Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Rep ; 9(1): 11939, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31481674

RESUMEN

The metabolome of World Trade Center (WTC) particulate matter (PM) exposure has yet to be fully defined and may yield information that will further define bioactive pathways relevant to lung injury. A subset of Fire Department of New York firefighters demonstrated resistance to subsequent loss of lung function. We intend to characterize the metabolome of never smoking WTC-exposed firefighters, stratified by resistance to WTC-Lung Injury (WTC-LI) to determine metabolite pathways significant in subjects resistant to the loss of lung function. The global serum metabolome was determined in those resistant to WTC-LI and controls (n = 15 in each). Metabolites most important to class separation (top 5% by Random Forest (RF) of 594 qualified metabolites) included elevated amino acid and long-chain fatty acid metabolites, and reduced hexose monophosphate shunt metabolites in the resistant cohort. RF using the refined metabolic profile was able to classify cases and controls with an estimated success rate of 93.3%, and performed similarly upon cross-validation. Agglomerative hierarchical clustering identified potential influential pathways of resistance to the development of WTC-LI. These pathways represent potential therapeutic targets and warrant further research.


Asunto(s)
Resistencia a la Enfermedad , Volumen Espiratorio Forzado/fisiología , Lesión Pulmonar/sangre , Metaboloma , Material Particulado/toxicidad , Ataques Terroristas del 11 de Septiembre , Adulto , Aminoácidos/sangre , Biomarcadores/sangre , Estudios de Casos y Controles , Susceptibilidad a Enfermedades , Ácidos Grasos/sangre , Femenino , Bomberos , Humanos , Pulmón , Lesión Pulmonar/etiología , Lesión Pulmonar/inmunología , Lesión Pulmonar/fisiopatología , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Ciudad de Nueva York , Exposición Profesional/efectos adversos , Vía de Pentosa Fosfato
2.
PLoS One ; 8(11): e80649, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24260444

RESUMEN

HAMLET and ELOA are complexes consisting of oleic acid and two homologous, yet functionally different, proteins with cytotoxic activities against mammalian cells, with HAMLET showing higher tumor cells specificity, possibly due to the difference in propensity for oleic acid binding, as HAMLET binds 5-8 oleic acid molecules per protein molecule and ELOA binds 11-48 oleic acids. HAMLET has been shown to possess bactericidal activity against a number of bacterial species, particularly those with a respiratory tropism, with Streptococcus pneumoniae displaying the greatest degree of sensitivity. We show here that ELOA also displays bactericidal activity against pneumococci, which at lower concentrations shows mechanistic similarities to HAMLET's bactericidal activity. ELOA binds to S. pneumoniae and causes perturbations of the plasma membrane, including depolarization and subsequent rupture, and activates an influx of calcium into the cells. Selective inhibition of calcium channels and sodium/calcium exchange activity significantly diminished ELOA's bactericidal activity, similar to what we have observed with HAMLET. Finally, ELOA-induced death was also accompanied by DNA fragmentation into high molecular weight fragments - an apoptosis-like morphological phenotype that is seen during HAMLET-induced death. Thus, in contrast to different mechanisms of eukaryote cell death induced by ELOA and HAMLET, these complexes are characterized by rather similar activities towards bacteria. Although the majority of these events could be mimicked using oleic acid alone, the concentrations of oleic acid required were significantly higher than those present in the ELOA complex, and for some assays, the results were not identical between oleic acid alone and the ELOA complex. This indicates that the lipid, as a common denominator in both complexes, is an important component for the complexes' bactericidal activities, while the proteins are required both to solubilize and/or present the lipid at the bacterial membrane and likely to confer other and separate functions during the bacterial death.


Asunto(s)
Muramidasa/metabolismo , Muramidasa/farmacología , Ácido Oléico/metabolismo , Ácido Oléico/farmacología , Streptococcus pneumoniae/efectos de los fármacos , Animales , Transporte Biológico/efectos de los fármacos , Calcio/metabolismo , Membrana Celular/metabolismo , Fragmentación del ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Caballos , Iones/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Streptococcus pneumoniae/metabolismo
3.
PLoS One ; 8(5): e63158, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23650551

RESUMEN

HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a protein-lipid complex from human milk with both tumoricidal and bactericidal activities. HAMLET exerts a rather specific bactericidal activity against some respiratory pathogens, with highest activity against Streptococcus pneumoniae, but lacks activity against most other bacterial pathogens, including Staphylococci. Still, ion transport associated with death in S. pneumoniae is also detected to a lower degree in insensitive organisms. In this study we demonstrate that HAMLET acts as an antimicrobial adjuvant that can increase the activity of a broad spectrum of antibiotics (methicillin, vancomycin, gentamicin and erythromycin) against multi-drug resistant Staphylococcus aureus, to a degree where they become sensitive to those same antibiotics, both in antimicrobial assays against planktonic and biofilm bacteria and in an in vivo model of nasopharyngeal colonization. We show that HAMLET exerts these effects specifically by dissipating the proton gradient and inducing a sodium-dependent calcium influx that partially depolarizes the plasma membrane, the same mechanism induced during pneumococcal death. These effects results in an increased cell associated binding and/or uptake of penicillin, gentamicin and vancomycin, especially in resistant stains. Finally, HAMLET inhibits the increased resistance of methicillin seen under antibiotic pressure and the bacteria do not become resistant to the adjuvant, which is a major advantageous feature of the molecule. These results highlight HAMLET as a novel antimicrobial adjuvant with the potential to increase the clinical usefulness of antibiotics against drug resistant strains of S. aureus.


Asunto(s)
Antibacterianos/farmacología , Lactalbúmina/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Meticilina/farmacología , Ácidos Oléicos/farmacología , Animales , Antibacterianos/metabolismo , Biopelículas/efectos de los fármacos , Compuestos de Boro/metabolismo , Compuestos de Boro/farmacología , Señalización del Calcio , Sinergismo Farmacológico , Gentamicinas/farmacología , Potenciales de la Membrana/efectos de los fármacos , Resistencia a la Meticilina , Staphylococcus aureus Resistente a Meticilina/fisiología , Ratones , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Nasofaringe/microbiología , Penicilinas/metabolismo , Penicilinas/farmacología , Infecciones del Sistema Respiratorio/prevención & control , Infecciones Estafilocócicas/prevención & control , Desacopladores/farmacología , Vancomicina/metabolismo , Vancomicina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA