Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
Br J Cancer ; 130(10): 1716-1724, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38658783

RESUMEN

BACKGROUND: There is a need for diagnostic tests for screening, triaging and staging of epithelial ovarian cancer (EOC). Glycoproteomics of blood samples has shown promise for biomarker discovery. METHODS: We applied glycoproteomics to serum of people with EOC or benign pelvic masses and healthy controls. A total of 653 analytes were quantified and assessed in multivariable models, which were tested in an independent cohort. Additionally, we analyzed glycosylation patterns in serum markers and in tissues. RESULTS: We identified a biomarker panel that distinguished benign lesions from EOC with sensitivity and specificity of 83.5% and 90.1% in the training set, and of 86.7 and 86.7% in the test set, respectively. ROC analysis demonstrated strong performance across a range of cutoffs. Fucosylated multi-antennary glycopeptide markers were higher in late-stage than in early-stage EOC. A comparable pattern was found in late-stage EOC tissues. CONCLUSIONS: Blood glycopeptide biomarkers have the potential to distinguish benign from malignant pelvic masses, and early- from late-stage EOC. Glycosylation of circulating and tumor tissue proteins may be related. This study supports the hypothesis that blood glycoproteomic profiling can be used for EOC diagnosis and staging and it warrants further clinical evaluation.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Epitelial de Ovario , Estadificación de Neoplasias , Neoplasias Ováricas , Proteómica , Humanos , Femenino , Neoplasias Ováricas/sangre , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/patología , Carcinoma Epitelial de Ovario/sangre , Carcinoma Epitelial de Ovario/diagnóstico , Carcinoma Epitelial de Ovario/patología , Biomarcadores de Tumor/sangre , Proteómica/métodos , Persona de Mediana Edad , Anciano , Glicosilación , Adulto , Glicopéptidos/sangre , Neoplasias Glandulares y Epiteliales/sangre , Neoplasias Glandulares y Epiteliales/diagnóstico , Neoplasias Glandulares y Epiteliales/patología , Glicoproteínas/sangre , Estudios de Casos y Controles , Sensibilidad y Especificidad
2.
Anal Chem ; 96(13): 5086-5094, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38513651

RESUMEN

Glycosylation is a key modulator of the functional state of proteins. Recent developments in large-scale analysis of intact glycopeptides have enabled the identification of numerous glycan structures that are relevant in pathophysiological processes. However, one motif found in N-glycans, poly-N-acetyllactosamine (polyLacNAc), still poses a substantial challenge to mass spectrometry-based glycoproteomic analysis due to its relatively low abundance and large size. In this work, we developed approaches for the systematic mapping of polyLacNAc-elongated N-glycans in melanoma cells. We first evaluated five anion exchange-based matrices for enriching intact glycopeptides and selected two materials that provided better overall enrichment efficiency. We then tested the robustness of the methodology by quantifying polyLacNAc-containing glycopeptides as well as changes in protein fucosylation and sialylation. Finally, we applied the optimal enrichment methods to discover glycopeptides containing polyLacNAc motifs in melanoma cells and found that integrins and tetraspanins are substantially modified with these structures. This study demonstrates the feasibility of glycoproteomic approaches for identification of glycoproteins with polyLacNAc motifs.


Asunto(s)
Integrinas , Melanoma , Humanos , Glicopéptidos/análisis , Espectrometría de Masas/métodos , Tetraspaninas , Polisacáridos/química
3.
Life Sci Alliance ; 7(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38176728

RESUMEN

Monoclonal antibodies targeting the immune checkpoint PD-1 have provided significant clinical benefit across a number of solid tumors, with differences in efficacy and toxicity profiles possibly related to their intrinsic molecular properties. Here, we report that camrelizumab and cemiplimab engage PD-1 through interactions with its fucosylated glycan. Using a combination of protein and cell glycoengineering, we demonstrate that the two antibodies bind preferentially to PD-1 with core fucose at the asparagine N58 residue. We then provide evidence that the concentration of fucosylated PD-1 in the blood of non-small-cell lung cancer patients varies across different stages of disease. This study illustrates how glycoprofiling of surface receptors and related circulating forms can inform the development of differentiated antibodies that discriminate glycosylation variants and achieve enhanced selectivity, and paves the way toward the implementation of personalized therapeutic approaches.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Inhibidores de Puntos de Control Inmunológico , Receptor de Muerte Celular Programada 1 , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Glicosilación , Neoplasias Pulmonares/tratamiento farmacológico
4.
Immunology ; 168(2): 331-345, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36183155

RESUMEN

Methylthioadenosine phosphorylase (MTAP) deficiency occurs in various malignancies and is associated with poor survival in cancer patients. However, the mechanisms underlying tumour progression due to MTAP loss are yet to be elucidated. Utilizing integrated analyses of the transcriptome, proteome and secretome, we demonstrated that MTAP deficiency alters tumour-intrinsic, immune-related pathways and reprograms cytokine profiles towards a tumour-favourable environment. Additionally, MTAP-knockout cells exhibited a marked increase in the immune checkpoint protein PD-L1. Upon co-culturing primary T cells with cancer cells, MTAP loss-mediated PD-L1 upregulation inhibited T cell-mediated killing activity and induced several T cell exhaustion markers. In two xenograft tumour models, we showed a modest increase in average volume of tumours derived from MTAP-deficient cells than that of MTAP-proficient tumours. Surprisingly, a remarkable increase in tumour size was observed in humanized mice bearing MTAP-deficient tumours, as compared to their MTAP-expressing counterparts. Following immunophenotypic characterization of tumour-infiltrating leukocytes by mass cytometry analysis, MTAP-deficient tumours were found to display decreased immune infiltrates with lower proportions of both T lymphocytes and natural killer cells and higher proportions of immunosuppressive cells as compared to MTAP-expressing tumour xenografts. Taken together, our results suggest that MTAP deficiency restructures the tumour immune microenvironment, promoting tumour progression and immune evasion.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Humanos , Animales , Ratones , Antígeno B7-H1/metabolismo , Purina-Nucleósido Fosforilasa/metabolismo , Neoplasias/metabolismo , Linfocitos T/metabolismo , Microambiente Tumoral
5.
Nanoscale ; 11(6): 2892-2900, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30688332

RESUMEN

Dissolution of lithium polysulfide (LiPS) into the electrolyte during discharging, causing shuttling of LiPS from the cathode to the lithium (Li) metal, is mainly responsible for the capacity decay and short battery life of lithium-sulfur batteries (LSBs). Herein, we designed a separator comprising polypropylene (PP) coated with MoO3 nanobelts (MNBs), prepared through facile grinding of commercial MoO3 powder. The formation of Li2Sn-MoO3 during discharging inhibited the polysulfide shuttling; during charging, Li passivated LixMoO3 facilitated ionic transfer during the redox reaction by decreasing the charge transfer resistance. This dual-interaction mechanism of LiPS-with both Mo and the formation of LixMoO3-resulted in a substantially high initial discharge capacity at a very high current density of 5C, with 29.4% of the capacity retained after 5000 cycles. The simple fabrication approach and extraordinary cycle life observed when using this MNB-coated separator suggest a scalable solution for future commercialization of LSBs.

6.
Sci Rep ; 8(1): 8146, 2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-29802298

RESUMEN

Employing CO2-based polymer in electronic applications should boost the consumption of CO2 feedstocks and provide the potential for non-permanent CO2 storage. In this study, polypropylene carbonate (PPC) is utilized as a dielectric and substrate material for organic thin film transistors (OTFTs) and organic inverter. The PPC dielectric film exhibits a surface energy of 47 mN m-1, a dielectric constant of 3, a leakage current density of less than 10-6 A cm-2, and excellent compatibility with pentacene and PTCDI-C8 organic semiconductors. Bottom-gate top-contact OTFTs are fabricated using PPC as a dielectric; they exhibits good electrical performance at an operating voltage of 60 V, with electron and hole mobilities of 0.14 and 0.026 cm2 V-1 s-1, and on-to-off ratios of 105 and 103, respectively. The fabricated p- and n-type transistors were connected to form a complementary inverter that operated at supply voltages of 20 V with high and low noise margins of 85 and 69%, respectively. The suitability of PPC as a substrate is demonstrated through the preparation of PPC sheets by casting method. The fabricated PPC sheets has a transparency of 92% and acceptable mechanical properties, yet they biodegraded rapidly through enzymatic degradation when using the lipase from Rhizhopus oryzae.

7.
Biosens Bioelectron ; 42: 76-9, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23202334

RESUMEN

In this short communication we report a sensor for divalent mercuric (Hg²âº) ions that we constructed from a perylene bisimide (PBI)-based organic thin film transistor. We improved the performance of the n-channel device by positioning N,N'-dioctyl-3,4,9,10-perylenedicarboximide between the dielectric and the active layer (PBI), increasing the electron mobility (µ) from 0.002 to 0.25±0.04 cm² V⁻¹ s⁻¹ and enhancing the on/off ratio (I(on)/I(off)) by two orders of magnitude (from 10² to 104). Based on a "thymine-Hg²âº-thymine" mechanism and monitoring the shift in the threshold voltage (V(th)), we used this transistor to discriminate Hg²âº ions from mixed ion solutions and it extended to different concentration Hg²âº solutions (from 50 to 350 µM). By monitoring the shifts in drain current (I(DS)) and V(th), we also used this bilayer device as a sensor for cysteine, a thiol-containing amino acid; the selective detection of cysteine was accompanied by a red shift in the fluorescence maximum of PBI, from 532 to 537 nm.


Asunto(s)
Cisteína/aislamiento & purificación , Imidas/química , Iones/aislamiento & purificación , Mercurio/aislamiento & purificación , Perileno/análogos & derivados , Aminoácidos/química , Técnicas Biosensibles , Cisteína/química , Electroquímica , Iones/química , Mercurio/química , Perileno/química , Soluciones/química
8.
Lab Chip ; 11(21): 3674-80, 2011 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-21922117

RESUMEN

In this manuscript, we describe a biocompatible organic electrode system, comprising poly(3,4-ethylenedioxythiophene) (PEDOT) microelectrode arrays on indium tin oxide (ITO) glass, that can be used to regulate the neuron type, location, polarity, and outgrown length of neuron-like cells (PC-12). We fabricated a PEDOT microelectrode array with four different sizes (flat; 20, 50, and 100 µm) through electrochemical polymerization. Extracellular matrix proteins absorbed well on these organic electrodes; cells absorbed selectively on the organic electrodes when we used polyethylene oxide/polypropylene oxide/polyethylene oxide triblock copolymers (PEO/PPO/PEO, Pluronic™ F108) as the anti-adhesive coating. In this system, the neurite polarities and neuron types could be manipulated by varying the width of the PEDOT microelectrode arrays. On the unpatterned PEDOT electrode, PC-12 cells were randomly polarized, with approximately 80% having multi-polar cell types. In contrast, when we cultured PC-12 cells on the 20 µm wide PEDOT line array, the neurites aligned along the direction of the organic electrodes, with the percentage of uni- and bipolar PC-12 cells increasing to greater than 90%. The outgrowth of neurites on the microelectrodes was promoted by ~60% with an applied electrical stimulation. Therefore, these electroactive PEDOT microelectrode arrays have potential for use in tissue engineering related to the development and regeneration of mammalian nervous systems.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/química , Análisis por Micromatrices , Polímeros/química , Compuestos de Estaño/química , Animales , Estimulación Eléctrica , Microelectrodos , Neuronas/citología , Neuronas/fisiología , Células PC12 , Feocromocitoma , Poloxámero/química , Polietilenglicoles/química , Ratas , Ingeniería de Tejidos
9.
Langmuir ; 24(10): 5453-8, 2008 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-18399670

RESUMEN

An ideal nonbiofouling surface for biomedical applications requires both high-efficient antifouling characteristics in relation to biological components and long-term material stability from biological systems. In this study we demonstrate the performance and stability of an antifouling surface with grafted zwitterionic sulfobetaine methacrylate (SBMA). The SBMA was grafted from a bromide-covered gold surface via surface-initiated atom transfer radical polymerization to form well-packed polymer brushes. Plasma protein adsorption on poly(sulfobetaine methacrylate) (polySBMA) grafted surfaces was measured with a surface plasmon resonance sensor. It is revealed that an excellent stable nonbiofouling surface with grafted polySBMA can be performed with a cycling test of the adsorption of three model proteins in a wide range of various salt types, buffer compositions, solution pH levels, and temperatures. This work also demonstrates the adsorption of plasma proteins and the adhesion of platelets from human blood plasma on the polySBMA grafted surface. It was found that the polySBMA grafted surface effectively reduces the plasma protein adsorption from platelet-poor plasma solution to a level superior to that of adsorption on a surface terminated with tetra(ethylene glycol). The adhesion and activation of platelets from platelet-rich plasma solution were not observed on the polySBMA grafted surface. This work further concludes that a surface with good hemocompatibility can be achieved by the well-packed surface-grafted polySBMA brushes.


Asunto(s)
Betaína/análogos & derivados , Metacrilatos/química , Proteínas/química , Adsorción , Betaína/química , Plaquetas/metabolismo , Bromuros/química , Adhesión Celular , Fibrinógeno/química , Humanos , Concentración de Iones de Hidrógeno , Iones , Modelos Químicos , Adhesividad Plaquetaria , Propiedades de Superficie , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA