and Phe552. Additionally, His317, Arg586, and Arg599 were found to be essential for substrate interaction and ERAD. Except His317, which serves as an interaction nexus, these residues all lie on prominent loops within the D2 pore. These data support a model of substrate dislocation facilitated by interactions with p97/VCP's D2 pore.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Adenosina Trifosfatasas/genética , Animales , Proteínas de Ciclo Celular/genética , Retículo Endoplásmico/metabolismo , Técnicas In Vitro , Cinética , Ratones , Modelos Biológicos , Modelos Moleculares , Complejos Multiproteicos , Mutagénesis Sitio-Dirigida , Proteínas Nucleares/genética , Estructura Cuaternaria de Proteína , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sinaptotagmina I/química , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo , Transfección , Proteína que Contiene Valosina
20.
Proc Natl Acad Sci U S A ; 102(37): 13135-40, 2005 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-16141322

RESUMEN

CNS neurons are endowed with the ability to recover from cytotoxic insults associated with the accumulation of proteinaceous aggregates in mouse models of polyglutamine disease, but the cellular mechanism underlying this phenomenon is unknown. Here, we show that autophagy is essential for the elimination of aggregated forms of mutant huntingtin and ataxin-1 from the cytoplasmic but not nuclear compartments. Human orthologs of yeast autophagy genes, molecular determinants of autophagic vacuole formation, are recruited to cytoplasmic but not nuclear inclusion bodies in vitro and in vivo. These data indicate that autophagy is a critical component of the cellular clearance of toxic protein aggregates and may help to explain why protein aggregates are more toxic when directed to the nucleus.


Asunto(s)
Autofagia , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Péptidos/metabolismo , Ataxina-1 , Ataxinas , Proteína 12 Relacionada con la Autofagia , Proteína 5 Relacionada con la Autofagia , Línea Celular , Humanos , Proteína Huntingtina , Enfermedad de Huntington , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transporte de Proteínas , Proteínas/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina , Ataxias Espinocerebelosas , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA