Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Adv ; 10(13): eadk7201, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38536910

RESUMEN

Enzymes populate ensembles of structures necessary for catalysis that are difficult to experimentally characterize. We use time-resolved mix-and-inject serial crystallography at an x-ray free electron laser to observe catalysis in a designed mutant isocyanide hydratase (ICH) enzyme that enhances sampling of important minor conformations. The active site exists in a mixture of conformations, and formation of the thioimidate intermediate selects for catalytically competent substates. The influence of cysteine ionization on the ICH ensemble is validated by determining structures of the enzyme at multiple pH values. Large molecular dynamics simulations in crystallo and time-resolved electron density maps show that Asp17 ionizes during catalysis and causes conformational changes that propagate across the dimer, permitting water to enter the active site for intermediate hydrolysis. ICH exhibits a tight coupling between ionization of active site residues and catalysis-activated protein motions, exemplifying a mechanism of electrostatic control of enzyme dynamics.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas , Cristalografía por Rayos X , Proteínas/química , Catálisis , Conformación Proteica , Hidrolasas
2.
bioRxiv ; 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37645800

RESUMEN

Enzymes populate ensembles of structures with intrinsically different catalytic proficiencies that are difficult to experimentally characterize. We use time-resolved mix-and-inject serial crystallography (MISC) at an X-ray free electron laser (XFEL) to observe catalysis in a designed mutant (G150T) isocyanide hydratase (ICH) enzyme that enhances sampling of important minor conformations. The active site exists in a mixture of conformations and formation of the thioimidate catalytic intermediate selects for catalytically competent substates. A prior proposal for active site cysteine charge-coupled conformational changes in ICH is validated by determining structures of the enzyme over a range of pH values. A combination of large molecular dynamics simulations of the enzyme in crystallo and time-resolved electron density maps shows that ionization of the general acid Asp17 during catalysis causes additional conformational changes that propagate across the dimer interface, connecting the two active sites. These ionization-linked changes in the ICH conformational ensemble permit water to enter the active site in a location that is poised for intermediate hydrolysis. ICH exhibits a tight coupling between ionization of active site residues and catalysis-activated protein motions, exemplifying a mechanism of electrostatic control of enzyme dynamics.

3.
Sci Adv ; 8(21): eabo5083, 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35622909

RESUMEN

The nonstructural protein 3 (NSP3) macrodomain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Mac1) removes adenosine diphosphate (ADP) ribosylation posttranslational modifications, playing a key role in the immune evasion capabilities of the virus responsible for the coronavirus disease 2019 pandemic. Here, we determined neutron and x-ray crystal structures of the SARS-CoV-2 NSP3 macrodomain using multiple crystal forms, temperatures, and pHs, across the apo and ADP-ribose-bound states. We characterize extensive solvation in the Mac1 active site and visualize how water networks reorganize upon binding of ADP-ribose and non-native ligands, inspiring strategies for displacing waters to increase the potency of Mac1 inhibitors. Determining the precise orientations of active site water molecules and the protonation states of key catalytic site residues by neutron crystallography suggests a catalytic mechanism for coronavirus macrodomains distinct from the substrate-assisted mechanism proposed for human MacroD2. These data provoke a reevaluation of macrodomain catalytic mechanisms and will guide the optimization of Mac1 inhibitors.

4.
Sci Adv ; 7(16)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33853786

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) macrodomain within the nonstructural protein 3 counteracts host-mediated antiviral adenosine diphosphate-ribosylation signaling. This enzyme is a promising antiviral target because catalytic mutations render viruses nonpathogenic. Here, we report a massive crystallographic screening and computational docking effort, identifying new chemical matter primarily targeting the active site of the macrodomain. Crystallographic screening of 2533 diverse fragments resulted in 214 unique macrodomain-binders. An additional 60 molecules were selected from docking more than 20 million fragments, of which 20 were crystallographically confirmed. X-ray data collection to ultra-high resolution and at physiological temperature enabled assessment of the conformational heterogeneity around the active site. Several fragment hits were confirmed by solution binding using three biophysical techniques (differential scanning fluorimetry, homogeneous time-resolved fluorescence, and isothermal titration calorimetry). The 234 fragment structures explore a wide range of chemotypes and provide starting points for development of potent SARS-CoV-2 macrodomain inhibitors.


Asunto(s)
Dominio Catalítico/fisiología , Unión Proteica/fisiología , Proteínas no Estructurales Virales/metabolismo , Dominio Catalítico/genética , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Conformación Proteica , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Proteínas no Estructurales Virales/genética , Tratamiento Farmacológico de COVID-19
5.
J Am Chem Soc ; 142(3): 1227-1235, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31816235

RESUMEN

Hydrogenases display a wide range of catalytic rates and biases in reversible hydrogen gas oxidation catalysis. The interactions of the iron-sulfur-containing catalytic site with the local protein environment are thought to contribute to differences in catalytic reactivity, but this has not been demonstrated. The microbe Clostridium pasteurianum produces three [FeFe]-hydrogenases that differ in "catalytic bias" by exerting a disproportionate rate acceleration in one direction or the other that spans a remarkable 6 orders of magnitude. The combination of high-resolution structural work, biochemical analyses, and computational modeling indicates that protein secondary interactions directly influence the relative stabilization/destabilization of different oxidation states of the active site metal cluster. This selective stabilization or destabilization of oxidation states can preferentially promote hydrogen oxidation or proton reduction and represents a simple yet elegant model by which a protein catalytic site can confer catalytic bias.


Asunto(s)
Hidrógeno/metabolismo , Hidrogenasas/metabolismo , Catálisis , Clostridium/enzimología , Oxidación-Reducción , Difracción de Rayos X
6.
Proc Natl Acad Sci U S A ; 116(51): 25634-25640, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31801874

RESUMEN

How changes in enzyme structure and dynamics facilitate passage along the reaction coordinate is a fundamental unanswered question. Here, we use time-resolved mix-and-inject serial crystallography (MISC) at an X-ray free electron laser (XFEL), ambient-temperature X-ray crystallography, computer simulations, and enzyme kinetics to characterize how covalent catalysis modulates isocyanide hydratase (ICH) conformational dynamics throughout its catalytic cycle. We visualize this previously hypothetical reaction mechanism, directly observing formation of a thioimidate covalent intermediate in ICH microcrystals during catalysis. ICH exhibits a concerted helical displacement upon active-site cysteine modification that is gated by changes in hydrogen bond strength between the cysteine thiolate and the backbone amide of the highly strained Ile152 residue. These catalysis-activated motions permit water entry into the ICH active site for intermediate hydrolysis. Mutations at a Gly residue (Gly150) that modulate helical mobility reduce ICH catalytic turnover and alter its pre-steady-state kinetic behavior, establishing that helical mobility is important for ICH catalytic efficiency. These results demonstrate that MISC can capture otherwise elusive aspects of enzyme mechanism and dynamics in microcrystalline samples, resolving long-standing questions about the connection between nonequilibrium protein motions and enzyme catalysis.


Asunto(s)
Cristalografía por Rayos X/métodos , Enzimas , Catálisis , Cisteína/análogos & derivados , Cisteína/química , Cisteína/metabolismo , Enzimas/química , Enzimas/metabolismo , Enzimas/ultraestructura , Hidroliasas/química , Hidroliasas/metabolismo , Hidroliasas/ultraestructura , Modelos Moleculares , Conformación Proteica
7.
Acta Crystallogr D Biol Crystallogr ; 62(Pt 9): 1073-84, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16929109

RESUMEN

The structure of Pichia pastoris lysyl oxidase (PPLO) in a new crystal form has been refined at 1.23 Angstrom resolution. PPLO, a copper amine oxidase (CuAO) with a 2,4,5-trihydroxyphenylalanine quinone (TPQ) cofactor, differs from most other members of the CuAO enzyme family in having the ability to oxidize the side chain of lysine residues in a polypeptide. In the asymmetric unit of the crystals, the structure analysis has located residues 43-779 of the polypeptide chain, seven carbohydrate residues, the active-site Cu atom, an imidazole molecule bound at the active site, two buried Ca(2+) ions, five surface Mg(2+) ions, five surface Cl(-) ions and 1045 water molecules. The crystallographic residuals are R = 0.112 and R(free) = 0.146. The TPQ cofactor and several other active-site residues are poorly ordered, in contrast to the surrounding well ordered structure. A covalent cross-link is observed between two lysine residues, Lys778 and Lys66. The cross-link is likely to have been formed by the oxidation of Lys778 followed by a spontaneous reaction with Lys66. The link is modelled as dehydrolysinonorleucine.


Asunto(s)
Cristalografía por Rayos X/métodos , Lisina/química , Pichia/enzimología , Proteína-Lisina 6-Oxidasa/química , Sitios de Unión , Cobre/química , Reactivos de Enlaces Cruzados/farmacología , Dipéptidos/química , Glicosilación , Iones , Modelos Químicos , Modelos Moleculares , Conformación Molecular , Conformación Proteica
8.
Biochemistry ; 42(51): 15148-57, 2003 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-14690425

RESUMEN

Pichia pastoris lysyl oxidase (PPLO) is unique among the structurally characterized copper amine oxidases in being able to oxidize the side chain of lysine residues in polypeptides. Remarkably, the yeast PPLO is nearly as effective in oxidizing a mammalian tropoelastin substrate as is a true mammalian lysyl oxidase isolated from bovine aorta. Thus, PPLO is functionally related to the copper-containing lysyl oxidases despite the lack of any significant sequence similarity with these enzymes. The structure of PPLO has been determined at 1.65 A resolution. PPLO is a homodimer in which each subunit contains a Type II copper atom and a topaquinone cofactor (TPQ) formed by the posttranslational modification of a tyrosine residue. While PPLO has tertiary and quaternary topologies similar to those found in other quinone-containing copper amine oxidases, its active site is substantially more exposed and accessible. The structural elements that are responsible for the accessibility of the active site are identified and discussed.


Asunto(s)
Dihidroxifenilalanina/análogos & derivados , Proteínas Fúngicas/química , Pichia/enzimología , Proteína-Lisina 6-Oxidasa/química , Amina Oxidasa (conteniendo Cobre)/química , Animales , Arthrobacter/genética , Sitios de Unión , Cristalización , Cristalografía por Rayos X , Dihidroxifenilalanina/química , Dimerización , Humanos , Modelos Moleculares , Pisum sativum/enzimología , Subunidades de Proteína/química , Especificidad por Sustrato
9.
Acta Crystallogr D Biol Crystallogr ; 58(Pt 12): 2177-9, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12454493

RESUMEN

A copper-containing amine oxidase (PPLO) from the yeast Pichia pastoris has been purified and crystallized in two forms. PPLO is a glycoprotein. The molecular mass from SDS-polyacrylamide gels is 112 kDa, consistent with 20% glycosylation by weight (the calculated molecular weight of the polypeptide is 89.7 kDa). Orthorhombic crystals belonging to space group P2(1)2(1)2(1), with unit-cell parameters a = 163.7, b = 316.1, c = 84.0 A, diffract to 2.65 A resolution. Monoclinic crystals belonging to space group C2, with unit-cell parameters a = 248.4, b = 121.1, c = 151.8 A, beta = 124.6 degrees, diffract to 1.65 A resolution. Native data have been recorded from each crystal form at 100 K using synchrotron radiation. A self-rotation function for the monoclinic crystal form reveals the presence of a non-crystallographic twofold axis perpendicular to the crystallographic twofold axis, consistent with the presence of two dimers in the asymmetric unit.


Asunto(s)
Pichia/enzimología , Proteína-Lisina 6-Oxidasa/química , Cristalización , Electroforesis en Gel de Poliacrilamida , Peso Molecular , Conformación Proteica , Proteína-Lisina 6-Oxidasa/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA