Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros











Intervalo de año de publicación
1.
Vitam Horm ; 108: 273-307, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30029730

RESUMEN

Dehydroepiandrosterone (DHEA) is the most abundant steroid hormone in human serum and a precursor of sexual hormones. Its levels, which are maximum between the age of 20 and 30, dramatically decline with aging thus raising the question that many pathological conditions typical of the elderly might be associated with the decrement of circulating DHEA. Moreover, since its very early discovery, DHEA and its metabolites have been shown to be active in many pathophysiological contexts, including cardiovascular disease, brain disorders, and cancer. Indeed, treatment with DHEA has beneficial effects for the cure of these and many other pathologies in vitro, in vivo, and in patient studies. However, the molecular mechanisms underlying DHEA effects have been only partially elucidated. Autophagy is a self-digestive process, by which cell homeostasis is maintained, damaged organelles removed, and cell survival assured upon stress stimuli. However, high rate of autophagy is detrimental and leads to a form of programmed cell death known as autophagic cell death (ACD). In this chapter, we describe the process of autophagy and the morphological and biochemical features of ACD. Moreover, we analyze the beneficial effects of DHEA in several pathologies and the molecular mechanisms with particular emphasis on its regulation of cell death processes. Finally, we review data indicating DHEA and structurally related steroid hormones as modulators of both autophagy and ACD, a research field that opens new avenues in the therapeutic use of these compounds.


Asunto(s)
Autofagia/fisiología , Deshidroepiandrosterona/fisiología , Deshidroepiandrosterona/química , Humanos , Esteroides/química , Esteroides/fisiología , Relación Estructura-Actividad
2.
Aging (Albany NY) ; 7(10): 869-81, 2015 10.
Artículo en Inglés | MEDLINE | ID: mdl-26540513

RESUMEN

Fasting promotes longevity by reprogramming metabolic and stress resistance pathways. However, although the impact on adipose tissue physiology through hormonal inputs is well established, the direct role of fasting on adipose cells is poorly understood. Herein we show that white and beige adipocytes, as well as mouse epididymal and subcutaneous adipose depots, respond to nutrient scarcity by acquiring a brown-like phenotype. Indeed, they improve oxidative metabolism through modulating the expression of mitochondrial- and nuclear-encoded oxidative phosphorylation genes as well as mitochondrial stress defensive proteins (UCP1, SOD2). Such adaptation is placed in a canonical mitohormetic response that proceeds via mitochondrial reactive oxygen species ((mt)ROS) production and redistribution of FoxO1 transcription factor into nucleus. Nuclear FoxO1 ((n)FoxO1) mediates retrograde communication by inducing the expression of mitochondrial oxidative and stress defensive genes. Collectively, our findings describe an unusual white/beige fat cell response to nutrient availability highlighting another health-promoting mechanism of fasting.


Asunto(s)
Adipocitos Blancos/metabolismo , Tejido Adiposo Blanco/metabolismo , Ayuno/metabolismo , Mitocondrias/metabolismo , Células 3T3-L1 , Animales , Privación de Alimentos , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/metabolismo , Hormesis , Canales Iónicos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Distribución Aleatoria , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Proteína Desacopladora 1
3.
Sci Rep ; 5: 13091, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26260892

RESUMEN

Adipose tissue metabolically adapts to external stimuli. We demonstrate that the induction of the thermogenic program in white adipocytes, through cold exposure in mice or in vitro adrenergic stimulation, is accompanied by a decrease in the intracellular content of glutathione (GSH). Moreover, the treatment with a GSH depleting agent, buthionine sulfoximine (BSO), recapitulates the effect of cold exposure resulting in the induction of thermogenic program. In particular, BSO treatment leads to enhanced uncoupling respiration as demonstrated by increased expression of thermogenic genes (e.g. Ucp1, Ppargc1a), augmented oxygen consumption and decreased mitochondrial transmembrane potential. Buffering GSH decrement by pre-treatment with GSH ester prevents the up-regulation of typical markers of uncoupling respiration. We demonstrate that FoxO1 activation is responsible for the conversion of white adipocytes into a brown phenotype as the "browning" effects of BSO are completely abrogated in cells down-regulating FoxO1. In mice, the BSO-mediated up-regulation of uncoupling genes results in weight loss that is at least in part ascribed to adipose tissue mass reduction. The induction of thermogenic program has been largely proposed to counteract obesity-related diseases. Based on these findings, we propose GSH as a novel therapeutic target to increase energy expenditure in adipocytes.


Asunto(s)
Adipocitos Blancos/metabolismo , Glutatión/metabolismo , Células 3T3-L1 , Tejido Adiposo Pardo/citología , Animales , Transdiferenciación Celular , Células Cultivadas , Epidídimo/citología , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/metabolismo , Grasa Intraabdominal/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Termogénesis
4.
Mediators Inflamm ; 2014: 917698, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24817795

RESUMEN

Ageing is characterized by the expansion and the decreased vascularization of visceral adipose tissue (vAT), disruption of metabolic activities, and decline of the function of the immune system, leading to chronic inflammatory states. We previously demonstrated that, in vAT of mice at early state of ageing, adipocytes mount a stress resistance response consisting in the upregulation of ATGL, which is functional in restraining the production of inflammatory cytokines. Here, we found that, in the late phase of ageing, such an adaptive response is impaired. In particular, 24-months-old mice and aged 3T3-L1 adipocytes display affected expression of ATGL and its downstream PPARα-mediated lipid signalling pathway, leading to upregulation of TNFα and IL-6 production. We show that the natural polyphenol compound resveratrol (RSV) efficiently suppresses the expression of TNFα and IL-6 in an ATGL/PPARα dependent manner. Actually, adipocytes downregulating ATGL do not show a restored PPARα expression and display elevated cytokines production. Overall the results obtained highlight a crucial function of ATGL in inhibiting age-related inflammation and reinforce the idea that RSV could represent a valid natural compound to limit the onset and/or the exacerbation of the age-related inflammatory states.


Asunto(s)
Citocinas/metabolismo , Lipasa/metabolismo , Estilbenos/farmacología , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , PPAR alfa/metabolismo , PPAR gamma/metabolismo , Resveratrol , Factor de Necrosis Tumoral alfa/metabolismo
5.
Antioxid Redox Signal ; 21(4): 570-87, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24684653

RESUMEN

AIMS: Nitric oxide (NO) production is implicated in muscle contraction, growth and atrophy, and in the onset of neuropathy. However, many aspects of the mechanism of action of NO are not yet clarified, mainly regarding its role in muscle wasting. Notably, whether NO production-associated neuromuscular atrophy depends on tyrosine nitration or S-nitrosothiols (SNOs) formation is still a matter of debate. Here, we aim at assessing this issue by characterizing the neuromuscular phenotype of S-nitrosoglutathione reductase-null (GSNOR-KO) mice that maintain the capability to produce NO, but are unable to reduce SNOs. RESULTS: We demonstrate that, without any sign of protein nitration, young GSNOR-KO mice show neuromuscular atrophy due to loss of muscle mass, reduced fiber size, and neuropathic behavior. In particular, GSNOR-KO mice show a significant decrease in nerve axon number, with the myelin sheath appearing disorganized and reduced, leading to a dramatic development of a neuropathic phenotype. Mitochondria appear fragmented and depolarized in GSNOR-KO myofibers and myotubes, conditions that are reverted by N-acetylcysteine treatment. Nevertheless, although atrogene transcription is induced, and bulk autophagy activated, no removal of damaged mitochondria is observed. These events, alongside basal increase of apoptotic markers, contribute to persistence of a neuropathic and myopathic state. INNOVATION: Our study provides the first evidence that GSNOR deficiency, which affects exclusively SNOs reduction without altering nitrotyrosine levels, results in a clinically relevant neuromuscular phenotype. CONCLUSION: These findings provide novel insights into the involvement of GSNOR and S-nitrosylation in neuromuscular atrophy and neuropathic pain that are associated with pathological states; for example, diabetes and cancer.


Asunto(s)
Glutatión Reductasa/deficiencia , Enfermedades Neuromusculares/genética , Enfermedades Neuromusculares/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Alcohol Deshidrogenasa , Animales , Apoptosis/genética , Atrofia , Autofagia/genética , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/metabolismo , Glutatión Reductasa/genética , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Factor 2 Relacionado con NF-E2/metabolismo , Óxido Nítrico/metabolismo , Oxidación-Reducción , Regeneración/genética , Tirosina/metabolismo
6.
Biochim Biophys Acta ; 1830(8): 4137-46, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23597778

RESUMEN

BACKGROUND: The transcription factor nuclear factor-erythroid-derived 2-like 2 (official symbol: NFE2L2, alias: Nrf2) is a master regulator of antioxidant defense system, which makes it an attractive target for manipulations that aim to increase cellular resistance to oxidative stress. Nuclear respiratory factor 2 or GA binding protein transcription factor alpha (official symbol: GABPA, alias: NRF2) functions as a transcription factor that activates the expression of some key metabolic genes regulating cellular growth and nuclear genes required for mitochondrial respiration as well as mitochondrial DNA transcription and replication. SCOPE OF REVIEW: Despite the evident structural and functional differences, confusion has occurred in bibliographic databases due to the shared symbol NRF2 for these transcription factors. Such confusion has worsened after the discovery that the transcriptional co-activator peroxisome proliferator activated receptor gamma co-activator 1 alpha (PGC-1α) could control the signaling pathway of both NFE2L2 and GABPA through distinct molecular mechanisms. This review will summarize the implications of NFE2L2 and GABPA in various human patho-physiological conditions and how PGC-1α can regulate their different signaling axis. MAJOR CONCLUSIONS: This review underlines the overlapping functions between PGC-1α, NFE2L2 and GABPA, which alteration could induce the development of human pathological states. GENERAL SIGNIFICANCE: The comprehension of molecular mechanisms that modulate the intersection between these proteins will be important to identify new signaling axis involved in lifespan extension as well as novel targets for therapeutic interventions.


Asunto(s)
Factor de Transcripción de la Proteína de Unión a GA/fisiología , Proteínas de Choque Térmico/fisiología , Factor 2 Relacionado con NF-E2/fisiología , Factores de Transcripción/fisiología , Animales , Humanos , Inflamación/metabolismo , Metabolismo de los Lípidos , Mitocondrias/fisiología , Neoplasias/metabolismo , Enfermedades Neurodegenerativas/prevención & control , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Control de Calidad , Transducción de Señal
7.
Biochem Pharmacol ; 85(3): 335-44, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23178651

RESUMEN

The peroxisome proliferator activated receptor gamma co-activator 1 alpha (PGC1α) is an inducible transcriptional co-activator with direct function in the induction of mitochondrial biogenesis. In the present report we show that, in SH-SY5Y neuroblastoma cells, garlic-derived diallyl disulfide (DADS) is able to increase PGC1α expression in a ROS-dependent manner and to induce mitochondrial biogenesis at early stage of treatment that precede cell cycle arrest and apoptosis outcome. In particular, we demonstrate that DADS elicits: i) the increase of PGC1α within nuclear compartment; ii) the decrease of PGC1α non-active acetylated form; iii) the induction of nuclear-encoded mitochondrial genes such as TFAM and TFBM1. We also show an accumulation of PGC1α within mitochondria along with an increased association with the regulatory D-Loop region of mtDNA and a concomitant augmented expression of mitochondrial RNA. Such events are related to a prompt elevation of mitochondrial mass, as assessed by evaluating the content of mtDNA. We show that the induction of mitochondrial biogenesis is directed to dampen the cytotoxic effect of DADS. Indeed, PGC1α overexpression or down-regulation prevents or exacerbates mtDNA loss and apoptosis. Overall the data highlight an anti-apoptotic role of PGC1α-mediated mitochondrial biogenesis in neuroblatoma cells and suggest PGC1α as a potential target for enhancing the effectiveness of therapy in aggressive neuroblastoma with high drug-resistance.


Asunto(s)
Compuestos Alílicos/farmacología , Disulfuros/farmacología , Ajo/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas de Choque Térmico/metabolismo , Neuroblastoma/metabolismo , Factores de Transcripción/metabolismo , Compuestos Alílicos/química , Línea Celular Tumoral , Supervivencia Celular , Disulfuros/química , Proteínas de Choque Térmico/genética , Humanos , Mitocondrias , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Especies Reactivas de Oxígeno , Factores de Transcripción/genética , Regulación hacia Arriba
8.
Antioxid Redox Signal ; 18(4): 386-99, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22861165

RESUMEN

AIMS: The transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator-1 α (PPARGC1A or PGC-1α) is a powerful controller of cell metabolism and assures the balance between the production and the scavenging of pro-oxidant molecules by coordinating mitochondrial biogenesis and the expression of antioxidants. However, even though a huge amount of data referring to the role of PGC-1α is available, the molecular mechanisms of its regulation at the transcriptional level are not completely understood. In the present report, we aim at characterizing whether the decrease of antioxidant glutathione (GSH) modulates PGC-1α expression and its downstream metabolic pathways. RESULTS: We found that upon GSH shortage, induced either by its chemical depletion or by metabolic stress (i.e., fasting), p53 binds to the PPARGC1A promoter of both human and mouse genes, and this event is positively related to increased PGC-1α expression. This effect was abrogated by inhibiting nitric oxide (NO) synthase or guanylate cyclase, implicating NO/cGMP signaling in such a process. We show that p53-mediated PGC-1α upregulation is directed to potentiate the antioxidant defense through nuclear factor (erythroid-derived 2)-like2 (NFE2L2)-mediated expression of manganese superoxide dismutase (SOD2) and γ-glutamylcysteine ligase without modulating mitochondrial biogenesis. INNOVATION AND CONCLUSIONS: We outlined a new NO-dependent signaling axis responsible for survival antioxidant response upon mild metabolic stress (fasting) and/or oxidative imbalance (GSH depletion). Such signaling axis could become the cornerstone for new pharmacological or dietary approaches for improving antioxidant response during ageing and human pathologies associated with oxidative stress.


Asunto(s)
Antioxidantes/metabolismo , Proteínas de Choque Térmico/metabolismo , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/fisiología , Adaptación Fisiológica , Animales , Apoptosis , Línea Celular , Inducción Enzimática , Glutamato-Cisteína Ligasa/genética , Glutamato-Cisteína Ligasa/metabolismo , Glutatión/deficiencia , Proteínas de Choque Térmico/genética , Humanos , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Óxido Nítrico/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Regiones Promotoras Genéticas , Unión Proteica , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Factores de Transcripción/genética , Transcripción Genética , Activación Transcripcional , Regulación hacia Arriba
9.
Biochem Pharmacol ; 83(10): 1349-57, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22342995

RESUMEN

Redox changes are often reported as causative of neoplastic transformation and chemoresistance, but are also exploited as clinical tools to selectively kill tumor cells. We previously demonstrated that gastrointestinal-derived tumor histotypes are resistant to ROS-based treatments by means of the redox activation of Nrf2, but highly sensitive to disulfide stressors triggering apoptosis via the redox induction of Trx1/p38(MAPK)/p53 signaling pathway. Here, we provide evidence that neuroblastoma SH-SY5Y has a complete opposite behavior, being sensitive to H2O2, but resistant to the glutathione (GSH)-oxidizing molecule diamide. Consistent with these observations, the apoptotic pathway activated upon H2O2 treatment relies upon Trx1 oxidation, and is mediated by the p38(MAPK)/p53 signaling axis. Pre-treatment with different antioxidants, pharmacological inhibitor of p38(MAPK), or small interfering RNA against p53 rescue cell viability. On the contrary, cell survival to diamide relies upon redox activation of Nrf2, in a way independent on Keap1 oxidation, but responsive to ERK1/2 activation. Chemical inhibition of GSH neo-synthesis or ERK1/2 phosphorylation, as well as overexpression of the dominant-negative form of Nrf2 sensitizes cells to diamide toxicity. In the searching for the molecular determinant(s) unifying these phenomena, we found that SH-SY5Y cells show high GSH levels, but exhibit very low GPx activity. This feature allows to efficiently buffer disulfide stress, but leaves them being vulnerable to H2O2-mediated insult. The increase of GPx activity by means of selenium supplementation or GPx1 ectopic expression completely reverses death phenotype, indicating that the response of tumor cells to diverse oxidative stimuli deeply involves the entire GSH redox system.


Asunto(s)
Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Línea Celular Tumoral , Diamida/farmacología , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Microscopía Fluorescente , Neuroblastoma/patología , Oxidación-Reducción
10.
Neurobiol Aging ; 33(4): 767-85, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20594614

RESUMEN

This study aims to elucidate the processes underlying neuroprotection of kaempferol in models of rotenone-induced acute toxicity. We demonstrate that kaempferol, but not quercetin, myricetin or resveratrol, protects SH-SY5Y cells and primary neurons from rotenone toxicity, as a reduction of caspases cleavage and apoptotic nuclei are observed. Reactive oxygen species (ROS) levels and mitochondrial carbonyls decrease significantly. Mitochondrial network, transmembrane potential and oxygen consumption are also deeply preserved. We demonstrate that the main event responsible for the kaempferol-mediated antiapoptotic and antioxidant effects is the enhancement of mitochondrial turnover by autophagy. Indeed, fluorescence and electron microscopy analyses show an increase of the mitochondrial fission rate and mitochondria-containing autophagosomes. Moreover, the autophagosome-bound microtubule-associated protein light chain-3 (LC3-II) increases during kaempferol treatment and chemical/genetic inhibitors of autophagy abolish kaempferol protective effects. Autophagy affords protection also toward other mitochondrial toxins (1-methyl-4-phenyilpiridinium, paraquat) used to reproduce the typical features of Parkinson's disease (PD), but is inefficient against apoptotic stimuli not directly affecting mitochondria (H(2)O(2), 6-hydroxydopamine, staurosporine). Striatal glutamatergic response of rat brain slices is also preserved by kaempferol, suggesting a more general protection of kaempferol in Parkinson's disease. Overall, the data provide further evidence for kaempferol to be identified as an autophagic enhancer with potential therapeutic capacity.


Asunto(s)
Autofagia/efectos de los fármacos , Insecticidas/farmacología , Quempferoles/farmacología , Fármacos Neuroprotectores/farmacología , Rotenona/farmacología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Maleato de Dizocilpina/farmacología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Estimulación Eléctrica , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Técnicas In Vitro , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Microscopía Electrónica de Transmisión , Proteínas Asociadas a Microtúbulos/metabolismo , Neuroblastoma/patología , Neuroblastoma/ultraestructura , Consumo de Oxígeno/efectos de los fármacos , Carbonilación Proteica/efectos de los fármacos , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo , Transfección
11.
Antioxid Redox Signal ; 15(3): 593-606, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21366409

RESUMEN

AIM: The aim of this study was to determine whether GSH-C4, a hydrophobic glutathione derivative, affects in vitro and in vivo influenza virus infection by interfering with redox-sensitive intracellular pathways involved in the maturation of viral hemagglutinin (HA). RESULTS: GSH-C4 strongly inhibited influenza A virus replication in cultured cells and in lethally infected mice, where it also reduced lung damage and mortality. In cell-culture studies, GSH-C4 arrested viral HA folding; the disulfide-rich glycoprotein remained in the endoplasmic reticulum as a reduced monomer instead of undergoing oligomerization and cell plasma-membrane insertion. HA maturation depends on the host-cell oxidoreductase, protein disulfide isomerase (PDI), whose activity in infected cells is probably facilitated by virus-induced glutathione depletion. By correcting this deficit, GSH-C4 increased levels of reduced PDI and inhibited essential disulfide bond formation in HA. Host-cell glycoprotein expression in uninfected cells was unaffected by glutathione, which thus appears to act exclusively on glutathione-depleted cells. INNOVATION: All currently approved anti-influenza drugs target essential viral structures, and their efficacy is limited by toxicity and by the almost inevitable selection of drug-resistant viral mutants. GSH-C4 inhibits influenza virus replication by modulating redox-sensitive pathways in infected cells, without producing toxicity in uninfected cells or animals. Novel anti-influenza drugs that target intracellular pathways essential for viral replication ("cell-based approach") offer two important potential advantages: they are more difficult for the virus to adapt to and their efficacy should not be dependent on virus type, strain, or antigenic properties. CONCLUSION: Redox-sensitive host-cell pathways exploited for viral replication are promising targets for effective anti-influenza strategies.


Asunto(s)
Glutatión/análogos & derivados , Hemaglutininas Virales/metabolismo , Virus de la Influenza A/efectos de los fármacos , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Animales , Línea Celular , Modelos Animales de Enfermedad , Disulfuros/química , Perros , Femenino , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/metabolismo , Oxidación-Reducción , Proteína Disulfuro Isomerasas/metabolismo , Pliegue de Proteína/efectos de los fármacos , Replicación Viral/efectos de los fármacos
12.
Int J Biochem Cell Biol ; 43(1): 163-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21056687

RESUMEN

In this report we demonstrate that neuronal nitric oxide synthase (nNOS) is able to interact with Sp1 both in vivo and in vitro. In particular, we show that such interaction is mediated by the N-terminal PDZ domain of full length nNOS (fl-nNOS). In fact nNOS mutant lacking the PDZ domain (ΔnNOS) displays an impaired ability to bind to Sp1, as demonstrated by co-immunoprecipitation experiments. The overexpression of fl-nNOS in SH-SY5Y cells leads to the formation of nNOS/Sp1 heterocomplex and inhibits the binding of Sp1 to DNA. Among the Sp1 target genes we looked at the possible alteration of binding to copper-zinc superoxide dismutase gene (sod1) promoter. We find that the interaction of nNOS with Sp1 leads to a significant decrease of SOD1 mRNA, protein level and activity. The overexpression of ΔnNOS results in an inability to sequester Sp1 and unaffected Sp1 DNA binding capacity, allowing sod1 to be expressed. The data reported give effort to the possible involvement of nNOS in regulating gene transcription in NO-independent manner giving an additional significance to the expression of specific nNOS splicing variants.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Inmunoglobulinas , Óxido Nítrico Sintasa de Tipo I , Superóxido Dismutasa , Animales , Cobre/metabolismo , Regulación Enzimológica de la Expresión Génica/genética , Humanos , Inmunoglobulinas/genética , Inmunoglobulinas/metabolismo , Inmunoprecipitación , Ratones , Neuronas/metabolismo , Óxido Nítrico/análisis , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , Dominios PDZ/genética , Unión Proteica/genética , ARN Mensajero/análisis , ARN Mensajero/biosíntesis , Ratas , Superóxido Dismutasa/antagonistas & inhibidores , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Células Tumorales Cultivadas , Zinc/metabolismo
13.
Biochem J ; 430(3): 439-51, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20590525

RESUMEN

BH4 (tetrahydrobiopterin) induces neuronal demise via production of ROS (reactive oxygen species). In the present study we investigated the mechanisms of its toxicity and the redox signalling events responsible for the apoptotic commitment in SH-SY5Y neuroblastoma cells and in mouse primary cortical neurons. We identified in p38(MAPK)/p53 a BH4-responsive pro-apoptotic signalling axis, as demonstrated by the recovery of neuronal viability achieved by gene silencing or pharmacological inhibition of both p38(MAPK) and p53. BH4-induced oxidative stress was characterized by a decrease in the GSH/GSSG ratio, an increase in protein carbonylation and DNA damage. BH4 toxicity and the redox-activated apoptotic pathway were counteracted by the H2O2-scavengers catalase and N-acetylcysteine and enhanced by the GSH neo-synthesis inhibitor BSO (buthionine sulfoximine). We also demonstrated that BH4 impairs glucose uptake and utilization, which was prevented by catalase administration. This effect contributes to the neuronal demise, exacerbating BH4-induced nuclear damage and the activation of the pro-apoptotic p38(MAPK)/p53 axis. Inhibition of glucose uptake was also observed upon treatment with 6-hydroxydopamine, another redox-cycling molecule, suggesting a common mechanism of action for auto-oxidizable neurotoxins.


Asunto(s)
Apoptosis/efectos de los fármacos , Glucosa/metabolismo , Neuronas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Western Blotting , Caspasas/metabolismo , Línea Celular Tumoral , Células Cultivadas , Glucosa/farmacocinética , Glucólisis/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Neuronas/citología , Neuronas/metabolismo , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética
14.
Autophagy ; 6(2): 202-16, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20083895

RESUMEN

Kaempferol, a dietary cancer chemopreventive polyphenol, has been reported to trigger apoptosis in several tumor histotypes, but the mechanism underlying this phenomenon is not fully understood. Here, we demonstrate that in HeLa cells, kaempferol induces energetic failure due to inhibition of both glucose uptake and Complex I of the mitochondrial respiratory chain. As adaptive response, cells activate autophagy, the occurrence of which was established cytofluorometrically, upon acridine orange staining, and immunochemically, by following the increase of the autolysosome-associated form of the microtubule-associated protein light chain 3 (LC3-II). Autophagy is an early and reversible process occurring as survival mechanisms against apoptosis. Indeed, chemical inhibition of autophagy, by incubations with monensin, wortmannin, 3-methyladenine, or by silencing Atg5, significantly increases the extent of apoptosis, which takes place via the mitochondrial pathway, and shortens the time in which the apoptotic markers are detectable. We also demonstrate that autophagy depends on the early activation of the AMP-activated protein kinase (AMPK)/mTOR-mediated pathway. The overexpression of dominant negative AMPK results in a decrease of autophagic cells, a decrement of LC3-II levels, and a significant increase of apoptosis. Experiments performed with another carcinoma cell line yielded the same results, suggesting for kaempferol a unique mechanism of action.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia/fisiología , Supervivencia Celular , Metabolismo Energético/efectos de los fármacos , Quempferoles/farmacología , Proteínas Quinasas Activadas por AMP/genética , Proliferación Celular/efectos de los fármacos , Respiración de la Célula/efectos de los fármacos , Activación Enzimática , Glucosa/metabolismo , Células HeLa/efectos de los fármacos , Células HeLa/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mitocondrias/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Serina-Treonina Quinasas TOR
15.
J Cell Mol Med ; 14(3): 564-77, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19040422

RESUMEN

Garlic organosulphur compounds have been successfully used as redox anti-proliferative agents. In this work, we dissect the effects of diallyl disulphide (DADS) focusing on the events upstream of cell cycle arrest and apoptosis induced in neuroblastoma SH-SY5Y cells. We demonstrate that DADS is able to cause early morphological changes, cytoskeleton oxidation, microfilaments reduction and depolymerization of microtubules. These events are attenuated in cells stably overexpressing the antioxidant enzyme SOD1, suggesting that superoxide plays a crucial role in destabilizing cytoskeleton. Moreover, we evidence that the main microtubules-associated protein Tau undergoes PP1-mediated dephosphorylation as demonstrated by treatment with okadaic acid as well as by immunoreaction with anti-Tau-1 antibody, which specifically recognizes its dephosphorylated forms. Tau dephosphorylation is inhibited by the two-electron reductants NAC and GSH ester but not by SOD1. The inability of DADS to induce apoptosis in neuroblastoma-differentiated cells gives emphasis to the anti-proliferative activity of DADS, which can be regarded as a promising potent anti-neuroblastoma drug by virtue of its widespread cytoskeleton disrupting action on proliferating cells.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Compuestos Alílicos/farmacología , Proliferación Celular/efectos de los fármacos , Disulfuros/farmacología , Proteínas tau/metabolismo , Western Blotting , Línea Celular Tumoral , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Células HeLa , Humanos , Microscopía Fluorescente , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patología , Fosforilación/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Superóxidos/metabolismo
16.
J Biol Chem ; 284(40): 27721-33, 2009 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-19643729

RESUMEN

We have investigated the role of reactive oxygen species and thiol-oxidizing agents in the induction of cell death and have shown that adenocarcinoma gastric (AGS) cells respond differently to the oxidative challenge according to the signaling pathways activated. In particular, apoptosis in AGS cells is induced via the mitochondrial pathway upon treatment with thiol-oxidizing agents, such as diamide. Apoptosis is associated with persistent oxidative damage, as evidenced by the increase in carbonylated proteins and the expression/activation of DNA damage-sensitive proteins histone H2A.X and DNA-dependent protein kinase. Resistance to hydrogen peroxide is instead associated with Keap1 oxidation and rapid translocation of Nrf2 into the nucleus. Sensitivity to diamide and resistance to hydrogen peroxide are correlated with GSH redox changes, with diamide severely increasing GSSG, and hydrogen peroxide transiently inducing protein-GSH mixed disulfides. We show that p53 is activated in response to diamide treatment by the oxidative induction of the Trx1/p38(MAPK) signaling pathway. Similar results were obtained with another carcinoma cell line, CaCo2, indicating that these findings are not limited to AGS cells. Our data suggest that thiol-oxidizing agents could be exploited as inducers of apoptosis in tumor histotypes resistant to ROS-producing chemotherapeutics.


Asunto(s)
Adenocarcinoma/patología , Apoptosis , Factor 2 Relacionado con NF-E2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Diamida/farmacología , Humanos , Peróxido de Hidrógeno/farmacología , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Fosforilación/efectos de los fármacos , Transducción de Señal , Especificidad por Sustrato , Tiorredoxinas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
17.
Carcinogenesis ; 30(7): 1115-24, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19406932

RESUMEN

We previously demonstrated that Bis[(2-oxindol-3-ylimino)-2-(2-aminoethyl)pyridine-N,N']copper(II) [Cu(isaepy)(2)] was an efficient inducer of the apoptotic mitochondrial pathway. Here, we deeply dissect the mechanisms underlying the ability of Cu(isaepy)(2) to cause mitochondriotoxicity. In particular, we demonstrate that Cu(isaepy)(2) increases NADH-dependent oxygen consumption of isolated mitochondria and that this phenomenon is associated with oxy-radical production and insensitive to adenosine diphosphate. These data indicate that Cu(isaepy)(2) behaves as an uncoupler and this property is also confirmed in cell systems. Particularly, SH-SY5Y cells show: (i) an early loss of mitochondrial transmembrane potential; (ii) a decrease in the expression levels of respiratory complex components and (iii) a significant adenosine triphosphate (ATP) decrement. The causative energetic impairment mediated by Cu(isaepy)(2) in apoptosis is confirmed by experiments carried out with rho(0) cells, or by glucose supplementation, where cell death is significantly inhibited. Moreover, gastric and cervix carcinoma AGS and HeLa cells, which rely most of their ATP production on oxidative phosphorylation, show a marked sensitivity toward Cu(isaepy)(2). Adenosine monophosphate-activated protein kinase (AMPK), which is activated by events increasing the adenosine monophosphate:ATP ratio, is deeply involved in the apoptotic process because the overexpression of its dominant/negative form completely abolishes cell death. Upon glucose supplementation, AMPK is not activated, confirming its role as fuel-sensing enzyme that positively responds to Cu(isaepy)(2)-mediated energetic impairment by committing cells to apoptosis. Overall, data obtained indicate that Cu(isaepy)(2) behaves as delocalized lipophilic cation and induces mitochondrial-sited reactive oxygen species production. This event results in mitochondrial dysfunction and ATP decrease, which in turn triggers AMPK-dependent apoptosis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Compuestos Organometálicos/farmacología , Bases de Schiff/farmacología , Adenosina Trifosfato/metabolismo , Cationes , Línea Celular Tumoral , Glucosa/metabolismo , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/fisiología , Estrés Oxidativo/efectos de los fármacos , Oxindoles , Consumo de Oxígeno/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
18.
J Biol Chem ; 284(23): 16004-15, 2009 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-19336399

RESUMEN

Previous reports have shown that various steps in the influenza A virus life cycle are impaired in cells expressing the antiapoptotic protein Bcl-2 (Bcl-2(+) cells). We demonstrated a direct link between Bcl-2 and the reduced nuclear export of viral ribonucleoprotein (vRNP) complexes in these cells. However, despite its negative impact on viral replication, Bcl-2 did not prevent host cells from undergoing virally triggered apoptosis. The protein's reduced antiapoptotic capacity was related to phosphorylation of its threonine 56 and serine 87 residues by virally activated p38MAPK. In infected Bcl-2(+) cells, activated p38MAPK was found predominantly in the cytoplasm, colocalized with Bcl-2, and both Bcl-2 phosphorylation and virally induced apoptosis were diminished by specific inhibition of p38MAPK activity. In contrast, in Bcl-2-negative (Bcl-2(-)) cells, which are fully permissive to viral infection, p38MAPK activity was predominantly nuclear, and its inhibition decreased vRNP traffic, phosphorylation of viral nucleoprotein, and virus titers in cell supernatants, suggesting that this kinase also contributes to the regulation of vRNP export and viral replication. This could explain why in Bcl-2(+) cells, where p38MAPK is active in the cytoplasm, phosphorylating Bcl-2, influenza viral replication is substantially reduced, whereas apoptosis proceeds at rates similar to those observed in Bcl-2(-) cells. Our findings suggest that the impact of p38MAPK on the influenza virus life cycle and the apoptotic response of host cells to infection depends on whether or not the cells express Bcl-2, highlighting the possibility that the pathological effects of the virus are partly determined by the cell type it targets.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/fisiología , Riñón/fisiología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Apoptosis , Línea Celular , Cartilla de ADN , Perros , Regulación hacia Abajo , Humanos , Estadios del Ciclo de Vida , Plásmidos , Reacción en Cadena de la Polimerasa , ARN Interferente Pequeño/genética , Transfección , Replicación Viral
19.
J Nutr ; 138(11): 2053-7, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18936196

RESUMEN

Much evidence in the last few years suggests that the antiproliferative effects of various garlic secondary metabolites in in vitro experimental systems are due to redox-based mechanisms. In particular, sulfur-containing allyl compounds have been demonstrated to generate reactive oxygen species and to modify directly the redox state of specific reactive cysteines on protein surfaces. On the basis of such properties, allyl compounds, in particular the ones present in the oil-soluble fraction of garlic extracts, can function as modulators of several redox-mediated signaling pathways related to the activation of mitogen-activated protein kinases, cell cycle, DNA repair, and cell demise. However, even though many in vitro studies have tried to dissect the mechanisms of action of garlic derivatives, research in this field is still incomplete and questions about bioavailability, biotransformation, and pro-oxidant activity are still unanswered. This review discusses recent findings on such aspects, focusing on the chemistry of allyl compounds and their preferential cellular targets as well as on related nutritional aspects.


Asunto(s)
Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Ajo/química , Transducción de Señal/fisiología , Oxidación-Reducción
20.
Mol Pharmacol ; 74(5): 1234-45, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18676676

RESUMEN

Sodium nitroprusside (SNP) is a water-soluble iron nitrosyl complex clinically used as a powerful vasodilator for treatment of hypertension; and, in basic research, it has been used to mainly investigate the cytotoxic effects of nitrosative stress. Although NO is considered a pharmacologically active molecule, not all of the biological effects of SNP are dependent on its NO moiety. To elucidate the molecular executioner(s) responsible for SNP cytotoxicity, this study determines the involvement of oxidative stress in p53 activation and apoptotic induction elicited by SNP in SH-SY5Y neuroblastoma cells. We demonstrate that proapoptotic activity of SNP is independent of NO production, because SNP and its 2-day light-exhausted compound SNP(ex) trigger apoptosis to the same extent. We provide evidence for the occurrence of oxidative stress and oxidative damage during both SNP and SNP(ex) exposure and demonstrate that iron-derived reactive oxygen species (ROS) are the genuine mediators of their cytotoxicity. We show that p53 is equally activated upon both SNP and SNP(ex) treatments. Moreover, as demonstrated by small interfering RNA experiments, we indicate its primary role in the induction of apoptosis, suggesting the ineffectiveness of NO in its engagement. The attenuation of p53 levels, obtained by oxy-radical scavengers, is consistent with the recovery of cell viability and ROS decrease, demonstrate that SNP-mediated p53 activation is an event triggered by ROS and/or ROS-mediated damages. Together, our results suggest that investigations of the physiopathological effects of SNP should consider the role of ROS, other than NO, particularly in some conditions such as apoptotic induction and p53 activation.


Asunto(s)
Apoptosis/efectos de los fármacos , Neuroblastoma/patología , Nitroprusiato/farmacología , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Secuencia de Bases , Western Blotting , Ferricianuros/farmacología , Microscopía Fluorescente , Células PC12 , ARN Interferente Pequeño , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA