Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
bioRxiv ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38854018

RESUMEN

Targeted recruitment of E3 ubiquitin ligases to degrade traditionally undruggable proteins is a disruptive paradigm for developing new therapeutics. Two salient limitations are that <2% of the ~600 E3 ligases in the human genome have been exploited to produce proteolysis targeting chimeras (PROTACs), and the efficacy of the approach has not been demonstrated for a vital class of complex multi-subunit membrane proteins- ion channels. NEDD4-1 and NEDD4-2 are physiological regulators of myriad ion channels, and belong to the 28-member HECT (homologous to E6AP C-terminus) family of E3 ligases with widespread roles in cell/developmental biology and diverse diseases including various cancers, immunological and neurological disorders, and chronic pain. The potential efficacy of HECT E3 ligases for targeted protein degradation is unexplored, constrained by a lack of appropriate binders, and uncertain due to their complex regulation by layered intra-molecular and posttranslational mechanisms. Here, we identified a nanobody that binds with high affinity and specificity to a unique site on the N-lobe of the NEDD4-2 HECT domain at a location physically separate from sites critical for catalysis- the E2 binding site, the catalytic cysteine, and the ubiquitin exosite- as revealed by a 3.1 Å cryo-electron microscopy reconstruction. Recruiting endogenous NEDD4-2 to diverse ion channel proteins (KCNQ1, ENaC, and CaV2.2) using a divalent (DiVa) nanobody format strongly reduced their functional expression with minimal off-target effects as assessed by global proteomics, compared to simple NEDD4-2 overexpression. The results establish utility of a HECT E3 ligase for targeted protein downregulation, validate a class of complex multi-subunit membrane proteins as susceptible to this modality, and introduce endogenous E3 ligase recruitment with DiVa nanobodies as a general method to generate novel genetically-encoded ion channel inhibitors.

2.
Mol Ther Nucleic Acids ; 34: 102032, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37842167

RESUMEN

Disease-causing premature termination codons (PTCs) individually disrupt the functional expression of hundreds of genes and represent a pernicious clinical challenge. In the heart, loss-of-function mutations in the hERG potassium channel account for approximately 30% of long-QT syndrome arrhythmia, a lethal cardiac disorder with limited treatment options. Premature termination of ribosomal translation produces a truncated and, for potassium channels, a potentially dominant-negative protein that impairs the functional assembly of the wild-type homotetrameric hERG channel complex. We used high-throughput flow cytometry and patch-clamp electrophysiology to assess the trafficking and voltage-dependent activity of hERG channels carrying patient PTC variants that have been corrected by anticodon engineered tRNA. Adenoviral-mediated expression of mutant hERG channels in cultured adult guinea pig cardiomyocytes prolonged action potential durations, and this deleterious effect was corrected upon adenoviral delivery of a human ArgUGA tRNA to restore full-length hERG protein. The results demonstrate mutation-specific, context-agnostic PTC correction and elevate the therapeutic potential of this approach for rare genetic diseases caused by stop codons.

3.
Elife ; 122023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37650513

RESUMEN

The slow delayed rectifier potassium current, IKs, conducted through pore-forming Q1 and auxiliary E1 ion channel complexes is important for human cardiac action potential repolarization. During exercise or fright, IKs is up-regulated by protein kinase A (PKA)-mediated Q1 phosphorylation to maintain heart rhythm and optimum cardiac performance. Sympathetic up-regulation of IKs requires recruitment of PKA holoenzyme (two regulatory - RI or RII - and two catalytic Cα subunits) to Q1 C-terminus by an A kinase anchoring protein (AKAP9). Mutations in Q1 or AKAP9 that abolish their functional interaction result in long QT syndrome type 1 and 11, respectively, which increases the risk of sudden cardiac death during exercise. Here, we investigated the utility of a targeted protein phosphorylation (TPP) approach to reconstitute PKA regulation of IKs in the absence of AKAP9. Targeted recruitment of endogenous Cα to E1-YFP using a GFP/YFP nanobody (nano) fused to RIIα enabled acute cAMP-mediated enhancement of IKs, reconstituting physiological regulation of the channel complex. By contrast, nano-mediated tethering of RIIα or Cα to Q1-YFP constitutively inhibited IKs by retaining the channel intracellularly in the endoplasmic reticulum and Golgi. Proteomic analysis revealed that distinct phosphorylation sites are modified by Cα targeted to Q1-YFP compared to free Cα. Thus, functional outcomes of synthetically recruited PKA on IKs regulation is critically dependent on the site of recruitment within the channel complex. The results reveal insights into divergent regulation of IKs by phosphorylation across different spatial and time scales, and suggest a TPP approach to develop new drugs to prevent exercise-induced sudden cardiac death.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Canal de Potasio KCNQ1 , Humanos , Proteómica , Potenciales de Acción , Muerte Súbita Cardíaca
4.
Sci Transl Med ; 15(679): eadd4666, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36652535

RESUMEN

Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by loss-of-function heterozygous mutations of methyl CpG-binding protein 2 (MECP2) on the X chromosome in young females. Reactivation of the silent wild-type MECP2 allele from the inactive X chromosome (Xi) represents a promising therapeutic opportunity for female patients with RTT. Here, we applied a multiplex epigenome editing approach to reactivate MECP2 from Xi in RTT human embryonic stem cells (hESCs) and derived neurons. Demethylation of the MECP2 promoter by dCas9-Tet1 with target single-guide RNA reactivated MECP2 from Xi in RTT hESCs without detectable off-target effects at the transcriptional level. Neurons derived from methylation-edited RTT hESCs maintained MECP2 reactivation and reversed the smaller soma size and electrophysiological abnormalities, two hallmarks of RTT. In RTT neurons, insulation of the methylation-edited MECP2 locus by dCpf1-CTCF (a catalytically dead Cpf1 fused with CCCTC-binding factor) with target CRISPR RNA enhanced MECP2 reactivation and rescued RTT-related neuronal defects, providing a proof-of-concept study for epigenome editing to treat RTT and potentially other dominant X-linked diseases.


Asunto(s)
Síndrome de Rett , Humanos , Femenino , Síndrome de Rett/genética , Síndrome de Rett/terapia , Epigenoma , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Neuronas/metabolismo , Mutación , Heterocigoto , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/uso terapéutico , Proteínas Proto-Oncogénicas/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(20): e2118129119, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35561213

RESUMEN

Neuropathic pain caused by lesions to somatosensory neurons due to injury or disease is a widespread public health problem that is inadequately managed by small-molecule therapeutics due to incomplete pain relief and devastating side effects. Genetically encoded molecules capable of interrupting nociception have the potential to confer long-lasting analgesia with minimal off-target effects. Here, we utilize a targeted ubiquitination approach to achieve a unique posttranslational functional knockdown of high-voltage-activated calcium channels (HVACCs) that are obligatory for neurotransmission in dorsal root ganglion (DRG) neurons. CaV-aßlator comprises a nanobody targeted to CaV channel cytosolic auxiliary ß subunits fused to the catalytic HECT domain of the Nedd4-2 E3 ubiquitin ligase. Subcutaneous injection of adeno-associated virus serotype 9 encoding CaV-aßlator in the hind paw of mice resulted in the expression of the protein in a subset of DRG neurons that displayed a concomitant ablation of CaV currents and also led to an increase in the frequency of spontaneous inhibitory postsynaptic currents in the dorsal horn of the spinal cord. Mice subjected to spare nerve injury displayed a characteristic long-lasting mechanical, thermal, and cold hyperalgesia underlain by a dramatic increase in coordinated phasic firing of DRG neurons as reported by in vivo Ca2+ spike recordings. CaV-aßlator significantly dampened the integrated Ca2+ spike activity and the hyperalgesia in response to nerve injury. The results advance the principle of targeting HVACCs as a gene therapy for neuropathic pain and demonstrate the therapeutic potential of posttranslational functional knockdown of ion channels achieved by exploiting the ubiquitin-proteasome system.


Asunto(s)
Canales de Calcio , Neuralgia , Células Receptoras Sensoriales , Ubiquitinación , Animales , Canales de Calcio/genética , Ganglios Espinales/metabolismo , Técnicas de Silenciamiento del Gen , Terapia Genética/métodos , Ratones , Ubiquitina-Proteína Ligasas Nedd4/genética , Neuralgia/genética , Neuralgia/terapia , Células Receptoras Sensoriales/metabolismo , Ubiquitinación/genética
6.
Mol Cell ; 81(14): 2929-2943.e6, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34166608

RESUMEN

The HCN1-4 channel family is responsible for the hyperpolarization-activated cation current If/Ih that controls automaticity in cardiac and neuronal pacemaker cells. We present cryoelectron microscopy (cryo-EM) structures of HCN4 in the presence or absence of bound cAMP, displaying the pore domain in closed and open conformations. Analysis of cAMP-bound and -unbound structures sheds light on how ligand-induced transitions in the channel cytosolic portion mediate the effect of cAMP on channel gating and highlights the regulatory role of a Mg2+ coordination site formed between the C-linker and the S4-S5 linker. Comparison of open/closed pore states shows that the cytosolic gate opens through concerted movements of the S5 and S6 transmembrane helices. Furthermore, in combination with molecular dynamics analyses, the open pore structures provide insights into the mechanisms of K+/Na+ permeation. Our results contribute mechanistic understanding on HCN channel gating, cyclic nucleotide-dependent modulation, and ion permeation.


Asunto(s)
Permeabilidad de la Membrana Celular/fisiología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Activación del Canal Iónico/fisiología , Iones/metabolismo , Proteínas Musculares/metabolismo , Canales de Potasio/metabolismo , Línea Celular , Microscopía por Crioelectrón/métodos , AMP Cíclico/metabolismo , Células HEK293 , Humanos
7.
Nat Methods ; 17(12): 1245-1253, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33169015

RESUMEN

Impaired protein stability or trafficking underlies diverse ion channelopathies and represents an unexploited unifying principle for developing common treatments for otherwise dissimilar diseases. Ubiquitination limits ion channel surface density, but targeting this pathway for the purposes of basic study or therapy is challenging because of its prevalent role in proteostasis. We developed engineered deubiquitinases (enDUBs) that enable selective ubiquitin chain removal from target proteins to rescue the functional expression of disparate mutant ion channels that underlie long QT syndrome (LQT) and cystic fibrosis (CF). In an LQT type 1 (LQT1) cardiomyocyte model, enDUB treatment restored delayed rectifier potassium currents and normalized action potential duration. CF-targeted enDUBs synergistically rescued common (ΔF508) and pharmacotherapy-resistant (N1303K) CF mutations when combined with the US Food and Drug Administation (FDA)-approved drugs Orkambi (lumacaftor/ivacaftor) and Trikafta (elexacaftor/tezacaftor/ivacaftor and ivacaftor). Altogether, targeted deubiquitination via enDUBs provides a powerful protein stabilization method that not only corrects diverse diseases caused by impaired ion channel trafficking, but also introduces a new tool for deconstructing the ubiquitin code in situ.


Asunto(s)
Canalopatías/patología , Fibrosis Quística/patología , Enzimas Desubicuitinizantes/metabolismo , Transporte Iónico/fisiología , Síndrome de QT Prolongado/patología , Canales de Potasio/fisiología , Aminofenoles/farmacología , Aminopiridinas/farmacología , Benzodioxoles/farmacología , Canalopatías/genética , Fibrosis Quística/genética , Enzimas Desubicuitinizantes/genética , Combinación de Medicamentos , Humanos , Indoles/farmacología , Transporte Iónico/genética , Síndrome de QT Prolongado/genética , Miocitos Cardíacos/fisiología , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Canales de Potasio/genética , Pirazoles/farmacología , Piridinas/farmacología , Quinolinas/farmacología , Quinolonas/farmacología
8.
Nature ; 577(7792): 695-700, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31969708

RESUMEN

Increased cardiac contractility during the fight-or-flight response is caused by ß-adrenergic augmentation of CaV1.2 voltage-gated calcium channels1-4. However, this augmentation persists in transgenic murine hearts expressing mutant CaV1.2 α1C and ß subunits that can no longer be phosphorylated by protein kinase A-an essential downstream mediator of ß-adrenergic signalling-suggesting that non-channel factors are also required. Here we identify the mechanism by which ß-adrenergic agonists stimulate voltage-gated calcium channels. We express α1C or ß2B subunits conjugated to ascorbate peroxidase5 in mouse hearts, and use multiplexed quantitative proteomics6,7 to track hundreds of proteins in the proximity of CaV1.2. We observe that the calcium-channel inhibitor Rad8,9, a monomeric G protein, is enriched in the CaV1.2 microenvironment but is depleted during ß-adrenergic stimulation. Phosphorylation by protein kinase A of specific serine residues on Rad decreases its affinity for ß subunits and relieves constitutive inhibition of CaV1.2, observed as an increase in channel open probability. Expression of Rad or its homologue Rem in HEK293T cells also imparts stimulation of CaV1.3 and CaV2.2 by protein kinase A, revealing an evolutionarily conserved mechanism that confers adrenergic modulation upon voltage-gated calcium channels.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Proteómica , Receptores Adrenérgicos beta/metabolismo , Animales , Canales de Calcio Tipo L/química , Canales de Calcio Tipo N/metabolismo , Microambiente Celular , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Femenino , Células HEK293 , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Humanos , Masculino , Ratones , Proteínas de Unión al GTP Monoméricas/metabolismo , Miocardio/metabolismo , Fosforilación , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Transducción de Señal , Proteínas ras/química , Proteínas ras/metabolismo
9.
Circ Arrhythm Electrophysiol ; 12(11): e007573, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31665913

RESUMEN

BACKGROUND: Obesity and diets high in saturated fat increase the risk of arrhythmias and sudden cardiac death. However, the molecular mechanisms are not well understood. We hypothesized that an increase in dietary saturated fat could lead to abnormalities of calcium homeostasis and heart rhythm by a NOX2 (NADPH oxidase 2)-dependent mechanism. METHODS: We investigated this hypothesis by feeding mice high-fat diets. In vivo heart rhythm telemetry, optical mapping, and isolated cardiac myocyte imaging were used to quantify arrhythmias, repolarization, calcium transients, and intracellular calcium sparks. RESULTS: We found that saturated fat activates NOX (NADPH oxidase), whereas polyunsaturated fat does not. The high saturated fat diet increased repolarization heterogeneity and ventricular tachycardia inducibility in perfused hearts. Pharmacological inhibition or genetic deletion of NOX2 prevented arrhythmogenic abnormalities in vivo during high statured fat diet and resulted in less inducible ventricular tachycardia. High saturated fat diet activates CaMK (Ca2+/calmodulin-dependent protein kinase) in the heart, which contributes to abnormal calcium handling, promoting arrhythmia. CONCLUSIONS: We conclude that NOX2 deletion or pharmacological inhibition prevents the arrhythmogenic effects of a high saturated fat diet, in part mediated by activation of CaMK. This work reveals a molecular mechanism linking cardiac metabolism to arrhythmia and suggests that NOX2 inhibitors could be a novel therapy for heart rhythm abnormalities caused by cardiac lipid overload.


Asunto(s)
Arritmias Cardíacas/etiología , Calcio/metabolismo , Dieta Alta en Grasa/efectos adversos , Miocitos Cardíacos/metabolismo , NADPH Oxidasa 2/metabolismo , Estrés Oxidativo , Animales , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/metabolismo , Señalización del Calcio , Modelos Animales de Enfermedad , Ecocardiografía , Electrocardiografía , Ratones , Miocitos Cardíacos/patología , Oxidación-Reducción
10.
Circulation ; 138(14): 1431-1445, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-29650545

RESUMEN

BACKGROUND: L-type CaV1.2 channels play crucial roles in the regulation of blood pressure. Galectin-1 (Gal-1) has been reported to bind to the I-II loop of CaV1.2 channels to reduce their current density. However, the mechanistic understanding for the downregulation of CaV1.2 channels by Gal-1 and whether Gal-1 plays a direct role in blood pressure regulation remain unclear. METHODS: In vitro experiments involving coimmunoprecipitation, Western blot, patch-clamp recordings, immunohistochemistry, and pressure myography were used to evaluate the molecular mechanisms by which Gal-1 downregulates CaV1.2 channel in transfected, human embryonic kidney 293 cells, smooth muscle cells, arteries from Lgasl1-/- mice, rat, and human patients. In vivo experiments involving the delivery of Tat-e9c peptide and AAV5-Gal-1 into rats were performed to investigate the effect of targeting CaV1.2-Gal-1 interaction on blood pressure monitored by tail-cuff or telemetry methods. RESULTS: Our study reveals that Gal-1 is a key regulator for proteasomal degradation of CaV1.2 channels. Gal-1 competed allosterically with the CaVß subunit for binding to the I-II loop of the CaV1.2 channel. This competitive disruption of CaVß binding led to CaV1.2 degradation by exposing the channels to polyubiquitination. It is notable that we demonstrated that the inverse relationship of reduced Gal-1 and increased CaV1.2 protein levels in arteries was associated with hypertension in hypertensive rats and patients, and Gal-1 deficiency induces higher blood pressure in mice because of the upregulated CaV1.2 protein level in arteries. To directly regulate blood pressure by targeting the CaV1.2-Gal-1 interaction, we administered Tat-e9c, a peptide that competed for binding of Gal-1 by a miniosmotic pump, and this specific disruption of CaV1.2-Gal-1 coupling increased smooth muscle CaV1.2 currents, induced larger arterial contraction, and caused hypertension in rats. In contrasting experiments, overexpression of Gal-1 in smooth muscle by a single bolus of AAV5-Gal-1 significantly reduced blood pressure in spontaneously hypertensive rats. CONCLUSIONS: We have defined molecularly that Gal-1 promotes CaV1.2 degradation by replacing CaVß and thereby exposing specific lysines for polyubiquitination and by masking I-II loop endoplasmic reticulum export signals. This mechanistic understanding provided the basis for targeting CaV1.2-Gal-1 interaction to demonstrate clearly the modulatory role that Gal-1 plays in regulating blood pressure, and offering a potential approach for therapeutic management of hypertension.


Asunto(s)
Antihipertensivos/farmacología , Presión Arterial/efectos de los fármacos , Canales de Calcio Tipo L/metabolismo , Galectina 1/metabolismo , Terapia Genética/métodos , Hipertensión/terapia , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Animales , Canales de Calcio Tipo L/genética , Estudios de Casos y Controles , Dependovirus , Modelos Animales de Enfermedad , Galectina 1/genética , Vectores Genéticos , Células HEK293 , Humanos , Hipertensión/genética , Hipertensión/metabolismo , Hipertensión/fisiopatología , Masculino , Potenciales de la Membrana , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/metabolismo , Parvovirinae/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Ratas Endogámicas SHR , Ratas Endogámicas WKY
11.
Elife ; 62017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29256394

RESUMEN

The functional repertoire of surface ion channels is sustained by dynamic processes of trafficking, sorting, and degradation. Dysregulation of these processes underlies diverse ion channelopathies including cardiac arrhythmias and cystic fibrosis. Ubiquitination powerfully regulates multiple steps in the channel lifecycle, yet basic mechanistic understanding is confounded by promiscuity among E3 ligase/substrate interactions and ubiquitin code complexity. Here we targeted the catalytic domain of E3 ligase, CHIP, to YFP-tagged KCNQ1 ± KCNE1 subunits with a GFP-nanobody to selectively manipulate this channel complex in heterologous cells and adult rat cardiomyocytes. Engineered CHIP enhanced KCNQ1 ubiquitination, eliminated KCNQ1 surface-density, and abolished reconstituted K+ currents without affecting protein expression. A chemo-genetic variation enabling chemical control of ubiquitination revealed KCNQ1 surface-density declined with a ~ 3.5 hr t1/2 by impaired forward trafficking. The results illustrate utility of engineered E3 ligases to elucidate mechanisms underlying ubiquitin regulation of membrane proteins, and to achieve effective post-translational functional knockdown of ion channels.


Asunto(s)
Regulación de la Expresión Génica , Canales Iónicos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Enterovirus , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Transporte de Proteínas , Ratas , Anticuerpos de Dominio Único/metabolismo , Coloración y Etiquetado , Ubiquitina-Proteína Ligasas/genética
12.
JCI Insight ; 2(17)2017 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-28878116

RESUMEN

Cardiomyopathy frequently complicates sepsis and is associated with increased mortality. Increased cardiac oxidative stress and mitochondrial dysfunction have been observed during sepsis, but the mechanisms responsible for these abnormalities have not been determined. We hypothesized that NADPH oxidase 2 (NOX2) activation could be responsible for sepsis-induced oxidative stress and cardiomyopathy. Treatment of isolated adult mouse cardiomyocytes with low concentrations of the endotoxin lipopolysaccharide (LPS) increased total cellular reactive oxygen species (ROS) and mitochondrial superoxide. Elevated mitochondrial superoxide was accompanied by depolarization of the mitochondrial inner membrane potential, an indication of mitochondrial dysfunction, and mitochondrial calcium overload. NOX2 inhibition decreased LPS-induced superoxide and prevented mitochondrial dysfunction. Further, cardiomyocytes from mice with genetic ablation of NOX2 did not have LPS-induced superoxide or mitochondrial dysfunction. LPS decreased contractility and calcium transient amplitude in isolated cardiomyocytes, and these abnormalities were prevented by inhibition of NOX2. LPS decreased systolic function in mice, measured by echocardiography. NOX2 inhibition was cardioprotective in 2 mouse models of sepsis, preserving systolic function after LPS injection or cecal ligation and puncture (CLP). These data show that inhibition of NOX2 decreases oxidative stress, preserves intracellular calcium handling and mitochondrial function, and alleviates sepsis-induced systolic dysfunction in vivo. Thus, NOX2 is a potential target for pharmacotherapy of sepsis-induced cardiomyopathy.


Asunto(s)
Calcio/metabolismo , Cardiomiopatías/prevención & control , Mitocondrias Cardíacas/metabolismo , NADPH Oxidasa 2/antagonistas & inhibidores , Sepsis/complicaciones , Animales , Cardiomiopatías/diagnóstico por imagen , Cardiomiopatías/etiología , Modelos Animales de Enfermedad , Ecocardiografía , Lipopolisacáridos/farmacología , Potencial de la Membrana Mitocondrial , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo , NADPH Oxidasa 2/genética , Fosforilación Oxidativa , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
13.
Proc Natl Acad Sci U S A ; 114(34): 9194-9199, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28784807

RESUMEN

Calcium influx through the voltage-dependent L-type calcium channel (CaV1.2) rapidly increases in the heart during "fight or flight" through activation of the ß-adrenergic and protein kinase A (PKA) signaling pathway. The precise molecular mechanisms of ß-adrenergic activation of cardiac CaV1.2, however, are incompletely known, but are presumed to require phosphorylation of residues in α1C and C-terminal proteolytic cleavage of the α1C subunit. We generated transgenic mice expressing an α1C with alanine substitutions of all conserved serine or threonine, which is predicted to be a potential PKA phosphorylation site by at least one prediction tool, while sparing the residues previously shown to be phosphorylated but shown individually not to be required for ß-adrenergic regulation of CaV1.2 current (17-mutant). A second line included these 17 putative sites plus the five previously identified phosphoregulatory sites (22-mutant), thus allowing us to query whether regulation requires their contribution in combination. We determined that acute ß-adrenergic regulation does not require any combination of potential PKA phosphorylation sites conserved in human, guinea pig, rabbit, rat, and mouse α1C subunits. We separately generated transgenic mice with inducible expression of proteolytic-resistant α1C Prevention of C-terminal cleavage did not alter ß-adrenergic stimulation of CaV1.2 in the heart. These studies definitively rule out a role for all conserved consensus PKA phosphorylation sites in α1C in ß-adrenergic stimulation of CaV1.2, and show that phosphoregulatory sites on α1C are not redundant and do not each fractionally contribute to the net stimulatory effect of ß-adrenergic stimulation. Further, proteolytic cleavage of α1C is not required for ß-adrenergic stimulation of CaV1.2.


Asunto(s)
Adrenérgicos/metabolismo , Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Miocardio/metabolismo , Animales , Canales de Calcio Tipo L/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Cobayas , Humanos , Ratones , Ratones Transgénicos , Fosforilación , Dominios Proteicos , Proteolisis , Conejos , Ratas
14.
Elife ; 52016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27434672

RESUMEN

Human calcium-sensing receptor (CaSR) is a G-protein-coupled receptor (GPCR) that maintains extracellular Ca(2+) homeostasis through the regulation of parathyroid hormone secretion. It functions as a disulfide-tethered homodimer composed of three main domains, the Venus Flytrap module, cysteine-rich domain, and seven-helix transmembrane region. Here, we present the crystal structures of the entire extracellular domain of CaSR in the resting and active conformations. We provide direct evidence that L-amino acids are agonists of the receptor. In the active structure, L-Trp occupies the orthosteric agonist-binding site at the interdomain cleft and is primarily responsible for inducing extracellular domain closure to initiate receptor activation. Our structures reveal multiple binding sites for Ca(2+) and PO4(3-) ions. Both ions are crucial for structural integrity of the receptor. While Ca(2+) ions stabilize the active state, PO4(3-) ions reinforce the inactive conformation. The activation mechanism of CaSR involves the formation of a novel dimer interface between subunits.


Asunto(s)
Calcio/metabolismo , Receptores Sensibles al Calcio/agonistas , Receptores Sensibles al Calcio/química , Triptófano/química , Triptófano/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Fosfatos/metabolismo , Unión Proteica , Conformación Proteica , Multimerización de Proteína
15.
PLoS One ; 11(1): e0145750, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26756466

RESUMEN

Obesity and high saturated fat intake increase the risk of heart failure and arrhythmias. The molecular mechanisms are poorly understood. We hypothesized that physiologic levels of saturated fat could increase mitochondrial reactive oxygen species (ROS) in cardiomyocytes, leading to abnormalities of calcium homeostasis and mitochondrial function. We investigated the effect of saturated fat on mitochondrial function and calcium homeostasis in isolated ventricular myocytes. The saturated fatty acid palmitate causes a decrease in mitochondrial respiration in cardiomyocytes. Palmitate, but not the monounsaturated fatty acid oleate, causes an increase in both total cellular ROS and mitochondrial ROS. Palmitate depolarizes the mitochondrial inner membrane and causes mitochondrial calcium overload by increasing sarcoplasmic reticulum calcium leak. Inhibitors of PKC or NOX2 prevent mitochondrial dysfunction and the increase in ROS, demonstrating that PKC-NOX2 activation is also required for amplification of palmitate induced-ROS. Cardiomyocytes from mice with genetic deletion of NOX2 do not have palmitate-induced ROS or mitochondrial dysfunction. We conclude that palmitate induces mitochondrial ROS that is amplified by NOX2, causing greater mitochondrial ROS generation and partial depolarization of the mitochondrial inner membrane. The abnormal sarcoplasmic reticulum calcium leak caused by palmitate could promote arrhythmia and heart failure. NOX2 inhibition is a potential therapy for heart disease caused by diabetes or obesity.


Asunto(s)
Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/genética , Mitocondrias/metabolismo , Miocitos Cardíacos/citología , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/genética , Estrés Oxidativo/efectos de los fármacos , Palmitatos/efectos adversos , Animales , Antimicina A/química , Antioxidantes/química , Apoptosis , Calcio/metabolismo , Línea Celular , Transporte de Electrón , Eliminación de Gen , Ventrículos Cardíacos/patología , Homeostasis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/patología , Células Musculares/citología , NADPH Oxidasa 2 , Consumo de Oxígeno , Palmitatos/química , Proteína Quinasa C/química , Especies Reactivas de Oxígeno/química , Retículo Sarcoplasmático/metabolismo , Transducción de Señal
16.
Heart Rhythm ; 13(5): 1121-1130, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26775140

RESUMEN

BACKGROUND: The human ether-à-go-go-related gene (hERG 1a) potassium channel is critical for cardiac repolarization. hERG 1b, another variant subunit, co-assembles with hERG 1a, modulates channel biophysical properties and plays an important role in repolarization. Mutations of hERG 1a lead to type 2 long QT syndrome (LQT2), and increased risk for fatal arrhythmias. The functional consequences of these mutations in the presence of hERG 1b are not known. OBJECTIVE: To investigate whether hERG 1a mutants exert dominant negative gating and trafficking defects when co-expressed with hERG 1b. METHODS: Electrophysiology, co-immunoprecipitation, and fluorescence resonance energy transfer (FRET) experiments in HEK293 cells and guinea pig cardiomyocytes were used to assess the mutants on gating and trafficking. Mutations of 1a-G965X and 1a-R1014X, relevant to gating and trafficking were introduced in the C-terminus region. RESULTS: The hERG 1a mutants when expressed alone did not result in decreased current amplitude. Compared to wild-type hERG 1a currents, 1a-G965X currents were significantly larger, whereas those produced by the 1a-R1014X mutant were similar in magnitude. Only when co-expressed with wild-type hERG 1a and 1b did a mutant phenotype emerge, with a marked reduction in surface expression, current amplitude, and a corresponding positive shift in the V1/2 of the activation curve. Co-immunoprecipitation and FRET assays confirmed association of mutant and wild-type subunits. CONCLUSION: Heterologously expressed hERG 1a C-terminus truncation mutants, exert a dominant negative gating and trafficking effect only when co-expressed with hERG 1b. These findings may have potentially profound implications for LQT2 therapy.


Asunto(s)
Canales de Potasio Éter-A-Go-Go , Síndrome de QT Prolongado , Animales , Fenómenos Electrofisiológicos , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Cobayas , Células HEK293 , Humanos , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/fisiopatología , Mutación , Miocitos Cardíacos/metabolismo , Transporte de Proteínas/fisiología
17.
J Physiol ; 593(23): 5075-90, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26426338

RESUMEN

Rad and Rem are Ras-like G-proteins linked to diverse cardiovascular functions and pathophysiology. Understanding how Rad and Rem are regulated is important for deepened insights into their pathophysiological roles. As in other Ras-like G-proteins, Rad and Rem contain a conserved guanine-nucleotide binding domain (G-domain). Canonically, G-domains are key control modules, functioning as nucleotide-regulated switches of G-protein activity. Whether Rad and Rem G-domains conform to this canonical paradigm is ambiguous. Here, we used multiple functional measurements in HEK293 cells and cardiomyocytes (Ca(V)1.2 currents, Ca(2+) transients, Ca(V)ß binding) as biosensors to probe the role of the G-domain in regulation of Rad and Rem function. We utilized Rad(S105N) and Rem(T94N), which are the cognate mutants to Ras(S17N), a dominant-negative variant of Ras that displays decreased nucleotide binding affinity. In HEK293 cells, over-expression of either Rad(S105N) or Rem(T94N) strongly inhibited reconstituted Ca(V)1.2 currents to the same extent as their wild-type (wt) counterparts, contrasting with reports that Rad(S105N) is functionally inert in HEK293 cells. Adenovirus-mediated expression of either wt Rad or Rad(S105N) in cardiomyocytes dramatically blocked L-type calcium current (I(Ca,L)) and inhibited Ca(2+)-induced Ca(2+) release, contradicting reports that Rad(S105N) acts as a dominant negative in heart. By contrast, Rem(T94N) was significantly less effective than wt Rem at inhibiting I(Ca,L) and Ca(2+) transients in cardiomyocytes. FRET analyses in cardiomyocytes revealed that both Rad(S105N) and Rem(T94N) had moderately reduced binding affinity for Ca(V)ßs relative to their wt counterparts. The results indicate Rad and Rem are non-canonical G-proteins with respect to the regulatory role of their G-domain in Ca(V)1.2 regulation.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Guanosina Difosfato/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas ras/metabolismo , Potenciales de Acción , Secuencia de Aminoácidos , Animales , Células Cultivadas , Células HEK293 , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/genética , Miocitos Cardíacos/fisiología , Unión Proteica , Ratas , Ratas Sprague-Dawley , Proteínas ras/química , Proteínas ras/genética
18.
Proc Natl Acad Sci U S A ; 111(51): 18213-8, 2014 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-25489088

RESUMEN

Ca(2+)-activated chloride currents carried via transmembrane proteins TMEM16A and TMEM16B regulate diverse processes including mucus secretion, neuronal excitability, smooth muscle contraction, olfactory signal transduction, and cell proliferation. Understanding how TMEM16A/16B are regulated by Ca(2+) is critical for defining their (patho)/physiological roles and for rationally targeting them therapeutically. Here, using a bioengineering approach--channel inactivation induced by membrane-tethering of an associated protein (ChIMP)--we discovered that Ca(2+)-free calmodulin (apoCaM) is preassociated with TMEM16A/16B channel complexes. The resident apoCaM mediates two distinct Ca(2+)-dependent effects on TMEM16A, as revealed by expression of dominant-negative CaM1234. These effects are Ca(2+)-dependent sensitization of activation (CDSA) and Ca(2+)-dependent inactivation (CDI). CDI and CDSA are independently mediated by the N and C lobes of CaM, respectively. TMEM16A alternative splicing provides a mechanism for tuning apoCaM effects. Channels lacking splice segment b selectively lost CDI, and segment a is necessary for apoCaM preassociation with TMEM16A. The results reveal multidimensional regulation of TMEM16A/16B by preassociated apoCaM and introduce ChIMP as a versatile tool to probe the macromolecular complex and function of Ca(2+)-activated chloride channels.


Asunto(s)
Calcio/metabolismo , Calmodulina/fisiología , Canales de Cloruro/metabolismo , Activación del Canal Iónico/fisiología , Proteínas de la Membrana/fisiología , Proteínas de Neoplasias/fisiología , Anoctamina-1 , Anoctaminas , Canales de Cloruro/antagonistas & inhibidores , Canales de Cloruro/genética , Canales de Cloruro/fisiología , Humanos , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Empalme del ARN
19.
Cardiovasc Res ; 104(3): 501-11, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25344363

RESUMEN

AIMS: Long QT syndrome 1 (LQT1) mutations in KCNQ1 that decrease cardiac IKs (slowly activating delayed rectifier K(+) current) underlie ventricular arrhythmias and sudden death. LQT1 mutations may suppress IKs by preventing KCNQ1 assembly, disrupting surface trafficking, or inhibiting gating. We investigated mechanisms underlying how three LQT1 mutations in KCNQ1 C-terminus assembly domain (R555H/G589D/L619M) decrease IKs in heterologous cells and cardiomyocytes. METHODS AND RESULTS: In Chinese hamster ovary (CHO) cells, mutant KCNQ1 + KCNE1 channels either produced no currents (G589D/L619M) or displayed markedly reduced IKs with a right-shifted voltage-dependence of activation (R555H). When co-expressed with wild-type (wt) KCNQ1, the mutant KCNQ1s displayed varying intrinsic dominant-negative capacities that were affected by auxiliary KCNE1. All three mutant KCNQ1s assembled with wt KCNQ1 as determined by fluorescence resonance energy transfer (FRET). We developed an optical quantum dot labelling assay to measure channel surface density. G589D/R555H displayed substantial reductions in surface density, which were either partially (G589D) or fully (R555H) rescued by wt KCNQ1. Unexpectedly, L619M showed no trafficking defect. In adult rat cardiomyocytes, adenovirus-expressed homotetrameric G589D/L619M + KCNE1 channels yielded no currents, whereas R555H + KCNE1 produced diminished IKs with a right-shifted voltage-dependence of activation, mimicking observations in CHO cells. In contrast to heterologous cells, homotetrameric R555H channels showed no trafficking defect in cardiomyocytes. CONCLUSION: Distinct LQT1 mutations in KCNQ1 assembly domain decrease IKs using unique combinations of biophysical and trafficking mechanisms. Functional deficits in IKs observed in heterologous cells are mostly, but not completely, recapitulated in adult rat cardiomyocytes. A 'methodological chain' combining approaches in heterologous cells and cardiomyocytes provides mechanistic insights that may help advance personalized therapy for LQT1 mutations.


Asunto(s)
Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Potasio/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Mutación , Miocitos Cardíacos/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Ratas
20.
Nat Commun ; 4: 2540, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24096474

RESUMEN

Ca(2+) influx via voltage-dependent CaV1/CaV2 channels couples electrical signals to biological responses in excitable cells. CaV1/CaV2 channel blockers have broad biotechnological and therapeutic applications. Here we report a general method for developing novel genetically encoded calcium channel blockers inspired by Rem, a small G-protein that constitutively inhibits CaV1/CaV2 channels. We show that diverse cytosolic proteins (CaVß, 14-3-3, calmodulin and CaMKII) that bind pore-forming α1-subunits can be converted into calcium channel blockers with tunable selectivity, kinetics and potency, simply by anchoring them to the plasma membrane. We term this method 'channel inactivation induced by membrane-tethering of an associated protein' (ChIMP). ChIMP is potentially extendable to small-molecule drug discovery, as engineering FK506-binding protein into intracellular sites within CaV1.2-α1C permits heterodimerization-initiated channel inhibition with rapamycin. The results reveal a universal method for developing novel calcium channel blockers that may be extended to develop probes for a broad cohort of unrelated ion channels.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Caveolina 1/antagonistas & inhibidores , Caveolina 2/antagonistas & inhibidores , Proteínas de Unión a Tacrolimus/genética , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Potenciales de Acción , Animales , Bloqueadores de los Canales de Calcio/química , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/química , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Caveolina 1/química , Caveolina 1/metabolismo , Caveolina 2/química , Caveolina 2/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Descubrimiento de Drogas , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Transporte Iónico/efectos de los fármacos , Ratones , Imitación Molecular , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Células PC12 , Técnicas de Placa-Clamp , Unión Proteica , Ratas , Sirolimus/farmacología , Proteínas de Unión a Tacrolimus/química , Proteínas de Unión a Tacrolimus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA