Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Trends Biochem Sci ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38762373

RESUMEN

Benbarche, Pineda, Galvis, et al. delineate an essential role for the G-patch motif-containing protein GPATCH8 in mis-splicing associated with cancer-driving mutations of the splicing factor SF3B1. GPATCH8 cooperates with SF3B1 mutants, affecting the splicing machinery. Targeting GPATCH8 reveals therapeutic opportunities for SF3B1 mutant cancers and other splicing-related diseases.

2.
EMBO Rep ; 25(5): 2220-2238, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600345

RESUMEN

Perturbation of protein phosphorylation represents an attractive approach to cancer treatment. Besides kinase inhibitors, protein phosphatase inhibitors have been shown to have anti-cancer activity. A prime example is the small molecule LB-100, an inhibitor of protein phosphatases 2A/5 (PP2A/PP5), enzymes that affect cellular physiology. LB-100 has proven effective in pre-clinical models in combination with immunotherapy, but the molecular underpinnings of this synergy remain understood poorly. We report here a sensitivity of the mRNA splicing machinery to phosphorylation changes in response to LB-100 in colorectal adenocarcinoma. We observe enrichment for differentially phosphorylated sites within cancer-critical splicing nodes of U2 snRNP, SRSF and hnRNP proteins. Altered phosphorylation endows LB-100-treated colorectal adenocarcinoma cells with differential splicing patterns. In PP2A-inhibited cells, over 1000 events of exon skipping and intron retention affect regulators of genomic integrity. Finally, we show that LB-100-evoked alternative splicing leads to neoantigens that are presented by MHC class 1 at the cell surface. Our findings provide a potential explanation for the pre-clinical and clinical observations that LB-100 sensitizes cancer cells to immune checkpoint blockade.


Asunto(s)
Neoplasias del Colon , Empalme del ARN , Humanos , Neoplasias del Colon/genética , Neoplasias del Colon/inmunología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Empalme del ARN/efectos de los fármacos , Fosforilación , Línea Celular Tumoral , ARN Mensajero/genética , ARN Mensajero/metabolismo , Empalme Alternativo , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Factores de Empalme Serina-Arginina/metabolismo , Factores de Empalme Serina-Arginina/genética , Proteína Fosfatasa 2/metabolismo , Inhibidores Enzimáticos/farmacología
3.
Mol Cell ; 83(7): 1165-1179.e11, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36944332

RESUMEN

SF3B1 is the most mutated splicing factor (SF) in myelodysplastic syndromes (MDSs), which are clonal hematopoietic disorders with variable risk of leukemic transformation. Although tumorigenic SF3B1 mutations have been extensively characterized, the role of "non-mutated" wild-type SF3B1 in cancer remains largely unresolved. Here, we identify a conserved epitranscriptomic program that steers SF3B1 levels to counteract leukemogenesis. Our analysis of human and murine pre-leukemic MDS cells reveals dynamic regulation of SF3B1 protein abundance, which affects MDS-to-leukemia progression in vivo. Mechanistically, ALKBH5-driven 5' UTR m6A demethylation fine-tunes SF3B1 translation directing splicing of central DNA repair and epigenetic regulators during transformation. This impacts genome stability and leukemia progression in vivo, supporting an integrative analysis in humans that SF3B1 molecular signatures may predict mutational variability and poor prognosis. These findings highlight a post-transcriptional gene expression nexus that unveils unanticipated SF3B1-dependent cancer vulnerabilities.


Asunto(s)
Leucemia , Síndromes Mielodisplásicos , Fosfoproteínas , Factores de Empalme de ARN , Animales , Humanos , Ratones , Carcinogénesis/genética , Leucemia/genética , Mutación , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Empalme del ARN/genética , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo
4.
Neoplasia ; 36: 100865, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36563633

RESUMEN

Slow-cycling cancer cells (SCC) contribute to the aggressiveness of many cancers, and their invasiveness and chemoresistance pose a great therapeutic challenge. However, in melanoma, their tumor-initiating abilities are not fully understood. In this study, we used the syngeneic transplantation assay to investigate the tumor-initiating properties of melanoma SCC in the physiologically relevant in vivo settings. For this we used B16-F10 murine melanoma cell line where we identified a small fraction of SCC. We found that, unlike human melanoma, the murine melanoma SCC were not marked by the high expression of the epigenetic enzyme Jarid1b. At the same time, their slow-cycling phenotype was a temporary state, similar to what was described in human melanoma. Progeny of SCC had slightly increased doxorubicin resistance and altered expression of melanogenesis genes, independent of the expression of cancer stem cell markers. Single-cell expansion of SCC revealed delayed growth and reduced clone formation when compared to non-SCC, which was further confirmed by an in vitro limiting dilution assay. Finally, syngeneic transplantation of 10 cells in vivo established that SCC were able to initiate growth in primary recipients and continue growth in the serial transplantation assay, suggesting their self-renewal nature. Together, our study highlights the high plasticity and tumorigenicity of murine melanoma SCC and suggests their role in melanoma aggressiveness.


Asunto(s)
Melanoma Experimental , Humanos , Animales , Ratones , Trasplante Isogénico , Melanoma Experimental/genética , Melanoma Experimental/tratamiento farmacológico , Línea Celular , Proliferación Celular
5.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35408953

RESUMEN

Melanoma-initiating cells (MICs) contribute to the tumorigenicity and heterogeneity of melanoma. MICs are identified by surface and functional markers and have been shown to display cancer stem cell (CSC) properties. However, the existence of MICs that follow the hierarchical CSC model has been questioned by studies showing that single unselected melanoma cells are highly tumorigenic in xenotransplantation assays. Herein, we characterize cells expressing MIC markers (CD20, CD24, CD133, Sca-1, ABCB1, ABCB5, ALDHhigh) in the B16-F10 murine melanoma cell line. We use flow cytometric phenotyping, single-cell sorting followed by in vitro clonogenic assays, and syngeneic in vivo serial transplantation assays to demonstrate that the expression of MIC markers does not select CSC-like cells in this cell line. Previously, our group showed that heme-degrading enzyme heme oxygenase-1 (HO-1) can be upregulated in melanoma and increase its aggressiveness. Here, we show that HO-1 activity is important for non-adherent growth of melanoma and HO-1 overexpression enhances the vasculogenic mimicry potential, which can be considered protumorigenic activity. However, HO-1 overexpression decreases clone formation in vitro and serial tumor initiation in vivo. Thus, HO-1 plays a dual role in melanoma, improving the progression of growing tumors but reducing the risk of melanoma initiation.


Asunto(s)
Hemo-Oxigenasa 1 , Melanoma Experimental , Animales , Línea Celular Tumoral , Separación Celular , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Melanoma Experimental/patología , Proteínas de la Membrana , Ratones , Células Madre Neoplásicas/metabolismo
6.
Nat Cell Biol ; 24(3): 299-306, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35292784

RESUMEN

Transfer RNA-derived fragments (tRFs) are emerging small noncoding RNAs that, although commonly altered in cancer, have poorly defined roles in tumorigenesis1. Here we show that pseudouridylation (Ψ) of a stem cell-enriched tRF subtype2, mini tRFs containing a 5' terminal oligoguanine (mTOG), selectively inhibits aberrant protein synthesis programmes, thereby promoting engraftment and differentiation of haematopoietic stem and progenitor cells (HSPCs) in patients with myelodysplastic syndrome (MDS). Building on evidence that mTOG-Ψ targets polyadenylate-binding protein cytoplasmic 1 (PABPC1), we employed isotope exchange proteomics to reveal critical interactions between mTOG and functional RNA-recognition motif (RRM) domains of PABPC1. Mechanistically, this hinders the recruitment of translational co-activator PABPC1-interacting protein 1 (PAIP1)3 and strongly represses the translation of transcripts sharing pyrimidine-enriched sequences (PES) at the 5' untranslated region (UTR), including 5' terminal oligopyrimidine tracts (TOP) that encode protein machinery components and are frequently altered in cancer4. Significantly, mTOG dysregulation leads to aberrantly increased translation of 5' PES messenger RNA (mRNA) in malignant MDS-HSPCs and is clinically associated with leukaemic transformation and reduced patient survival. These findings define a critical role for tRFs and Ψ in difficult-to-treat subsets of MDS characterized by high risk of progression to acute myeloid leukaemia (AML).


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Células Madre Hematopoyéticas/metabolismo , Humanos , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Factores de Iniciación de Péptidos/metabolismo , Seudouridina , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/genética
7.
NAR Cancer ; 3(3): zcab026, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34316713

RESUMEN

Small Cajal body-specific RNAs (scaRNAs) guide post-transcriptional modification of spliceosomal RNA and, while commonly altered in cancer, have poorly defined roles in tumorigenesis. Here, we uncover that SCARNA15 directs alternative splicing (AS) and stress adaptation in cancer cells. Specifically, we find that SCARNA15 guides critical pseudouridylation (Ψ) of U2 spliceosomal RNA to fine-tune AS of distinct transcripts enriched for chromatin and transcriptional regulators in malignant cells. This critically impacts the expression and function of the key tumor suppressors ATRX and p53. Significantly, SCARNA15 loss impairs p53-mediated redox homeostasis and hampers cancer cell survival, motility and anchorage-independent growth. In sum, these findings highlight an unanticipated role for SCARNA15 and Ψ in directing cancer-associated splicing programs.

8.
Mol Cell ; 81(7): 1453-1468.e12, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33662273

RESUMEN

Splicing is a central RNA-based process commonly altered in human cancers; however, how spliceosomal components are co-opted during tumorigenesis remains poorly defined. Here we unravel the core splice factor SF3A3 at the nexus of a translation-based program that rewires splicing during malignant transformation. Upon MYC hyperactivation, SF3A3 levels are modulated translationally through an RNA stem-loop in an eIF3D-dependent manner. This ensures accurate splicing of mRNAs enriched for mitochondrial regulators. Altered SF3A3 translation leads to metabolic reprogramming and stem-like properties that fuel MYC tumorigenic potential in vivo. Our analysis reveals that SF3A3 protein levels predict molecular and phenotypic features of aggressive human breast cancers. These findings unveil a post-transcriptional interplay between splicing and translation that governs critical facets of MYC-driven oncogenesis.


Asunto(s)
Neoplasias de la Mama/metabolismo , Carcinogénesis/metabolismo , Células Madre Neoplásicas/metabolismo , Biosíntesis de Proteínas , Factores de Empalme de ARN/biosíntesis , Empalmosomas/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinogénesis/genética , Femenino , Humanos , Ratones , Ratones Desnudos , Persona de Mediana Edad , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Empalme de ARN/genética , Empalmosomas/genética
9.
Int J Mol Sci ; 22(3)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498175

RESUMEN

Whilst the survival rates of childhood acute lymphoblastic leukemia (ALL) have increased remarkably over the last decades, the therapy resistance and toxicity are still the major causes of treatment failure. It was shown that overexpression of heme oxygenase-1 (HO-1) promotes proliferation and chemoresistance of cancer cells. In humans, the HO-1 gene (HMOX1) expression is modulated by two polymorphisms in the promoter region: (GT)n-length polymorphism and single-nucleotide polymorphism (SNP) A(-413)T, with short GT repeat sequences and 413-A variants linked to an increased HO-1 inducibility. We found that the short alleles are significantly more frequent in ALL patients in comparison to the control group, and that their presence may be associated with a higher risk of treatment failure, reflecting the role of HO-1 in chemoresistance. We also observed that the presence of short alleles may predispose to develop chemotherapy-induced neutropenia. In case of SNP, the 413-T variant co-segregated with short or long alleles, while 413-A almost selectively co-segregated with long alleles, hence it is not possible to determine if SNPs are actually of phenotypic significance. Our results suggest that HO-1 can be a potential target to overcome the treatment failure in ALL patients.


Asunto(s)
Neutropenia Febril Inducida por Quimioterapia/genética , Resistencia a Antineoplásicos/genética , Hemo-Oxigenasa 1/genética , Polimorfismo de Nucleótido Simple , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Células Cultivadas , Neutropenia Febril Inducida por Quimioterapia/etiología , Niño , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Regiones Promotoras Genéticas
10.
Redox Biol ; 34: 101566, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32464500

RESUMEN

Divalent copper and iron cations have been acknowledged for their catalytic roles in physiological processes critical for homeostasis maintenance. Being redox-active, these metals act as cofactors in the enzymatic reactions of electron transfer. However, under pathophysiological conditions, owing to their high redox potentials, they may exacerbate stress-induced injury. This could be particularly hazardous to the liver - the main body reservoir of these two metals. Surprisingly, the involvement of Cu and Fe in liver pathology still remains poorly understood. Hypoxic stress in the tissue may act as a stimulus that mobilizes these ions from their hepatic stores, aggravating the systemic injury. Since ischemia poses a serious complication in liver surgery (e.g. transplantation) we aimed to reveal the status of Cu and Fe via spectroscopic analysis of mouse ischemic liver tissue. Herein, we establish a novel non-surgical model of focal liver ischemia, achieved by applying light locally when a photosensitizer is administered systemically. Photodynamic treatment results in clear-cut areas of the ischemic hepatic tissue, as confirmed by ultrasound scans, mean velocity measurements, 3D modelling of vasculature and (immuno)histological analysis. For reference, we assessed the samples collected from the animals which developed transient systemic endotoxemic stress induced by a non-lethal dose of lipopolysaccharide. The electron paramagnetic resonance (EPR) spectra recorded in situ in the liver samples reveal a dramatic increase in the level of Cu adducts solely in the ischemic tissues. In contrast, other typical free radical components of the liver EPR spectra, such as reduced Riske clusters are not detected; these differences are not followed by changes in the blood EPR spectra. Taken together, our results suggest that local ischemic stress affects paramagnetic species containing redox-active metals. Moreover, because in our model hepatic vascular flow is impaired, these effects are only local (confined to the liver) and are not propagated systemically.


Asunto(s)
Cobre , Hierro , Animales , Espectroscopía de Resonancia por Spin del Electrón , Isquemia , Hígado , Ratones , Oxidación-Reducción
11.
EMBO Rep ; 21(2): e47895, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31885181

RESUMEN

While intrinsic changes in aging hematopoietic stem cells (HSCs) are well characterized, it remains unclear how extrinsic factors affect HSC aging. Here, we demonstrate that cells in the niche-endothelial cells (ECs) and CXCL12-abundant reticular cells (CARs)-highly express the heme-degrading enzyme, heme oxygenase 1 (HO-1), but then decrease its expression with age. HO-1-deficient animals (HO-1-/- ) have altered numbers of ECs and CARs that produce less hematopoietic factors. HSCs co-cultured in vitro with HO-1-/- mesenchymal stromal cells expand, but have altered kinetic of growth and differentiation of derived colonies. HSCs from young HO-1-/- animals have reduced quiescence and regenerative potential. Young HO-1-/- HSCs exhibit features of premature exhaustion on the transcriptional and functional level. HO-1+/+ HSCs transplanted into HO-1-/- recipients exhaust their regenerative potential early and do not reconstitute secondary recipients. In turn, transplantation of HO-1-/- HSCs to the HO-1+/+ recipients recovers the regenerative potential of HO-1-/- HSCs and reverses their transcriptional alterations. Thus, HSC-extrinsic activity of HO-1 prevents HSCs from premature exhaustion and may restore the function of aged HSCs.


Asunto(s)
Hemo-Oxigenasa 1 , Células Madre Mesenquimatosas , Animales , Diferenciación Celular , Células Endoteliales , Células Madre Hematopoyéticas , Hemo-Oxigenasa 1/genética
12.
EMBO Mol Med ; 11(12): e09571, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31709729

RESUMEN

Granulocyte colony-stimulating factor (G-CSF) is used in clinical practice to mobilize cells from the bone marrow to the blood; however, it is not always effective. We show that cobalt protoporphyrin IX (CoPP) increases plasma concentrations of G-CSF, IL-6, and MCP-1 in mice, triggering the mobilization of granulocytes and hematopoietic stem and progenitor cells (HSPC). Compared with recombinant G-CSF, CoPP mobilizes higher number of HSPC and mature granulocytes. In contrast to G-CSF, CoPP does not increase the number of circulating T cells. Transplantation of CoPP-mobilized peripheral blood mononuclear cells (PBMC) results in higher chimerism and faster hematopoietic reconstitution than transplantation of PBMC mobilized by G-CSF. Although CoPP is used to activate Nrf2/HO-1 axis, the observed effects are Nrf2/HO-1 independent. Concluding, CoPP increases expression of mobilization-related cytokines and has superior mobilizing efficiency compared with recombinant G-CSF. This observation could lead to the development of new strategies for the treatment of neutropenia and HSPC transplantation.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos/metabolismo , Granulocitos/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Hemo-Oxigenasa 1/deficiencia , Protoporfirinas/farmacología , Animales , Femenino , Movilización de Célula Madre Hematopoyética , Hemo-Oxigenasa 1/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
13.
Cell Rep ; 27(12): 3573-3586.e7, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31216476

RESUMEN

The X-linked DDX3X gene encodes an ATP-dependent DEAD-box RNA helicase frequently altered in various human cancers, including melanomas. Despite its important roles in translation and splicing, how DDX3X dysfunction specifically rewires gene expression in melanoma remains completely unknown. Here, we uncover a DDX3X-driven post-transcriptional program that dictates melanoma phenotype and poor disease prognosis. Through an unbiased analysis of translating ribosomes, we identified the microphthalmia-associated transcription factor, MITF, as a key DDX3X translational target that directs a proliferative-to-metastatic phenotypic switch in melanoma cells. Mechanistically, DDX3X controls MITF mRNA translation via an internal ribosome entry site (IRES) embedded within the 5' UTR. Through this exquisite translation-based regulatory mechanism, DDX3X steers MITF protein levels dictating melanoma metastatic potential in vivo and response to targeted therapy. Together, these findings unravel a post-transcriptional layer of gene regulation that may provide a unique therapeutic vulnerability in aggressive male melanomas.


Asunto(s)
Reprogramación Celular , ARN Helicasas DEAD-box/metabolismo , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Regulación de la Expresión Génica , Melanoma/secundario , Biosíntesis de Proteínas/genética , Animales , Proliferación Celular , ARN Helicasas DEAD-box/genética , Femenino , Genes Ligados a X , Humanos , Sitios Internos de Entrada al Ribosoma , Metástasis Linfática , Masculino , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Pronóstico
14.
Cell ; 173(5): 1204-1216.e26, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29628141

RESUMEN

Pseudouridylation (Ψ) is the most abundant and widespread type of RNA epigenetic modification in living organisms; however, the biological role of Ψ remains poorly understood. Here, we show that a Ψ-driven posttranscriptional program steers translation control to impact stem cell commitment during early embryogenesis. Mechanistically, the Ψ "writer" PUS7 modifies and activates a novel network of tRNA-derived small fragments (tRFs) targeting the translation initiation complex. PUS7 inactivation in embryonic stem cells impairs tRF-mediated translation regulation, leading to increased protein biosynthesis and defective germ layer specification. Remarkably, dysregulation of this posttranscriptional regulatory circuitry impairs hematopoietic stem cell commitment and is common to aggressive subtypes of human myelodysplastic syndromes. Our findings unveil a critical function of Ψ in directing translation control in stem cells with important implications for development and disease.


Asunto(s)
Transferasas Intramoleculares/metabolismo , Biosíntesis de Proteínas , Seudouridina/metabolismo , ARN de Transferencia/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular , Diferenciación Celular , Factores Eucarióticos de Iniciación/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Transferasas Intramoleculares/antagonistas & inhibidores , Transferasas Intramoleculares/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Síndromes Mielodisplásicos/patología , Conformación de Ácido Nucleico , Fosfoproteínas/metabolismo , Proteína I de Unión a Poli(A)/antagonistas & inhibidores , Proteína I de Unión a Poli(A)/genética , Proteína I de Unión a Poli(A)/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Nicho de Células Madre
15.
IUBMB Life ; 70(2): 129-142, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29316264

RESUMEN

Cellular stress can influence efficiency of iPSCs generation and their differentiation. However, the role of intracellular cytoprotective factors in these processes is still not well known. Therefore, we investigated the effect of HO-1 (Hmox1) or Nrf2 (Nfe2l2), two major cytoprotective genes. Hmox1-/- fibroblasts demonstrated decreased reprogramming efficiency in comparison to Hmox1+/+ cells. Reversely, pharmacological enhancement of HO-1 resulted in higher number of iPSCs colonies. Importantly, elevated level of both p53 and p53-regulated miR-34a and 14-3-3σ was observed in HO-1-deficient fibroblasts whereas downregulation of p53 in these cells markedly increased their reprogramming efficiency. In human fibroblasts HO-1 silencing also induced p53 expression and affected reprogramming outcome. Hmox1+/+ and Hmox1-/- iPSCs similarly differentiated in vitro to cells originating from three germ layers, however, lower number of contracting cells was observed during this process in HO-1-deficient cells indicating attenuated cardiac differentiation. Importantly, silencing of Hmox1 in murine ESC using CRISPR/Cas-9 editing also impaired their spontaneous cardiac differentiation. Decreased reprogramming efficiency was also observed in Nrf2-lacking fibroblasts. Reversely, sulforaphane, a Nrf2 activator, increased the number of iPSCs colonies. However, both Nfe2l2+/+ and Nfe2l2-/- iPSCs showed similar pluripotency and differentiation capacity. These results indicate that regulation of HO-1 expression can further optimize generation and cardiac differentiation of iPSCs. © 2018 IUBMB Life, 70(2):129-142, 2018.


Asunto(s)
Diferenciación Celular/fisiología , Técnicas de Reprogramación Celular/métodos , Hemo-Oxigenasa 1/metabolismo , Células Madre Pluripotentes Inducidas/citología , Proteínas de la Membrana/metabolismo , Animales , Ciclo Celular/fisiología , Fibroblastos , Hemo-Oxigenasa 1/genética , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
16.
Am J Pathol ; 188(2): 491-506, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29169990

RESUMEN

Heme oxygenase-1 (HO-1, Hmox1) regulates viability, proliferation, and differentiation of many cell types; hence, it may affect regeneration of injured skeletal muscle. Here, we injected cardiotoxin into gastrocnemius muscle of Hmox1+/+ and Hmox1-/- animals and analyzed cellular response after muscle injury, focusing on muscle satellite cells (SCs), inflammatory reaction, fibrosis, and formation of new blood vessels. HO-1 is strongly induced after muscle injury, being expressed mostly in the infiltrating leukocytes (CD45+ cells), including macrophages (F4/80+ cells). Lack of HO-1 augments skeletal muscle injury, evidenced by increased creatinine kinase and lactate dehydrogenase, as well as expression of monocyte chemoattractant protein-1, IL-6, IL-1ß, and insulin-like growth factor-1. This, together with disturbed proportion of M1/M2 macrophages, accompanied by enhanced formation of arterioles, may be responsible for shift of Hmox1-/- myofiber size distribution toward larger one. Importantly, HO-1-deficient SCs are prone to activation and have higher proliferation on injury. This effect can be partially mimicked by stimulation of Hmox1+/+ SCs with monocyte chemoattractant protein-1, IL-6, IL-1ß, and is associated with increased MyoD expression, suggesting that Hmox1-/- SCs are shifted toward more differentiated myogenic population. However, multiple rounds of degeneration/regeneration in conditions of HO-1 deficiency may lead to exhaustion of SC pool, and the number of SCs is decreased in old Hmox1-/- mice. In summary, HO-1 modulates muscle repair mechanisms preventing its uncontrolled acceleration.


Asunto(s)
Hemo-Oxigenasa 1/fisiología , Músculo Esquelético/lesiones , Miositis/enzimología , Células Satélite del Músculo Esquelético/patología , Animales , Arteriolas/patología , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Proteínas Cardiotóxicas de Elápidos , Crotoxina , Citocinas/biosíntesis , Combinación de Medicamentos , Femenino , Regulación Enzimológica de la Expresión Génica , Hemo-Oxigenasa 1/deficiencia , Hemo-Oxigenasa 1/genética , Mediadores de Inflamación/metabolismo , Ratones Endogámicos C57BL , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Miositis/inducido químicamente , Miositis/patología , Miositis/fisiopatología , ARN Mensajero/genética , Regeneración/fisiología , Células Satélite del Músculo Esquelético/metabolismo
17.
Immunobiology ; 222(6): 846-857, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28576353

RESUMEN

Heme oxygenase-1 (HO-1) is stress-inducible, cytoprotective enzyme degrading heme to carbon monoxide (CO), biliverdin and Fe2+. We showed that HO-1 knock-out mice (HO-1-/-) have a twofold higher level of granulocytes than wild type (WT) mice, despite decreased concentration of granulocyte colony-stimulating factor (G-CSF) in the blood and reduced surface expression of G-CSF receptor on the hematopoietic precursors. This suggests the effect of HO-1 on granulopoiesis. Here we aimed to determine the stage of granulopoiesis regulated by HO-1. The earliest stages of hematopoiesis were not biased toward myeloid differentiation in HO-1-/- mice. Within committed granulocytic compartment, in WT mice, HO-1 was up-regulated starting from myelocyte stage. This was concomitant with up-regulation of miR-155, which targets Bach1, the HO-1 repressor. In HO-1-/- mice granulopoiesis was accelerated between myelocyte and metamyelocyte stage. There was a higher fraction of proliferating myelocytes, with increased nuclear expression of pro-proliferative C/EBPß (CCAAT/enhancer binding protein beta) protein, especially its active LAP (liver-enriched activator proteins) isoform. Also our mathematical model confirmed shortening the myelocyte cyclic-time and prolonged mitotic expansion in absence of HO-1. It seems that changes in C/EBPß expression and activity in HO-1-/- myelocytes can be associated with reduced level of its direct repressor miR-155 or with decreased concentration of CO, known to reduce nuclear translocation of C/EBPs. Mature HO-1-/- granulocytes were functionally competent as determined by oxidative burst capacity. In conclusion, HO-1 influences granulopoiesis through regulation of myelocyte proliferation. It is accompanied by changes in expression of transcriptionally active C/EBPß protein. As HO-1 expression vary in human and is up-regulated in response to chemotherapy, it can potentially influence chemotherapy-induced neutropenia.


Asunto(s)
Células Precursoras de Granulocitos/fisiología , Granulocitos/fisiología , Hemo-Oxigenasa 1/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Factor Estimulante de Colonias de Granulocitos/metabolismo , Hematopoyesis , Hemo-Oxigenasa 1/genética , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Estallido Respiratorio
18.
Biochem Biophys Res Commun ; 485(1): 160-166, 2017 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-28189672

RESUMEN

AIMS: Heme oxygenase-1 (HO-1; HMOX1 in human, Hmox1 in mice) is an antioxidative enzyme affecting wide range of sub-cellular processes. It was shown to modulate tumor growth or vascular-related diseases, thus being putative molecular target for tailored therapies. Therefore it is of importance to elucidate novel compounds regulating HO-1 activity/expression and to delineate mechanisms of their action. In the present study we aimed to understand mode of action of valproic acid (VA), an antiepileptic drug, on HO-1 expression. RESULTS: We demonstrated that HO-1 expression is decreased by VA at protein but not mRNA level in human alveolar rhabdomyosarcoma cell line CW9019. Nrf2 transcription factor, the activator of HO-1 expression through ARE sequence, was excluded as a mediator of HO-1 decrease, as VA downregulated Bach1, a Nrf2 repressor, concomitantly upregulating ARE activation. Also miRNA-dependent inhibition was excluded as a mechanism of HMOX1 regulation. However, co-immunoprecipitation assay showed a higher level of ubiquitinated HO-1 after VA treatment. Accordingly, MG132, an inhibitor of proteasomal degradation, reversed the effect of VA on HO-1 suggesting that decrease in HO-1 expression by VA is through protein stability. The inhibitory effect of VA on HO-1 was also observed in murine cells including embryonic fibroblasts isolated from Nrf2-deficient mice, what confirms Nrf2-independent effect of the compound. Importantly, VA decreased also HO-1 expression and activity in murine skeletal muscles in vivo. CONCLUSION: Our data indicate that VA downregulates HO-1 by acting through ubiquitin-proteasomal pathway leading to decrease in protein level.


Asunto(s)
Regulación hacia Abajo/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Hemo-Oxigenasa 1/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteolisis/efectos de los fármacos , Ubiquitinación/efectos de los fármacos , Ácido Valproico/farmacología , Animales , Anticonvulsivantes/farmacología , Línea Celular , Hemo-Oxigenasa 1/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Complejo de la Endopetidasa Proteasomal/metabolismo
19.
Immunobiology ; 222(3): 506-517, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27817989

RESUMEN

Heme oxygenase-1 (HO-1) is stress-inducible, cytoprotective enzyme degrading heme to carbon monoxide (CO), biliverdin and Fe2+. We showed that HO-1 knock-out mice (HO-1-/-) have a twofold higher level of granulocytes than wild type (WT) mice, despite decreased concentration of granulocyte colony-stimulating factor (G-CSF) in the blood and reduced surface expression of G-CSF receptor on the hematopoietic precursors. This suggests the effect of HO-1 on granulopoiesis. Here we aimed to determine the stage of granulopoiesis regulated by HO-1. The earliest stages of hematopoiesis were not biased toward myeloid differentiation in HO-1-/- mice. Within committed granulocytic compartment, in WT mice, HO-1 was up-regulated starting from myelocyte stage. This was concomitant with up-regulation of miR-155, which targets Bach1, the HO-1 repressor. In HO-1-/- mice granulopoiesis was accelerated between myelocyte and metamyelocyte stage. There was a higher fraction of proliferating myelocytes, with increased nuclear expression of pro-proliferative C/EBPß (CCAAT/enhancer binding protein beta) protein, especially its active LAP (liver-enriched activator proteins) isoform. Also our mathematical model confirmed shortening the myelocyte cyclic-time and prolonged mitotic expansion in absence of HO-1. It seems that changes in C/EBPß expression and activity in HO-1-/- myelocytes can be associated with reduced level of its direct repressor miR-155 or with decreased concentration of CO, known to reduce nuclear translocation of C/EBPs. Mature HO-1-/- granulocytes were functionally competent as determined by oxidative burst capacity. In conclusion, HO-1 influences granulopoiesis through regulation of myelocyte proliferation. It is accompanied by changes in expression of transcriptionally active C/EBPß protein. As HO-1 expression vary in human and is up-regulated in response to chemotherapy, it can potentially influence chemotherapy-induced neutropenia.


Asunto(s)
Diferenciación Celular/genética , Células Precursoras de Granulocitos/citología , Células Precursoras de Granulocitos/metabolismo , Granulocitos/citología , Granulocitos/metabolismo , Hemo-Oxigenasa 1/genética , Mielopoyesis/genética , Animales , Biomarcadores , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proliferación Celular , Factor Estimulante de Colonias de Granulocitos/sangre , Factor Estimulante de Colonias de Granulocitos/metabolismo , Hemo-Oxigenasa 1/metabolismo , Inmunofenotipificación , Recuento de Leucocitos , Ratones , Ratones Noqueados , Especies Reactivas de Oxígeno/metabolismo
20.
Cancer Res ; 76(19): 5707-5718, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27488535

RESUMEN

Rhabdomyosarcoma (RMS) is an aggressive soft tissue cancer characterized by disturbed myogenic differentiation. Here we report a role for the oxidative stress response factor HO-1 in progression of RMS. We found that HO-1 was elevated and its effector target miR-206 decreased in RMS cell lines and clinical primary tumors of the more aggressive alveolar phenotype (aRMS). In embryonal RMS (eRMS), HO-1 expression was induced by Pax3/7-FoxO1, an aRMS hallmark oncogene, followed by a drop in miR-206 levels. Inhibition of HO-1 by tin protoporphyrin (SnPP) or siRNA downregulated Pax3/7-FoxO1 target genes and induced a myogenic program in RMS. These effects were not mediated by altered myoD expression; instead, cells with elevated HO-1 produced less reactive oxygen species, resulting in nuclear localization of HDAC4 and miR-206 repression. HO-1 inhibition by SnPP reduced growth and vascularization of RMS tumors in vivo accompanied by induction of miR-206. Effects of SnPP on miR-206 expression and RMS tumor growth were mimicked by pharmacologic inhibition of HDAC. Thus, HO-1 inhibition activates an miR-206-dependent myogenic program in RMS, offering a novel therapeutic strategy for treatment of this malignancy. Cancer Res; 76(19); 5707-18. ©2016 AACR.


Asunto(s)
Hemo-Oxigenasa 1/fisiología , Histona Desacetilasas/fisiología , MicroARNs/fisiología , Estrés Oxidativo , Proteínas Represoras/fisiología , Rabdomiosarcoma/metabolismo , Animales , Línea Celular Tumoral , Proteína Forkhead Box O1/genética , Fusión Génica , Humanos , Metaloporfirinas/farmacología , Ratones , Factor de Transcripción PAX3/genética , Protoporfirinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA