Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Bioact Mater ; 34: 80-97, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38143565

RESUMEN

Critical limb ischemia (CLI) is a devastating disease characterized by the progressive blockage of blood vessels. Although the paracrine effect of growth factors in stem cell therapy made it a promising angiogenic therapy for CLI, poor cell survival in the harsh ischemic microenvironment limited its efficacy. Thus, an imperative need exists for a stem-cell delivery method that enhances cell survival. Here, a collagen microgel (CMG) cell-delivery scaffold (40 × 20 µm) was fabricated via micro-fragmentation from collagen-hyaluronic acid polyionic complex to improve transplantation efficiency. Culturing human adipose-derived stem cells (hASCs) with CMG enabled integrin receptors to interact with CMG to form injectable 3-dimensional constructs (CMG-hASCs) with a microporous microarchitecture and enhanced mass transfer. CMG-hASCs exhibited higher cell survival (p < 0.0001) and angiogenic potential in tube formation and aortic ring angiogenesis assays than cell aggregates. Injection of CMG-hASCs intramuscularly into CLI mice increased blood perfusion and limb salvage ratios by 40 % and 60 %, respectively, compared to cell aggregate-treated mice. Further immunofluorescent analysis revealed that transplanted CMG-hASCs have greater muscle regenerative and angiogenic potential, with enhanced cell survival than cell aggregates (p < 0.05). Collectively, we propose CMG as a cell-assembling platform and CMG-hASCs as promising therapeutics to treat CLI.

2.
Acta Biomater ; 166: 454-469, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37230438

RESUMEN

Stem cell therapy has emerged as a promising regenerative medicine strategy but is limited by poor cell survival, leading to low therapeutic outcomes. We developed cell spheroid therapeutics to overcome this limitation. We utilized solid-phase FGF2 to form functionally enhanced cell spheroid-adipose derived (FECS-Ad), a type of cell spheroid that preconditions cells with intrinsic hypoxia to increase the survival of transplanted cells. We demonstrated an increase in hypoxia-inducible factor 1-alpha (HIF-1α) levels in FECS-Ad, which led to the upregulation of tissue inhibitor of metalloproteinase 1 (TIMP1). TIMP1 enhanced the survival of FECS-Ad, presumably through the CD63/FAK/Akt/Bcl2 anti-apoptotic signaling pathway. Cell viability of transplanted FECS-Ad was reduced by TIMP1 knockdown in an in vitro collagen gel block and a mouse model of critical limb ischemia (CLI). TIMP1 knockdown in FECS-Ad inhibited angiogenesis and muscle regeneration induced by FECS-Ad transplanted into ischemic mouse tissue. Genetic overexpression of TIMP1 in FECS-Ad further promoted the survival and therapeutic efficacy of transplanted FECS-Ad. Collectively, we suggest that TIMP1 acts as a key survival factor to improve the survival of transplanted stem cell spheroids, which provides scientific evidence for enhanced therapeutic efficacy of stem cell spheroids, and FECS-Ad as a potential therapeutic agent to treat CLI. STATEMENT OF SIGNIFICANCE: We used FGF2-tethered substrate platform to form adipose-derived stem cell spheroids, as we named as functionally enhanced cell spheroid-adipose derived (FECS-Ad). In this paper, we showed that intrinsic hypoxia of spheroids upregulated expression of HIF-1α, which in turn upregulated expression of TIMP1. Our paper highlights TIMP1 as a key survival factor to improve survival of transplanted stem cell spheroids. We believe that our study has a very strong scientific impact as extending transplantation efficiency is essential for successful stem cell therapy.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos , Inhibidor Tisular de Metaloproteinasa-1 , Animales , Ratones , Esferoides Celulares , Trasplante de Células Madre , Supervivencia Celular
3.
Sci Adv ; 7(23)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34078609

RESUMEN

Advanced technologies are required for generating human intestinal epithelial cells (hIECs) harboring cellular diversity and functionalities to predict oral drug absorption in humans and study normal intestinal epithelial physiology. We developed a reproducible two-step protocol to induce human pluripotent stem cells to differentiate into highly expandable hIEC progenitors and a functional hIEC monolayer exhibiting intestinal molecular features, cell type diversity, and high activities of intestinal transporters and metabolic enzymes such as cytochrome P450 3A4 (CYP3A4). Functional hIECs are more suitable for predicting compounds metabolized by CYP3A4 and absorbed in the intestine than Caco-2 cells. This system is a step toward the transition from three-dimensional (3D) intestinal organoids to 2D hIEC monolayers without compromising cellular diversity and function. A physiologically relevant hIEC model offers a novel platform for creating patient-specific assays and support translational applications, thereby bridging the gap between 3D and 2D culture models of the intestine.


Asunto(s)
Citocromo P-450 CYP3A , Mucosa Intestinal , Células CACO-2 , Citocromo P-450 CYP3A/metabolismo , Células Epiteliales/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Organoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA