Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Intervalo de año de publicación
1.
Plant Commun ; 5(1): 100646, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37415333

RESUMEN

Gene cloning in repeat-rich polyploid genomes remains challenging. Here, we describe a strategy for overcoming major bottlenecks in cloning of the powdery mildew resistance gene (R-gene) Pm69 derived from tetraploid wild emmer wheat. A conventional positional cloning approach was not effective owing to suppressed recombination. Chromosome sorting was compromised by insufficient purity. A Pm69 physical map, constructed by assembling Oxford Nanopore Technology (ONT) long-read genome sequences, revealed a rapidly evolving nucleotide-binding leucine-rich repeat (NLR) R-gene cluster with structural variations. A single candidate NLR was identified by anchoring RNA sequencing reads from susceptible mutants to ONT contigs and was validated by virus-induced gene silencing. Pm69 is likely a newly evolved NLR and was discovered in only one location across the wild emmer wheat distribution range in Israel. Pm69 was successfully introgressed into cultivated wheat, and a diagnostic molecular marker was used to accelerate its deployment and pyramiding with other R-genes.


Asunto(s)
Genes de Plantas , Triticum , Triticum/genética , Genes de Plantas/genética , Mapeo Cromosómico , Clonación Molecular , Familia de Multigenes
2.
Methods Mol Biol ; 2581: 245-254, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36413322

RESUMEN

The timing and amplitude of plant signaling are frequently regulated through posttranslational modification of key signaling sectors, which facilitates rapid and flexible responses. Protein ubiquitination can serve as a degradation marker, influence subcellular localization, alter protein-protein interactions, and affect protein activity. Identification of polyubiquitinated proteins has been challenging due to their rapid degradation by the proteasome or removal of modifications by deubiquitination enzymes (DUBs). Tandem ubiquitin binding entities (TUBEs) are based on ubiquitin-associated domains and protect against both proteasomal degradation and DUBs. Here, we provide a protocol for purification of ubiquitinated plant proteins using TUBEs after transient expression in Nicotiana benthamiana. This protocol can also be applied to other plants to purify multiple ubiquitinated proteins or track ubiquitination of a target protein. This methodology provides an effective method for identification of ubiquitin ligase substrates and can be coupled with TUBEs targeting specific ubiquitination linkages.


Asunto(s)
Receptores Quiméricos de Antígenos , Proteínas Ubiquitinadas , Proteínas de Plantas , Ubiquitina , Ubiquitinación , Complejo de la Endopetidasa Proteasomal
3.
Mol Plant Microbe Interact ; 35(12): 1067-1080, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35952362

RESUMEN

Climate change is predicted to increase the prevalence of vector-borne disease due to expansion of insect populations. 'Candidatus Liberibacter solanacearum' is a phloem-limited pathogen associated with multiple economically important diseases in solanaceous crops. Little is known about the strategies and pathogenicity factors 'Ca. L. solanacearum' uses to colonize its vector and host. We determined the 'Ca. L. solanacearum' effector repertoire by predicting proteins secreted by the general secretory pathway across four different 'Ca. L. solanacearum' haplotypes, investigated effector localization in planta, and profiled effector expression in the vector and host. The localization of 'Ca. L. solanacearum' effectors in Nicotiana spp. revealed diverse eukaryotic subcellular targets. The majority of tested effectors were unable to suppress plant immune responses, indicating they possess unique activities. Expression profiling in tomato and the psyllid Bactericera cockerelli indicated 'Ca. L. solanacearum' differentially interacts with its host and vector and can switch effector expression in response to these environments. This study reveals 'Ca. L. solanacearum' effectors possess complex expression patterns, target diverse host organelles and the majority are unable to suppress host immune responses. A mechanistic understanding of 'Ca. L. solanacearum' effector function will reveal novel targets and provide insight into phloem biology. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Hemípteros , Rhizobiaceae , Animales , Rhizobiaceae/fisiología , Hemípteros/microbiología , Liberibacter , Enfermedades de las Plantas/microbiología
4.
Mol Plant Microbe Interact ; 34(9): 1001-1009, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34110257

RESUMEN

ER bodies are endoplasmic reticulum-derived organelles present in plants belonging to the Brassicales order. In Arabidopsis thaliana, ER bodies are ubiquitous in cotyledons and roots and are present only in certain cell types in rosette leaves. However, both wounding and jasmonic acid treatment induce the formation of ER bodies in leaves. Formation of this structure is dependent on the transcription factor NAI1. The main components of the ER bodies are ß-glucosidases (BGLUs), enzymes that hydrolyze specialized compounds. In Arabidopsis, PYK10 (BGLU23) and BGLU18 are the most abundant ER body proteins. In this work, we found that ER bodies are downregulated as a consequence of the immune responses induced by bacterial flagellin perception. Arabidopsis mutants defective in ER body formation show enhanced responses upon flagellin perception and enhanced resistance to bacterial infections. Furthermore, the bacterial toxin coronatine induces the formation of de novo ER bodies in leaves and its virulence function is partially dependent on this structure. Finally, we show that performance of the polyphagous beet armyworm herbivore Spodoptera exigua increases in plants lacking ER bodies. Altogether, we provide new evidence for the role of the ER bodies in plant immune responses.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Retículo Endoplásmico , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo , Pseudomonas syringae/metabolismo
5.
Nat Plants ; 7(4): 403-412, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33846592

RESUMEN

Reactive oxygen species (ROS) are essential for life and are involved in the regulation of almost all biological processes. ROS production is critical for plant development, response to abiotic stresses and immune responses. Here, we focus on recent discoveries in ROS biology emphasizing abiotic and biotic stress responses. Recent advancements have resulted in the identification of one of the first sensors for extracellular ROS and highlighted waves of ROS production during stress signalling in Arabidopsis. Enzymes that produce ROS, including NADPH oxidases, exhibit precise regulation through diverse post-translational modifications. Discoveries highlight the importance of both amino- and carboxy-terminal regulation of NADPH oxidases through protein phosphorylation and cysteine oxidation. Here, we discuss advancements in ROS compartmentalization, systemic ROS waves, ROS sensing and post-translational modification of ROS-producing enzymes and identify areas where foundational gaps remain.


Asunto(s)
Arabidopsis/fisiología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Estrés Fisiológico , Arabidopsis/enzimología
6.
Plant Cell ; 33(6): 2015-2031, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-33751120

RESUMEN

Acquisition of nutrients from different species is necessary for pathogen colonization. Iron is an essential mineral nutrient for nearly all organisms, but little is known about how pathogens manipulate plant hosts to acquire iron. Here, we report that AvrRps4, an effector protein delivered by Pseudomonas syringae bacteria to plants, interacts with and targets the plant iron sensor protein BRUTUS (BTS) to facilitate iron uptake and pathogen proliferation in Arabidopsis thaliana. Infection of rps4 and eds1 by P. syringae pv. tomato (Pst) DC3000 expressing AvrRps4 resulted in iron accumulation, especially in the plant apoplast. AvrRps4 alleviates BTS-mediated degradation of bHLH115 and ILR3(IAA-Leucine resistant 3), two iron regulatory proteins. In addition, BTS is important for accumulating immune proteins Enhanced Disease Susceptibility1 (EDS1) at both the transcriptional and protein levels upon Pst (avrRps4) infections. Our findings suggest that AvrRps4 targets BTS to facilitate iron accumulation and BTS contributes to RPS4/EDS1-mediated immune responses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno/fisiología , Hierro/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Proteínas Bacterianas/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Inmunidad de la Planta/genética , Plantas Modificadas Genéticamente , Pseudomonas syringae/metabolismo , Pseudomonas syringae/patogenicidad , Ubiquitina-Proteína Ligasas/genética
7.
Plant Physiol ; 184(2): 792-805, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32759268

RESUMEN

Citrus Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (Las), is one of the most destructive citrus diseases worldwide, yet how Las causes HLB is poorly understood. Here we show that a Las-secreted protein, SDE15 (CLIBASIA_04025), suppresses plant immunity and promotes Las multiplication. Transgenic expression of SDE15 in Duncan grapefruit (Citrus × paradisi) suppresses the hypersensitive response induced by Xanthomonas citri ssp. citri (Xcc) and reduces the expression of immunity-related genes. SDE15 also suppresses the hypersensitive response triggered by the Xanthomonas vesicatoria effector protein AvrBsT in Nicotiana benthamiana, suggesting that it may be a broad-spectrum suppressor of plant immunity. SDE15 interacts with the citrus protein CsACD2, a homolog of Arabidopsis (Arabidopsis thaliana) ACCELERATED CELL DEATH 2 (ACD2). SDE15 suppression of plant immunity is dependent on CsACD2, and overexpression of CsACD2 in citrus suppresses plant immunity and promotes Las multiplication, phenocopying overexpression of SDE15. Identification of CsACD2 as a susceptibility target has implications in genome editing for novel plant resistance against devastating HLB.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/fisiología , Proteínas de Arabidopsis/fisiología , Proteínas Bacterianas/fisiología , Citrus sinensis/inmunología , Interacciones Huésped-Patógeno/inmunología , Liberibacter/fisiología , Oxidorreductasas/fisiología , Proteínas Bacterianas/aislamiento & purificación , Citrus sinensis/metabolismo , Inmunidad de la Planta , Plantas Modificadas Genéticamente
8.
Mol Plant Microbe Interact ; 33(2): 308-319, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31556346

RESUMEN

Nucleotide-binding leucine-rich repeat receptors (NLRs) are the most abundant type of immune receptors in plants and can trigger a rapid cell-death (hypersensitive) response upon sensing pathogens. We previously cloned the wheat NLR Sr35, which encodes a coiled-coil (CC) NLR that confers resistance to the virulent wheat stem rust race Ug99. Here, we investigated Sr35 signaling after Agrobacterium-mediated transient expression in Nicotiana benthamiana. Expression of Sr35 in N. benthamiana leaves triggered a mild cell-death response, which is enhanced in the autoactive mutant Sr35 D503V. The N-terminal tagging of Sr35 with green fluorescent protein (GFP) blocked the induction of cell death, whereas a C-terminal GFP tag did not. No domain truncations of Sr35 generated cell-death responses as strong as the wild type, but a truncation including the NB-ARC (nucleotide binding adaptor) shared by APAF-1, R proteins, and CED-4 domains in combination with the D503V autoactive mutation triggered cell death. In addition, coexpression of Sr35 with the matching pathogen effector protein AvrSr35 resulted in robust cell death and electrolyte leakage levels that were similar to autoactive Sr35 and significantly higher than Sr35 alone. Coexpression of Sr35-CC-NB-ARC and AvrSr35 did not induce cell death, confirming the importance of the leucine-rich repeat (LRR) domain for AvrSr35 recognition. These findings were confirmed through Agrobacterium-mediated transient expression in barley. Taken together, these results implicate the CC-NB-ARC domains of Sr35 in inducing cell death and the LRR domain in AvrSr35 recognition.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Muerte Celular , Resistencia a la Enfermedad , Triticum , Muerte Celular/genética , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Triticum/genética , Triticum/microbiología
9.
New Phytol ; 221(4): 2160-2175, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30300945

RESUMEN

Plant immunity consists of two arms: pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), induced by surface-localized receptors, and effector-triggered immunity (ETI), induced by intracellular receptors. Despite the little structural similarity, both receptor types activate similar responses with different dynamics. To better understand phosphorylation events during ETI, we employed a phosphoproteomic screen using an inducible expression system of the bacterial effector avrRpt2 in Arabidopsis thaliana, and identified 109 differentially phosphorylated residues of membrane-associated proteins on activation of the intracellular RPS2 receptor. Interestingly, several RPS2-regulated phosphosites overlap with sites that are regulated during PTI, suggesting that these phosphosites may be convergent points of both signaling arms. Moreover, some of these sites are residues of important defense components, including the NADPH oxidase RBOHD, ABC-transporter PEN3, calcium-ATPase ACA8, noncanonical Gα protein XLG2 and H+ -ATPases. In particular, we found that S343 and S347 of RBOHD are common phosphorylation targets during PTI and ETI. Our mutational analyses showed that these sites are required for the production of reactive oxygen species during both PTI and ETI, and immunity against avirulent bacteria and a virulent necrotrophic fungus. We provide, for the first time, large-scale phosphoproteomic data of ETI, thereby suggesting crucial roles of common phosphosites in plant immunity.


Asunto(s)
Arabidopsis/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Fosfoproteínas/metabolismo , Inmunidad de la Planta , Proteómica , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/metabolismo , Autoinmunidad/genética , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Fenotipo , Fosforilación , Inmunidad de la Planta/genética , ATPasas de Translocación de Protón/metabolismo , Pseudomonas syringae/fisiología , Especies Reactivas de Oxígeno/metabolismo , Virulencia
10.
Nat Commun ; 9(1): 1718, 2018 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-29712915

RESUMEN

The citrus industry is facing an unprecedented challenge from Huanglongbing (HLB). All cultivars can be affected by the HLB-associated bacterium 'Candidatus Liberibacter asiaticus' (CLas) and there is no known resistance. Insight into HLB pathogenesis is urgently needed in order to develop effective management strategies. Here, we use Sec-delivered effector 1 (SDE1), which is conserved in all CLas isolates, as a molecular probe to understand CLas virulence. We show that SDE1 directly interacts with citrus papain-like cysteine proteases (PLCPs) and inhibits protease activity. PLCPs are defense-inducible and exhibit increased protein accumulation in CLas-infected trees, suggesting a role in citrus defense responses. We analyzed PLCP activity in field samples, revealing specific members that increase in abundance but remain unchanged in activity during infection. SDE1-expressing transgenic citrus also exhibit reduced PLCP activity. These data demonstrate that SDE1 inhibits citrus PLCPs, which are immune-related proteases that enhance defense responses in plants.


Asunto(s)
Citrus/microbiología , Proteasas de Cisteína/genética , Inhibidores de Cisteína Proteinasa/metabolismo , Evasión Inmune , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/antagonistas & inhibidores , Rhizobiaceae/patogenicidad , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Citrus/clasificación , Citrus/genética , Citrus/inmunología , Proteasas de Cisteína/inmunología , Inhibidores de Cisteína Proteinasa/química , Regulación de la Expresión Génica , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Rhizobiaceae/genética , Factores de Virulencia/biosíntesis , Factores de Virulencia/genética
11.
Plant Cell ; 29(7): 1555-1570, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28600390

RESUMEN

To cause disease, diverse pathogens deliver effector proteins into host cells. Pathogen effectors can inhibit defense responses, alter host physiology, and represent important cellular probes to investigate plant biology. However, effector function and localization have primarily been investigated after overexpression in planta. Visualizing effector delivery during infection is challenging due to the plant cell wall, autofluorescence, and low effector abundance. Here, we used a GFP strand system to directly visualize bacterial effectors delivered into plant cells through the type III secretion system. GFP is a beta barrel that can be divided into 11 strands. We generated transgenic Arabidopsis thaliana plants expressing GFP1-10 (strands 1 to 10). Multiple bacterial effectors tagged with the complementary strand 11 epitope retained their biological function in Arabidopsis and tomato (Solanum lycopersicum). Infection of plants expressing GFP1-10 with bacteria delivering GFP11-tagged effectors enabled direct effector detection in planta. We investigated the temporal and spatial delivery of GFP11-tagged effectors during infection with the foliar pathogen Pseudomonas syringae and the vascular pathogen Ralstonia solanacearum Thus, the GFP strand system can be broadly used to investigate effector biology in planta.


Asunto(s)
Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno/fisiología , Imagen Molecular/métodos , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/patogenicidad , Arabidopsis/citología , Arabidopsis/genética , Proteínas Bacterianas/genética , Epítopos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/inmunología , Solanum lycopersicum/citología , Solanum lycopersicum/microbiología , Células Vegetales/microbiología , Enfermedades de las Plantas/inmunología , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Plantas Modificadas Genéticamente , Ralstonia/patogenicidad , Nicotiana/genética , Nicotiana/microbiología , Factores de Virulencia/metabolismo
12.
Plant Physiol ; 173(1): 771-787, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27852951

RESUMEN

Membrane-localized proteins perceive and respond to biotic and abiotic stresses. We performed quantitative proteomics on plasma membrane-enriched samples from Arabidopsis (Arabidopsis thaliana) treated with bacterial flagellin. We identified multiple receptor-like protein kinases changing in abundance, including cysteine (Cys)-rich receptor-like kinases (CRKs) that are up-regulated upon the perception of flagellin. CRKs possess extracellular Cys-rich domains and constitute a gene family consisting of 46 members in Arabidopsis. The single transfer DNA insertion lines CRK28 and CRK29, two CRKs induced in response to flagellin perception, did not exhibit robust alterations in immune responses. In contrast, silencing of multiple bacterial flagellin-induced CRKs resulted in enhanced susceptibility to pathogenic Pseudomonas syringae, indicating functional redundancy in this large gene family. Enhanced expression of CRK28 in Arabidopsis increased disease resistance to P. syringae Expression of CRK28 in Nicotiana benthamiana induced cell death, which required intact extracellular Cys residues and a conserved kinase active site. CRK28-mediated cell death required the common receptor-like protein kinase coreceptor BAK1. CRK28 associated with BAK1 as well as the activated FLAGELLIN-SENSING2 (FLS2) immune receptor complex. CRK28 self-associated as well as associated with the closely related CRK29. These data support a model where Arabidopsis CRKs are synthesized upon pathogen perception, associate with the FLS2 complex, and coordinately act to enhance plant immune responses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Cisteína/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Dominio Catalítico , Muerte Celular/inmunología , Membrana Celular/inmunología , Flagelina/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Pseudomonas syringae/patogenicidad , Especies Reactivas de Oxígeno/metabolismo , Nicotiana/citología , Nicotiana/genética
13.
Plant Physiol ; 171(3): 2223-38, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27208280

RESUMEN

To establish infection, pathogens deliver effectors into host cells to target immune signaling components, including elements of mitogen-activated protein kinase (MPK) cascades. The virulence function of AvrRpt2, one of the first identified Pseudomonas syringae effectors, involves cleavage of the plant defense regulator, RPM1-INTERACTING PROTEIN4 (RIN4), and interference with plant auxin signaling. We show now that AvrRpt2 specifically suppresses the flagellin-induced phosphorylation of Arabidopsis (Arabidopsis thaliana) MPK4 and MPK11 but not MPK3 or MPK6. This inhibition requires the proteolytic activity of AvrRpt2, is associated with reduced expression of some plant defense genes, and correlates with enhanced pathogen infection in AvrRpt2-expressing transgenic plants. Diverse AvrRpt2-like homologs can be found in some phytopathogens, plant-associated and soil bacteria. Employing these putative bacterial AvrRpt2 homologs and inactive AvrRpt2 variants, we can uncouple the inhibition of MPK4/MPK11 activation from the cleavage of RIN4 and related members from the so-called nitrate-induced family as well as from auxin signaling. Thus, this selective suppression of specific mitogen-activated protein kinases is independent of the previously known AvrRpt2 targets and potentially represents a novel virulence function of AvrRpt2.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Ácidos Indolacéticos/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Proteínas Quinasas Activadas por Mitógenos/genética , Moléculas de Patrón Molecular Asociado a Patógenos , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Plantas Modificadas Genéticamente , Transducción de Señal
14.
Plant Cell ; 27(7): 2042-56, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26198070

RESUMEN

The Pseudomonas syringae effector AvrB targets multiple host proteins during infection, including the plant immune regulator RPM1-INTERACTING PROTEIN4 (RIN4) and RPM1-INDUCED PROTEIN KINASE (RIPK). In the presence of AvrB, RIPK phosphorylates RIN4 at Thr-21, Ser-160, and Thr-166, leading to activation of the immune receptor RPM1. Here, we investigated the role of RIN4 phosphorylation in susceptible Arabidopsis thaliana genotypes. Using circular dichroism spectroscopy, we show that RIN4 is a disordered protein and phosphorylation affects protein flexibility. RIN4 T21D/S160D/T166D phosphomimetic mutants exhibited enhanced disease susceptibility upon surface inoculation with P. syringae, wider stomatal apertures, and enhanced plasma membrane H(+)-ATPase activity. The plasma membrane H(+)-ATPase AHA1 is highly expressed in guard cells, and its activation can induce stomatal opening. The ripk knockout also exhibited a strong defect in pathogen-induced stomatal opening. The basal level of RIN4 Thr-166 phosphorylation decreased in response to immune perception of bacterial flagellin. RIN4 Thr166D lines exhibited reduced flagellin-triggered immune responses. Flagellin perception did not lower RIN4 Thr-166 phosphorylation in the presence of strong ectopic expression of AvrB. Taken together, these results indicate that the AvrB effector targets RIN4 in order to enhance pathogen entry on the leaf surface as well as dampen responses to conserved microbial features.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/inmunología , Proteínas Portadoras/metabolismo , Membrana Celular/enzimología , Inmunidad de la Planta/efectos de los fármacos , ATPasas de Translocación de Protón/metabolismo , Secuencia de Aminoácidos , Aminoácidos/farmacología , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/química , Proteínas Portadoras/química , Membrana Celular/efectos de los fármacos , Flagelina/farmacología , Técnicas de Inactivación de Genes , Indenos/farmacología , Péptidos y Proteínas de Señalización Intracelular , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Datos de Secuencia Molecular , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Fosforilación/efectos de los fármacos , Fosfotreonina/metabolismo , Enfermedades de las Plantas/microbiología , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Unión Proteica/efectos de los fármacos , Proteínas Recombinantes/aislamiento & purificación
15.
Proc Natl Acad Sci U S A ; 110(23): 9559-64, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23671085

RESUMEN

The jasmonate family of phytohormones plays central roles in plant development and stress acclimation. However, the architecture of their signaling circuits remains largely unknown. Here we describe a jasmonate family binding protein, cyclophilin 20-3 (CYP20-3), which regulates stress-responsive cellular redox homeostasis. (+)-12-Oxo-phytodienoic acid (OPDA) binding promotes CYP20-3 to form a complex with serine acetyltransferase 1, which triggers the formation of a hetero-oligomeric cysteine synthase complex with O-acetylserine(thiol)lyase B in chloroplasts. The cysteine synthase complex formation then activates sulfur assimilation that leads to increased levels of thiol metabolites and the buildup of cellular reduction potential. The enhanced redox capacity in turn coordinates the expression of a subset of OPDA-responsive genes. Thus, we conclude that CYP20-3 is a key effector protein that links OPDA signaling to amino acid biosynthesis and cellular redox homeostasis in stress responses.


Asunto(s)
Cloroplastos/metabolismo , Ciclofilinas/metabolismo , Ácidos Grasos Insaturados/metabolismo , Homeostasis/fisiología , Estrés Oxidativo/fisiología , Transducción de Señal/fisiología , Aminoácidos/biosíntesis , Arabidopsis , Cromatografía de Afinidad , Ciclopentanos/metabolismo , Oxidación-Reducción , Oxilipinas/metabolismo , Mapas de Interacción de Proteínas , Serina O-Acetiltransferasa/metabolismo
16.
Plant Physiol ; 162(2): 1018-29, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23632856

RESUMEN

To accomplish successful infection, pathogens deploy complex strategies to interfere with host defense systems and subvert host physiology to favor pathogen survival and multiplication. Modulation of plant auxin physiology and signaling is emerging as a common virulence strategy for phytobacteria to cause diseases. However, the underlying mechanisms remain largely elusive. We have previously shown that the Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis (Arabidopsis thaliana) auxin physiology. Here, we report that AvrRpt2 promotes auxin response by stimulating the turnover of auxin/indole acetic acid (Aux/IAA) proteins, the key negative regulators in auxin signaling. AvrRpt2 acts additively with auxin to stimulate Aux/IAA turnover, suggesting distinct, yet proteasome-dependent, mechanisms operated by AvrRpt2 and auxin to control Aux/IAA stability. Cysteine protease activity is required for AvrRpt2-stimulated auxin signaling and Aux/IAA degradation. Importantly, transgenic plants expressing the dominant axr2-1 mutation recalcitrant to AvrRpt2-mediated degradation ameliorated the virulence functions of AvrRpt2 but did not alter the avirulent function mediated by the corresponding RPS2 resistance protein. Thus, promoting auxin response via modulating the stability of the key transcription repressors Aux/IAA is a mechanism used by the bacterial type III effector AvrRpt2 to promote pathogenicity.


Asunto(s)
Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas Bacterianas/metabolismo , Ácidos Indolacéticos/metabolismo , Pseudomonas syringae/patogenicidad , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/genética , Proteasas de Cisteína/metabolismo , Interacciones Huésped-Patógeno/fisiología , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica , Pseudomonas syringae/metabolismo , Factores de Transcripción
17.
PLoS One ; 8(3): e59684, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23555744

RESUMEN

Bacterial pathogens deliver multiple effector proteins into host cells to facilitate bacterial growth. HopQ1 is an effector from Pseudomonas syringae pv. tomato DC3000 that is conserved across multiple bacterial pathogens which infect plants. HopQ1's central region possesses some homology to nucleoside hydrolases, but possesses an alternative aspartate motif not found in characterized enzymes. A structural model was generated for HopQ1 based on the E. coli RihB nucleoside hydrolase and the role of HopQ1's potential catalytic residues for promoting bacterial virulence and recognition in Nicotiana tabacum was investigated. Transgenic Arabidopsis plants expressing HopQ1 exhibit enhanced disease susceptibility to DC3000. HopQ1 can also promote bacterial virulence on tomato when naturally delivered from DC3000. HopQ1's nucleoside hydrolase-like domain alone is sufficient to promote bacterial virulence, and putative catalytic residues are required for virulence promotion during bacterial infection of tomato and in transgenic Arabidopsis lines. HopQ1 is recognized and elicits cell death when transiently expressed in N. tabacum. Residues required to promote bacterial virulence were dispensable for HopQ1's cell death promoting activities in N. tabacum. Although HopQ1 has some homology to nucleoside hydrolases, we were unable to detect HopQ1 enzymatic activity or nucleoside binding capability using standard substrates. Thus, it is likely that HopQ1 promotes pathogen virulence by hydrolyzing alternative ribose-containing substrates in planta.


Asunto(s)
Arabidopsis/microbiología , Bacterias/patogenicidad , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , N-Glicosil Hidrolasas/química , Nicotiana/microbiología , Solanum lycopersicum/microbiología , Secuencia de Aminoácidos , Arabidopsis/citología , Bacterias/metabolismo , Proteínas Bacterianas/genética , Interacciones Huésped-Patógeno , Solanum lycopersicum/citología , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Transgenes/genética
18.
Plant Physiol ; 161(4): 2062-74, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23417089

RESUMEN

A key virulence strategy of bacterial pathogens is the delivery of multiple pathogen effector proteins into host cells during infection. The Hrp outer protein Q (HopQ1) effector from Pseudomonas syringae pv tomato (Pto) strain DC3000 is conserved across multiple bacterial plant pathogens. Here, we investigated the virulence function and host targets of HopQ1 in tomato (Solanum lycopersicum). Transgenic tomato lines expressing dexamethasone-inducible HopQ1 exhibited enhanced disease susceptibility to virulent Pto DC3000, the Pto ΔhrcC mutant, and decreased expression of a pathogen-associated molecular pattern-triggered marker gene after bacterial inoculation. HopQ1-interacting proteins were coimmunoprecipitated and identified by mass spectrometry. HopQ1 can associate with multiple tomato 14-3-3 proteins, including TFT1 and TFT5. HopQ1 is phosphorylated in tomato, and four phosphorylated peptides were identified by mass spectrometry. HopQ1 possesses a conserved mode I 14-3-3 binding motif whose serine-51 residue is phosphorylated in tomato and regulates its association with TFT1 and TFT5. Confocal microscopy and fractionation reveal that HopQ1 exhibits nucleocytoplasmic localization, while HopQ1 dephosphorylation mimics exhibit more pronounced nuclear localization. HopQ1 delivered from Pto DC3000 was found to promote bacterial virulence in the tomato genotype Rio Grande 76R. However, the HopQ1(S51A) mutant delivered from Pto DC3000 was unable to promote pathogen virulence. Taken together, our data demonstrate that HopQ1 enhances bacterial virulence and associates with tomato 14-3-3 proteins in a phosphorylation-dependent manner that influences HopQ1's subcellular localization and virulence-promoting activities in planta.


Asunto(s)
Proteínas 14-3-3/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Plantas/metabolismo , Pseudomonas syringae/metabolismo , Pseudomonas syringae/patogenicidad , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Muerte Celular , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Espectrometría de Masas , Datos de Secuencia Molecular , Mutación/genética , Fosforilación , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente , Unión Proteica , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Fracciones Subcelulares/metabolismo , Nicotiana/citología , Nicotiana/microbiología
19.
Mol Plant ; 4(3): 416-27, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21300757

RESUMEN

Plasma membrane (PM) H+-ATPases are the primary pumps responsible for the establishment of cellular membrane potential in plants. In addition to regulating basic aspects of plant cell function, these enzymes contribute to signaling events in response to diverse environmental stimuli. Here, we focus on the roles of the PM H+-ATPase during plant-pathogen interactions. PM H+-ATPases are dynamically regulated during plant immune responses and recent quantitative proteomics studies suggest complex spatial and temporal modulation of PM H+-ATPase activity during early pathogen recognition events. Additional data indicate that PM H+-ATPases cooperate with the plant immune signaling protein RIN4 to regulate stomatal apertures during bacterial invasion of leaf tissue. Furthermore, pathogens have evolved mechanisms to manipulate PM H+-ATPase activity during infection. Thus, these ubiquitous plant enzymes contribute to plant immune responses and are targeted by pathogens to increase plant susceptibility.


Asunto(s)
Membrana Celular/enzimología , Interacciones Huésped-Patógeno , Plantas/enzimología , Plantas/microbiología , ATPasas de Translocación de Protón/metabolismo , Estomas de Plantas/fisiología , Plantas/inmunología , Transducción de Señal/inmunología
20.
PLoS Biol ; 7(6): e1000139, 2009 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-19564897

RESUMEN

Pathogen perception by the plant innate immune system is of central importance to plant survival and productivity. The Arabidopsis protein RIN4 is a negative regulator of plant immunity. In order to identify additional proteins involved in RIN4-mediated immune signal transduction, we purified components of the RIN4 protein complex. We identified six novel proteins that had not previously been implicated in RIN4 signaling, including the plasma membrane (PM) H(+)-ATPases AHA1 and/or AHA2. RIN4 interacts with AHA1 and AHA2 both in vitro and in vivo. RIN4 overexpression and knockout lines exhibit differential PM H(+)-ATPase activity. PM H(+)-ATPase activation induces stomatal opening, enabling bacteria to gain entry into the plant leaf; inactivation induces stomatal closure thus restricting bacterial invasion. The rin4 knockout line exhibited reduced PM H(+)-ATPase activity and, importantly, its stomata could not be re-opened by virulent Pseudomonas syringae. We also demonstrate that RIN4 is expressed in guard cells, highlighting the importance of this cell type in innate immunity. These results indicate that the Arabidopsis protein RIN4 functions with the PM H(+)-ATPase to regulate stomatal apertures, inhibiting the entry of bacterial pathogens into the plant leaf during infection.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Proteínas Portadoras/metabolismo , Estomas de Plantas/fisiología , ATPasas de Translocación de Protón/metabolismo , ATPasas de Translocación de Protón/fisiología , Pseudomonas syringae/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Western Blotting , Proteínas Portadoras/genética , Interacciones Huésped-Patógeno , Inmunidad Innata/genética , Péptidos y Proteínas de Señalización Intracelular , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Espectrometría de Masas , Microscopía Confocal , Mutación , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Unión Proteica , ATPasas de Translocación de Protón/genética , Pseudomonas syringae/patogenicidad , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Técnicas del Sistema de Dos Híbridos , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA