Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Front Endocrinol (Lausanne) ; 12: 782194, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35145475

RESUMEN

Exercise, typically beneficial for skeletal health, has not yet been studied in lipodystrophy, a condition characterized by paucity of white adipose tissue, with eventual diabetes, and steatosis. We applied a mouse model of global deficiency of Bscl2 (SEIPIN), required for lipid droplet formation. Male twelve-week-old B6 knockouts (KO) and wild type (WT) littermates were assigned six-weeks of voluntary, running exercise (E) versus non-exercise (N=5-8). KO weighed 14% less than WT (p=0.01) and exhibited an absence of epididymal adipose tissue; KO liver Plin1 via qPCR was 9-fold that of WT (p=0.04), consistent with steatosis. Bone marrow adipose tissue (BMAT), unlike white adipose, was measurable, although 40.5% lower in KO vs WT (p=0.0003) via 9.4T MRI/advanced image analysis. SEIPIN ablation's most notable effect marrow adiposity was in the proximal femoral diaphysis (-56% KO vs WT, p=0.005), with relative preservation in KO-distal-femur. Bone via µCT was preserved in SEIPIN KO, though some quality parameters were attenuated. Running distance, speed, and time were comparable in KO and WT. Exercise reduced weight (-24% WT-E vs WT p<0.001) but not in KO. Notably, exercise increased trabecular BV/TV in both (+31%, KO-E vs KO, p=0.004; +14%, WT-E vs WT, p=0.006). The presence and distribution of BMAT in SEIPIN KO, though lower than WT, is unexpected and points to a uniqueness of this depot. That trabecular bone increases were achievable in both KO and WT, despite a difference in BMAT quantity/distribution, points to potential metabolic flexibility during exercise-induced skeletal anabolism.


Asunto(s)
Tejido Adiposo/metabolismo , Médula Ósea/metabolismo , Hueso Esponjoso/metabolismo , Fémur/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/genética , Lipodistrofia/metabolismo , Condicionamiento Físico Animal , Tejido Adiposo/diagnóstico por imagen , Tejido Adiposo/patología , Animales , Peso Corporal , Médula Ósea/diagnóstico por imagen , Médula Ósea/patología , Hueso Esponjoso/diagnóstico por imagen , Diáfisis/diagnóstico por imagen , Modelos Animales de Enfermedad , Epidídimo/metabolismo , Epidídimo/patología , Fémur/diagnóstico por imagen , Lipodistrofia/diagnóstico por imagen , Lipodistrofia/genética , Lipodistrofia/patología , Masculino , Ratones , Ratones Noqueados , Tamaño de los Órganos , Perilipina-1/genética , Microtomografía por Rayos X
2.
Atherosclerosis ; 316: 1-7, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33260006

RESUMEN

BACKGROUND AND AIMS: The transition of macrophage to foam cells is a major hallmark of early stage atherosclerotic lesions. This process is characterized by the accumulation of large cytoplasmic lipid droplets containing large quantities of cholesterol esters (CE), triacylglycerol (TAG) and phospholipid (PL). Although cholesterol and CE metabolism during foam cell formation has been broadly studied, little is known about the role of the glycerolipids (TAG and PL) in this context. Here we studied the contribution of glycerolipid synthesis to lipid accumulation, focusing specifically on the first and rate-limiting enzyme of the pathway: glycerol-3-phosphate acyltransferase (GPAT). METHODS: We used RAW 264.7 cells and bone marrow derived macrophages (BMDM) treated with oxidized LDL (oxLDL). RESULTS: We showed that TAG synthesis is induced during the macrophage to foam cell transition. The expression and activity of GPAT3 and GPAT4 also increased during this process, and these two isoforms were required for the accumulation of cell TAG and PL. Compared to cells from wildtype mice after macrophage to foam cell transition, Gpat4-/- BMDM released more pro-inflammatory cytokines and chemokines, suggesting that the activity of GPAT4 could be associated with a decrease in the inflammatory response, probably by sequestering signaling precursors into lipid droplets. CONCLUSIONS: Our results provide evidence that TAG synthesis directed by GPAT3 and GPAT4 is required for lipid droplet formation and the modulation of the inflammatory response during the macrophage-foam cell transition.


Asunto(s)
Células Espumosas , Gotas Lipídicas , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/genética , Animales , Glicerol , Glicerol-3-Fosfato O-Aciltransferasa/genética , Lipoproteínas LDL , Macrófagos , Ratones , Fosfatos , Triglicéridos
3.
Biochem J ; 476(1): 85-99, 2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30523059

RESUMEN

Macrophage classical M1 activation via TLR4 triggers a variety of responses to achieve the elimination of foreign pathogens. During this process, there is also an increase in lipid droplets which contain large quantities of triacylglycerol (TAG) and phospholipid (PL). The functional consequences of this increment in lipid mass are poorly understood. Here, we studied the contribution of glycerolipid synthesis to lipid accumulation, focusing specifically on the first and rate-limiting enzyme of the pathway: glycerol-3-phosphate acyltransferase (GPAT). Using bone marrow-derived macrophages (BMDMs) treated with Kdo2-lipid A, we showed that glycerolipid synthesis is induced during macrophage activation. GPAT4 protein level and GPAT3/GPAT4 enzymatic activity increase during this process, and these two isoforms were required for the accumulation of cell TAG and PL. The phagocytic capacity of Gpat3-/- and Gpat4-/- BMDM was impaired. Additionally, inhibiting fatty acid ß-oxidation reduced phagocytosis only partially, suggesting that lipid accumulation is not necessary for the energy requirements for phagocytosis. Finally, Gpat4-/- BMDM expressed and released more pro-inflammatory cytokines and chemokines after macrophage activation, suggesting a role for GPAT4 in suppressing inflammatory responses. Together, these results provide evidence that glycerolipid synthesis directed by GPAT4 is important for the attenuation of the inflammatory response in activated macrophages.


Asunto(s)
1-Acilglicerol-3-Fosfato O-Aciltransferasa/metabolismo , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Lipogénesis , Macrófagos/enzimología , Fosfolípidos/biosíntesis , Triglicéridos/biosíntesis , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/genética , Animales , Glicerol-3-Fosfato O-Aciltransferasa/genética , Inflamación/enzimología , Inflamación/genética , Inflamación/patología , Activación de Macrófagos/genética , Macrófagos/patología , Ratones , Ratones Noqueados , Fosfolípidos/genética , Triglicéridos/genética
4.
J Biol Chem ; 294(6): 2009-2020, 2019 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-30523156

RESUMEN

Hepatic insulin resistance in the setting of steatosis is attributable at least in part to the accumulation of bioactive lipids that suppress insulin signaling. The mitochondria-associated glycerol-3-phosphate acyltransferase 1 (GPAT1) catalyzes the first committed step in glycerolipid synthesis, and its activity diverts fatty acids from mitochondrial ß-oxidation. GPAT1 overexpression in mouse liver leads to hepatic steatosis even in the absence of overnutrition. The mice develop insulin resistance owing to the generation of saturated diacylglycerol and phosphatidic acid molecular species that reduce insulin signaling by activating PKCϵ and by suppressing mTORC2, respectively. Them2, a mitochondria-associated acyl-CoA thioesterase, also participates in the trafficking of fatty acids into oxidative versus glycerolipid biosynthetic pathways. Them2-/- mice are protected against diet-induced hepatic steatosis and insulin resistance. To determine whether Them2 contributes to hepatic insulin resistance due to hepatic overexpression of GPAT1, recombinant adenovirus was used to overexpress GPAT1 in livers of chow-fed Them2+/+ and Them2-/- mice. Hepatic GPAT1 overexpression led to steatosis in both genotypes. In the setting of GPAT1 overexpression, glucose tolerance was reduced in Them2+/+ but not Them2-/- mice, without influencing whole-body insulin sensitivity or basal hepatic glucose production. Improved glucose tolerance in Them2-/- mice was associated with reduced PKCϵ translocation. Preserved insulin receptor activity was supported by Thr-308 phosphorylation of Akt following GPAT1 overexpression in Them2-/- hepatocytes. These findings suggest a pathogenic role of Them2 in the biosynthesis of glycerolipid metabolites that promote hepatic insulin resistance.


Asunto(s)
Hígado Graso/complicaciones , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Resistencia a la Insulina , Tioléster Hidrolasas/farmacología , Animales , Ácidos Grasos/metabolismo , Hígado Graso/inducido químicamente , Glicéridos/biosíntesis , Hepatocitos/metabolismo , Hepatopatías , Ratones , Proteína Quinasa C-epsilon/metabolismo , Tioléster Hidrolasas/genética
5.
FASEB J ; 29(11): 4641-53, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26220174

RESUMEN

Because hearts with a temporally induced knockout of acyl-CoA synthetase 1 (Acsl1(T-/-)) are virtually unable to oxidize fatty acids, glucose use increases 8-fold to compensate. This metabolic switch activates mechanistic target of rapamycin complex 1 (mTORC1), which initiates growth by increasing protein and RNA synthesis and fatty acid metabolism, while decreasing autophagy. Compared with controls, Acsl1(T-/-) hearts contained 3 times more mitochondria with abnormal structure and displayed a 35-43% lower respiratory function. To study the effects of mTORC1 activation on mitochondrial structure and function, mTORC1 was inhibited by treating Acsl1(T-/-) and littermate control mice with rapamycin or vehicle alone for 2 wk. Rapamycin treatment normalized mitochondrial structure, number, and the maximal respiration rate in Acsl1(T-/-) hearts, but did not improve ADP-stimulated oxygen consumption, which was likely caused by the 33-51% lower ATP synthase activity present in both vehicle- and rapamycin-treated Acsl1(T-/-) hearts. The turnover of microtubule associated protein light chain 3b in Acsl1(T-/-) hearts was 88% lower than controls, indicating a diminished rate of autophagy. Rapamycin treatment increased autophagy to a rate that was 3.1-fold higher than in controls, allowing the formation of autophagolysosomes and the clearance of damaged mitochondria. Thus, long-chain acyl-CoA synthetase isoform 1 (ACSL1) deficiency in the heart activated mTORC1, thereby inhibiting autophagy and increasing the number of damaged mitochondria.


Asunto(s)
Autofagia/efectos de los fármacos , Coenzima A Ligasas/deficiencia , Mitocondrias Cardíacas/metabolismo , Complejos Multiproteicos/metabolismo , Miocardio/metabolismo , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Autofagia/genética , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/patología , Complejos Multiproteicos/genética , Miocardio/patología , Consumo de Oxígeno/efectos de los fármacos , Consumo de Oxígeno/genética , ATPasas de Translocación de Protón/metabolismo , Serina-Treonina Quinasas TOR/genética
6.
J Am Heart Assoc ; 4(2)2015 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-25713290

RESUMEN

BACKGROUND: Long chain acyl-CoA synthetases (ACSL) catalyze long-chain fatty acids (FA) conversion to acyl-CoAs. Temporal ACSL1 inactivation in mouse hearts (Acsl1(H-/-)) impaired FA oxidation and dramatically increased glucose uptake, glucose oxidation, and mTOR activation, resulting in cardiac hypertrophy. We used unbiased metabolomics and gene expression analyses to elucidate the cardiac cellular response to increased glucose use in a genetic model of inactivated FA oxidation. METHODS AND RESULTS: Metabolomics analysis identified 60 metabolites altered in Acsl1(H-/-) hearts, including 6 related to glucose metabolism and 11 to cysteine and glutathione pathways. Concurrently, global cardiac transcriptional analysis revealed differential expression of 568 genes in Acsl1(H-/-) hearts, a subset of which we hypothesized were targets of mTOR; subsequently, we measured the transcriptional response of several genes after chronic mTOR inhibition via rapamycin treatment during the period in which cardiac hypertrophy develops. Hearts from Acsl1(H-/-) mice increased expression of several Hif1α-responsive glycolytic genes regulated by mTOR; additionally, expression of Scl7a5, Gsta1/2, Gdf15, and amino acid-responsive genes, Fgf21, Asns, Trib3, Mthfd2, were strikingly increased by mTOR activation. CONCLUSIONS: The switch from FA to glucose use causes mTOR-dependent alterations in cardiac metabolism. We identified cardiac mTOR-regulated genes not previously identified in other cellular models, suggesting heart-specific mTOR signaling. Increased glucose use also changed glutathione-related pathways and compensation by mTOR. The hypertrophy, oxidative stress, and metabolic changes that occur within the heart when glucose supplants FA as a major energy source suggest that substrate switching to glucose is not entirely benign.


Asunto(s)
Metabolismo de los Hidratos de Carbono/genética , Coenzima A Ligasas/deficiencia , Glucosa/metabolismo , Glutatión/metabolismo , Miocardio/metabolismo , Sirolimus/farmacología , Animales , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Coenzima A Ligasas/genética , Cisteína/metabolismo , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Ratones , Ratones Noqueados , Oxidación-Reducción/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
7.
PLoS One ; 9(6): e100896, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24967918

RESUMEN

The de novo synthesis of glycerolipids in mammalian cells begins with the acylation of glycerol-3-phosphate, catalyzed by glycerol-3-phosphate acyltransferase (GPAT). GPAT2 is a mitochondrial isoform primarily expressed in testis under physiological conditions. Because it is aberrantly expressed in multiple myeloma, it has been proposed as a novel cancer testis gene. Using a bioinformatics approach, we found that GPAT2 is highly expressed in melanoma, lung, prostate and breast cancer, and we validated GPAT2 expression at the protein level in breast cancer by immunohistochemistry. In this case GPAT2 expression correlated with a higher histological grade. 5-Aza-2' deoxycytidine treatment of human cells lines induced GPAT2 expression suggesting epigenetic regulation of gene expression. In order to evaluate the contribution of GPAT2 to the tumor phenotype, we silenced its expression in MDA-MB-231 cells. GPAT2 knockdown diminished cell proliferation, anchorage independent growth, migration and tumorigenicity, and increased staurosporine-induced apoptosis. In contrast, GPAT2 over-expression increased cell proliferation rate and resistance to staurosporine-induced apoptosis. To understand the functional role of GPAT2, we performed a co-expression analysis in mouse and human testis and found a significant association with semantic terms involved in cell cycle, DNA integrity maintenance, piRNA biogenesis and epigenetic regulation. Overall, these results indicate the GPAT2 would be directly associated with the control of cell proliferation. In conclusion, we confirm GPAT2 as a cancer testis gene and that its expression contributes to the tumor phenotype of MDA-MB-231 cells.


Asunto(s)
Neoplasias de la Mama/patología , Carcinogénesis/genética , Glicerol-3-Fosfato O-Aciltransferasa/genética , Testículo/metabolismo , Animales , Azacitidina/análogos & derivados , Azacitidina/farmacología , Neoplasias de la Mama/genética , Carcinogénesis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Transformación Celular Neoplásica , Simulación por Computador , Decitabina , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Glicerol-3-Fosfato O-Aciltransferasa/deficiencia , Humanos , Masculino , Ratones , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
8.
Proc Natl Acad Sci U S A ; 111(23): E2414-22, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24872453

RESUMEN

The tumor suppressor p53 has recently been shown to regulate energy metabolism through multiple mechanisms. However, the in vivo signaling pathways related to p53-mediated metabolic regulation remain largely uncharacterized. By using mice bearing a single amino acid substitution at cysteine residue 305 of mouse double minute 2 (Mdm2(C305F)), which renders Mdm2 deficient in binding ribosomal proteins (RPs) RPL11 and RPL5, we show that the RP-Mdm2-p53 signaling pathway is critical for sensing nutrient deprivation and maintaining liver lipid homeostasis. Although the Mdm2(C305F) mutation does not significantly affect growth and development in mice, this mutation promotes fat accumulation under normal feeding conditions and hepatosteatosis under acute fasting conditions. We show that nutrient deprivation inhibits rRNA biosynthesis, increases RP-Mdm2 interaction, and induces p53-mediated transactivation of malonyl-CoA decarboxylase (MCD), which catalyzes the degradation of malonyl-CoA to acetyl-CoA, thus modulating lipid partitioning. Fasted Mdm2(C305F) mice demonstrate attenuated MCD induction and enhanced malonyl-CoA accumulation in addition to decreased oxidative respiration and increased fatty acid accumulation in the liver. Thus, the RP-Mdm2-p53 pathway appears to function as an endogenous sensor responsible for stimulating fatty acid oxidation in response to nutrient depletion.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales/fisiología , Carboxiliasas/metabolismo , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos/fisiología , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Ribosómicas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Células Cultivadas , Embrión de Mamíferos/citología , Ayuno , Hígado Graso/genética , Hígado Graso/fisiopatología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Immunoblotting , Metabolismo de los Lípidos/genética , Ratones , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidación-Reducción , Unión Proteica , Proteínas Proto-Oncogénicas c-mdm2/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estrés Fisiológico/fisiología , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacología , Transcriptoma/efectos de los fármacos , Proteína p53 Supresora de Tumor/genética , Pérdida de Peso/genética , Pérdida de Peso/fisiología
9.
Annu Rev Nutr ; 34: 1-30, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24819326

RESUMEN

Long-chain fatty acyl-coenzyme As (CoAs) are critical regulatory molecules and metabolic intermediates. The initial step in their synthesis is the activation of fatty acids by one of 13 long-chain acyl-CoA synthetase isoforms. These isoforms are regulated independently and have different tissue expression patterns and subcellular locations. Their acyl-CoA products regulate metabolic enzymes and signaling pathways, become oxidized to provide cellular energy, and are incorporated into acylated proteins and complex lipids such as triacylglycerol, phospholipids, and cholesterol esters. Their differing metabolic fates are determined by a network of proteins that channel the acyl-CoAs toward or away from specific metabolic pathways and serve as the basis for partitioning. This review evaluates the evidence for acyl-CoA partitioning by reviewing experimental data on proteins that are believed to contribute to acyl-CoA channeling, the metabolic consequences of loss of these proteins, and the potential role of maladaptive acyl-CoA partitioning in the pathogenesis of metabolic disease and carcinogenesis.


Asunto(s)
Acilcoenzima A/metabolismo , Membrana Celular/metabolismo , Coenzima A Ligasas/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de Transporte de Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , Modelos Biológicos , Animales , Membrana Celular/enzimología , Coenzima A Ligasas/genética , Retículo Endoplásmico/enzimología , Proteínas de Transporte de Ácidos Grasos/genética , Regulación de la Expresión Génica , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas
10.
J Biol Chem ; 288(30): 21618-29, 2013 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-23766516

RESUMEN

Glucose-stimulated insulin secretion (GSIS) in pancreatic beta-cells is potentiated by fatty acids (FA). The initial step in the metabolism of intracellular FA is the conversion to acyl-CoA by long chain acyl-CoA synthetases (Acsls). Because the predominantly expressed Acsl isoforms in INS 832/13 cells are Acsl4 and -5, we characterized the role of these Acsls in beta-cell function by using siRNA to knock down Acsl4 or Acsl5. Compared with control cells, an 80% suppression of Acsl4 decreased GSIS and FA-potentiated GSIS by 32 and 54%, respectively. Knockdown of Acsl5 did not alter GSIS. Acsl4 knockdown did not alter FA oxidation or long chain acyl-CoA levels. With Acsl4 knockdown, incubation with 17 mm glucose increased media epoxyeicosatrienoic acids (EETs) and reduced cell membrane levels of EETs. Further, exogenous EETs reduced GSIS in INS 832/13 cells, and in Acsl4 knockdown cells, an EET receptor antagonist partially rescued GSIS. These results strongly suggest that Acsl4 activates EETs to form EET-CoAs that are incorporated into glycerophospholipids, thereby sequestering EETs. Exposing INS 832/13 cells to arachidonate or linoleate reduced Acsl4 mRNA and protein expression and reduced GSIS. These data indicate that Acsl4 modulates GSIS by regulating the levels of unesterified EETs and that arachidonate controls the expression of its activator Acsl4.


Asunto(s)
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Coenzima A Ligasas/metabolismo , Glucosa/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Insulina/metabolismo , Ácido 8,11,14-Eicosatrienoico/metabolismo , Acilcoenzima A/metabolismo , Animales , Western Blotting , Línea Celular Tumoral , Coenzima A Ligasas/genética , Ácidos Grasos/metabolismo , Ácidos Grasos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glicerofosfolípidos/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Insulinoma/genética , Insulinoma/metabolismo , Insulinoma/patología , Lípidos de la Membrana/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Oxidación-Reducción , Interferencia de ARN , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
Arterioscler Thromb Vasc Biol ; 33(2): 232-40, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23241406

RESUMEN

OBJECTIVE: Saturated fatty acids, such as palmitic and stearic acid, cause detrimental effects in endothelial cells and have been suggested to contribute to macrophage accumulation in adipose tissue and the vascular wall, in states of obesity and insulin resistance. Long-chain fatty acids are believed to require conversion into acyl-CoA derivatives to exert most of their detrimental effects, a reaction catalyzed by acyl-CoA synthetases (ACSLs). The objective of this study was to investigate the role of ACSL1, an ACSL isoform previously shown to mediate inflammatory effects in myeloid cells, in regulating endothelial cell responses to a saturated fatty acid-rich environment in vitro and in vivo. METHODS AND RESULTS: Saturated fatty acids caused increased inflammatory activation, endoplasmic reticulum stress, and apoptosis in mouse microvascular endothelial cells. Forced ACSL1 overexpression exacerbated the effects of saturated fatty acids on apoptosis and endoplasmic reticulum stress. However, endothelial ACSL1 deficiency did not protect against the effects of saturated fatty acids in vitro, nor did it protect insulin-resistant mice fed a saturated fatty acid-rich diet from macrophage adipose tissue accumulation or increased aortic adhesion molecule expression. CONCLUSIONS: Endothelial ACSL1 is not required for inflammatory and apoptotic effects of a saturated fatty acid-rich environment.


Asunto(s)
Apoptosis , Coenzima A Ligasas/metabolismo , Células Endoteliales/enzimología , Ácidos Grasos/metabolismo , Inflamación/enzimología , Obesidad/enzimología , Acilcoenzima A/metabolismo , Tejido Adiposo/inmunología , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Aorta/metabolismo , Bovinos , Células Cultivadas , Coenzima A Ligasas/deficiencia , Coenzima A Ligasas/genética , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Células Endoteliales/inmunología , Células Endoteliales/patología , Activación Enzimática , Inflamación/inmunología , Inflamación/patología , Resistencia a la Insulina , Molécula 1 de Adhesión Intercelular/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Macrófagos/inmunología , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/genética , Obesidad/inmunología , Obesidad/patología , Palmitoil Coenzima A/metabolismo , Interferencia de ARN , Factores de Tiempo , Transfección , Molécula 1 de Adhesión Celular Vascular/metabolismo
12.
Proc Natl Acad Sci U S A ; 109(12): E715-24, 2012 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-22308341

RESUMEN

The mechanisms that promote an inflammatory environment and accelerated atherosclerosis in diabetes are poorly understood. We show that macrophages isolated from two different mouse models of type 1 diabetes exhibit an inflammatory phenotype. This inflammatory phenotype associates with increased expression of long-chain acyl-CoA synthetase 1 (ACSL1), an enzyme that catalyzes the thioesterification of fatty acids. Monocytes from humans and mice with type 1 diabetes also exhibit increased ACSL1. Furthermore, myeloid-selective deletion of ACSL1 protects monocytes and macrophages from the inflammatory effects of diabetes. Strikingly, myeloid-selective deletion of ACSL1 also prevents accelerated atherosclerosis in diabetic mice without affecting lesions in nondiabetic mice. Our observations indicate that ACSL1 plays a critical role by promoting the inflammatory phenotype of macrophages associated with type 1 diabetes; they also raise the possibilities that diabetic atherosclerosis has an etiology that is, at least in part, distinct from the etiology of nondiabetic vascular disease and that this difference is because of increased monocyte and macrophage ACSL1 expression.


Asunto(s)
Aterosclerosis/metabolismo , Coenzima A Ligasas/metabolismo , Diabetes Mellitus/metabolismo , Macrófagos/citología , Alelos , Animales , Glucemia/metabolismo , Trasplante de Médula Ósea , Femenino , Eliminación de Gen , Humanos , Inflamación , Lípidos/química , Masculino , Ratones , Ratones Transgénicos , Modelos Biológicos , Monocitos/citología , Fenotipo , Receptores de LDL/genética
13.
Proc Natl Acad Sci U S A ; 109(5): 1667-72, 2012 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-22307628

RESUMEN

Increased flux through the glycerolipid synthesis pathway impairs the ability of insulin to inhibit hepatic gluconeogenesis, but the exact mechanism remains unknown. To determine the mechanism by which glycerolipids impair insulin signaling, we overexpressed glycerol-3-phosphate acyltransferase-1 (GPAT1) in primary mouse hepatocytes. GPAT1 overexpression impaired insulin-stimulated phosphorylation of Akt-S473 and -T308, diminished insulin-suppression of glucose production, significantly inhibited mTOR complex 2 (mTORC2) activity and decreased the association of mTOR and rictor. Conversely, in hepatocytes from Gpat1(-/-) mice, mTOR-rictor association and mTORC2 activity were enhanced. However, this increase in mTORC2 activity in Gpat1(-/-) hepatocytes was ablated when rictor was knocked down. To determine which lipid intermediate was responsible for inactivating mTORC2, we overexpressed GPAT1, AGPAT, or lipin to increase the cellular content of lysophosphatidic acid (LPA), phosphatidic acid (PA), or diacylglycerol (DAG), respectively. The inhibition of mTOR/rictor binding and mTORC2 activity coincided with the levels of PA and DAG species that contained 16:0, the preferred substrate of GPAT1. Furthermore, di-16:0-PA strongly inhibited mTORC2 activity and disassociated mTOR/rictor in vitro. Taken together, these data reveal a signaling pathway by which phosphatidic acid synthesized via the glycerol-3-phosphate pathway inhibits mTORC2 activity by decreasing the association of rictor and mTOR, thereby down-regulating insulin action. These data demonstrate a critical link between nutrient excess, TAG synthesis, and hepatic insulin resistance.


Asunto(s)
Insulina/metabolismo , Metabolismo de los Lípidos , Complejos Multiproteicos/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Transactivadores/metabolismo , Animales , Glicerol-3-Fosfato O-Aciltransferasa/genética , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Ratones Noqueados , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transactivadores/genética , Factores de Transcripción
14.
Toxicol Pathol ; 40(3): 513-21, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22215515

RESUMEN

The risk of hepatocellular carcinoma increases with the persistence of non-alcoholic fatty liver disease. Triacylglycerol synthesis is initiated by glycerol-3-phosphate acyltransferase (GPAT). Of four isoforms, GPAT1 contributes 30-50% of total liver GPAT activity, and we hypothesized that it might influence liver susceptibility to tumorigenesis. C57Bl/6 mice deficient in GPAT1 were backcrossed 6 times to C3H mice. After exposure to the carcinogen diethylnitrosamine (DEN) and the tumor promoter phenobarbital, male Gpat1⁻/⁻ mice, compared with controls (Gpat1⁺/⁺), had 93% fewer macroscopically visible nodules per liver at 21 weeks of age and 39% fewer at 34 weeks of age. Microscopically, control mice had increased numbers of foci of altered hepatocytes, particularly the basophilic subtype, as well as more, and malignant, liver neoplasms than did the Gpat1⁻/⁻ mice. At 21 weeks of age, 50% (4/8) of control mice (50%) had hepatocellular adenomas with an average multiplicity (tumors per tumor-bearing-animal) of 4.3, while none occurred in 8 Gpat1⁻/⁻ mice. At 34 weeks of age, all 15 control mice (100%) had hepatocellular adenomas with an average multiplicity of 5.2 compared to an incidence of 93% in Gpat1⁻/⁻ mice and multiplicity of 3.1. HCCs were observed in 13% of control mice and in only 6% of Gpat1⁻/⁻ mice. These data show that alterations in the formation of complex lipids catalyzed by Gpat1 reduce susceptibility to DEN-induced liver tumorigenesis.


Asunto(s)
Glicerol-3-Fosfato O-Aciltransferasa/deficiencia , Neoplasias Hepáticas Experimentales/enzimología , Animales , Proliferación Celular , Dietilnitrosamina/toxicidad , Predisposición Genética a la Enfermedad , Glicerol-3-Fosfato O-Aciltransferasa/genética , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Hepatocitos/citología , Hepatocitos/metabolismo , Hepatocitos/patología , Histocitoquímica , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas Experimentales/inducido químicamente , Neoplasias Hepáticas Experimentales/genética , Neoplasias Hepáticas Experimentales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias Experimentales , Tamaño de los Órganos , PPAR alfa/metabolismo , Fenobarbital/toxicidad , ARN Mensajero , Estadísticas no Paramétricas
15.
Mol Endocrinol ; 24(3): 657-66, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20150186

RESUMEN

When fed with a high-fat safflower oil diet for 3 wk, wild-type mice develop hepatic insulin resistance, whereas mice lacking glycerol-3-phosphate acyltransferase-1 retain insulin sensitivity. We examined early changes in the development of insulin resistance via liver and plasma metabolome analyses that compared wild-type and glycerol-3-phosphate acyltransferase-deficient mice fed with either a low-fat or the safflower oil diet for 3 wk. We reasoned that diet-induced changes in metabolites that occurred only in the wild-type mice would reflect those metabolites that were specifically related to hepatic insulin resistance. Of the identifiable metabolites (from 322 metabolites) in liver, wild-type mice fed with the high-fat diet had increases in urea cycle intermediates, consistent with increased deamination of amino acids used for gluconeogenesis. Also increased were stearoylglycerol, gluconate, glucarate, 2-deoxyuridine, and pantothenate. Decreases were observed in S-adenosylhomocysteine, lactate, the bile acid taurocholate, and 1,5-anhydroglucitol, a previously identified marker of short-term glycemic control. Of the identifiable metabolites (from 258 metabolites) in plasma, wild-type mice fed with the high-fat diet had increases in plasma stearate and two pyrimidine-related metabolites, whereas decreases were found in plasma bradykinin, alpha-ketoglutarate, taurocholate, and the tryptophan metabolite, kynurenine. This study identified metabolites previously not known to be associated with insulin resistance and points to the utility of metabolomics analysis in identifying unrecognized biochemical pathways that may be important in understanding the pathophysiology of diabetes.


Asunto(s)
Resistencia a la Insulina/fisiología , Hígado/metabolismo , Hígado/patología , Metabolómica/métodos , Animales , Desoxiuridina/metabolismo , Grasas de la Dieta/efectos adversos , Ácido Glucárico/metabolismo , Gluconatos/metabolismo , Hígado/efectos de los fármacos , Ratones , Ratones Noqueados , Modelos Biológicos , Ácido Pantoténico/metabolismo , S-Adenosilhomocisteína/metabolismo , Estearatos/metabolismo
16.
J Nutr ; 139(4): 779-83, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19193813

RESUMEN

Livers and hearts from mice deficient in glycerol-3-phosphate acyltransferase 1 (GPAT1; Gpat1(-/-)) have a decreased content of glycerolipid intermediates and triacylglycerol, an altered composition of liver phospholipids, and elevated markers of oxidative stress. Compared with control C57BL/6 mice, infection of Gpat1(-/-) mice with coxsackievirus B3 (CVB3) resulted in higher mortality, an approximately 50% increase in heart pathology, a significant increase in liver viral titers, and a 100-fold increase in heart viral titers. Moreover, heart mRNA levels for proinflammatory cytokines tumor necrosis factor-alpha, interleukin (IL)-6, and IL-1B were increased in the Gpat1(-/-) mice. Loss of Gpat1 also resulted in dysregulation of specific immune cells. Splenic dendritic cells from Gpat1(-/-) mice were fully capable of stimulating T cells from control mice; however, splenic T cells from Gpat1(-/-) mice were defective in their response to CVB3 antigen. Our data indicate that a lack of GPAT1 activity affects both innate and adaptive immune mechanisms. Innate mechanisms may be affected by altered membrane composition or host redox status, whereas the adaptive response may require GPAT1 activity itself.


Asunto(s)
Infecciones por Coxsackievirus/enzimología , Infecciones por Coxsackievirus/inmunología , Glicerol-3-Fosfato O-Aciltransferasa/inmunología , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Animales , Antígenos Virales/inmunología , Infecciones por Coxsackievirus/genética , Infecciones por Coxsackievirus/patología , Citocinas/biosíntesis , Citocinas/genética , Citocinas/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Regulación de la Expresión Génica , Glicerol-3-Fosfato O-Aciltransferasa/deficiencia , Glicerol-3-Fosfato O-Aciltransferasa/genética , Células Asesinas Naturales/enzimología , Células Asesinas Naturales/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/genética , Bazo/enzimología , Bazo/inmunología
17.
J Mol Med (Berl) ; 87(1): 85-97, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18974965

RESUMEN

The alteration of the choline metabolite profile is a well-established characteristic of cancer cells. In colorectal cancer (CRC), phosphatidylcholine is the most prominent phospholipid. In the present study, we report that lysophosphatidylcholine acyltransferase 1 (LPCAT1; NM_024830.3), the enzyme that converts lysophosphatidylcholine into phosphatidylcholine, was highly overexpressed in colorectal adenocarcinomas when compared to normal mucosas. Our microarray transcription profiling study showed a significant (p < 10(-8)) transcript overexpression in 168 colorectal adenocarcinomas when compared to ten normal mucosas. Immunohistochemical analysis of colon tumors with a polyclonal antibody to LPCAT1 confirmed the upregulation of the LPCAT1 protein. Overexpression of LPCAT1 in COS7 cells localized the protein to the endoplasmic reticulum and the mitochondria and increased LPCAT1 specific activity 38-fold. In cultured cells, overexpressed LPCAT1 enhanced the incorporation of [(14)C]palmitate into phosphatidylcholine. COS7 cells transfected with LPCAT1 showed no growth rate alteration, in contrast to the colon cancer cell line SW480, which significantly (p < 10(-5)) increased its growth rate by 17%. We conclude that LPCAT1 may contribute to total choline metabolite accumulation via phosphatidylcholine remodeling, thereby altering the CRC lipid profile, a characteristic of malignancy.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa/biosíntesis , Adenocarcinoma/metabolismo , Neoplasias Colorrectales/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/biosíntesis , Adulto , Anciano , Animales , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Colina/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos
18.
Biochim Biophys Acta ; 1771(7): 830-8, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17493869

RESUMEN

Glycerol 3-phosphate acyltransferase-1 (GPAT1), catalyzes the committed step in phospholipid and triacylglycerol synthesis. Because both GPAT1 and carnitine-palmitoyltransferase 1 are located on the outer mitochondrial membrane (OMM) it has been suggested that their reciprocal regulation controls acyl-CoA metabolism at the OMM. To determine whether GPAT1, like carnitine-palmitoyltransferase 1, is enriched in both mitochondrial contact sites and OMM, and to correlate protein location and enzymatic function, we used Percoll and sucrose gradient fractionation of rat liver to obtain submitochondrial fractions. Most GPAT1 protein was present in a vesicular membrane fraction associated with mitochondria (MAV) but GPAT specific activity in this fraction was low. In contrast, highest GPAT1 specific activity was present in purified mitochondria. Contact sites from crude mitochondria, which contained markers for both endoplasmic reticulum (ER) and mitochondria, also showed high expression of GPAT1 protein but low specific activity, whereas contact sites isolated from purified mitochondria lacked ER markers and expressed highly active GPAT1. To determine how GPAT1 is targeted to mitochondria, recombinant protein was synthesized in vitro and its incorporation into crude and purified mitochondria was assayed. GPAT1 was rapidly incorporated into mitochondria, but not into microsomes. Incorporation was ATP-driven, and lack of GPAT1 removal by alkali and a chaotropic agent showed that GPAT1 had become an integral membrane protein after incorporation. These results demonstrate that two pools of GPAT1 are present in rat liver mitochondria: an active one, located in OMM and a less active one, located in membranes (ER-contact sites and mitochondrial associated vesicles) associated with both mitochondria and ER.


Asunto(s)
Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Mitocondrias Hepáticas/enzimología , Membranas Mitocondriales/enzimología , Partículas Submitocóndricas/enzimología , Adenosina Trifosfato/farmacología , Animales , Biomarcadores/metabolismo , Fraccionamiento Celular , Mezclas Complejas , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/metabolismo , Masculino , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/ultraestructura , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/ultraestructura , Transporte de Proteínas/efectos de los fármacos , Ratas , Ratas Wistar , Partículas Submitocóndricas/efectos de los fármacos , Partículas Submitocóndricas/ultraestructura
19.
J Biol Chem ; 282(20): 14807-15, 2007 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-17389595

RESUMEN

Fatty liver is commonly associated with insulin resistance and type 2 diabetes, but it is unclear whether triacylglycerol accumulation or an excess flux of lipid intermediates in the pathway of triacyglycerol synthesis are sufficient to cause insulin resistance in the absence of genetic or diet-induced obesity. To determine whether increased glycerolipid flux can, by itself, cause hepatic insulin resistance, we used an adenoviral construct to overexpress glycerol-sn-3-phosphate acyltransferase-1 (Ad-GPAT1), the committed step in de novo triacylglycerol synthesis. After 5-7 days, food intake, body weight, and fat pad weight did not differ between Ad-GPAT1 and Ad-enhanced green fluorescent protein control rats, but the chow-fed Ad-GPAT1 rats developed fatty liver, hyperlipidemia, and insulin resistance. Liver was the predominant site of insulin resistance; Ad-GPAT1 rats had 2.5-fold higher hepatic glucose output than controls during a hyperinsulinemic-euglycemic clamp. Hepatic diacylglycerol and lysophosphatidate were elevated in Ad-GPAT1 rats, suggesting a role for these lipid metabolites in the development of hepatic insulin resistance, and hepatic protein kinase Cepsilon was activated, providing a potential mechanism for insulin resistance. Ad-GPAT1-treated rats had 50% lower hepatic NF-kappaB activity and no difference in expression of tumor necrosis factor-alpha and interleukin-beta, consistent with hepatic insulin resistance in the absence of increased hepatic inflammation. Glycogen synthesis and uptake of 2-deoxyglucose were reduced in skeletal muscle, suggesting mild peripheral insulin resistance associated with a higher content of skeletal muscle triacylglycerol. These results indicate that increased flux through the pathway of hepatic de novo triacylglycerol synthesis can cause hepatic and systemic insulin resistance in the absence of obesity or a lipogenic diet.


Asunto(s)
Glicerol-3-Fosfato O-Aciltransferasa/biosíntesis , Resistencia a la Insulina , Metabolismo de los Lípidos , Hígado/enzimología , Adenoviridae , Animales , Desoxiglucosa/metabolismo , Hígado Graso/enzimología , Hígado Graso/genética , Hígado Graso/patología , Expresión Génica , Glicerol-3-Fosfato O-Aciltransferasa/genética , Glucógeno/metabolismo , Hiperlipidemias/enzimología , Hiperlipidemias/genética , Hiperlipidemias/patología , Resistencia a la Insulina/genética , Interleucina-1beta/biosíntesis , Metabolismo de los Lípidos/genética , Hígado/patología , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , FN-kappa B/biosíntesis , Proteína Quinasa C-epsilon/metabolismo , Ratas , Ratas Wistar , Transducción Genética , Triglicéridos/biosíntesis , Factor de Necrosis Tumoral alfa/biosíntesis
20.
Diabetes ; 56(4): 1143-52, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17259370

RESUMEN

Rosiglitazone is an insulin-sensitizing agent that has recently been shown to exert beneficial effects on atherosclerosis. In addition to peroxisome proliferator-activated receptor (PPAR)-gamma, rosiglitazone can affect other targets, such as directly inhibiting recombinant long-chain acyl-CoA synthetase (ACSL)-4 activity. Because it is unknown if ACSL4 is expressed in vascular cells involved in atherosclerosis, we investigated the ability of rosiglitazone to inhibit ACSL activity and fatty acid partitioning in human and murine arterial smooth muscle cells (SMCs) and macrophages. Human and murine SMCs and human macrophages expressed Acsl4, and rosiglitazone inhibited Acsl activity in these cells. Furthermore, rosiglitazone acutely inhibited partitioning of fatty acids into phospholipids in human SMCs and inhibited fatty acid partitioning into diacylglycerol and triacylglycerol in human SMCs and macrophages through a PPAR-gamma-independent mechanism. Conversely, murine macrophages did not express ACSL4, and rosiglitazone did not inhibit ACSL activity in these cells, nor did it affect acute fatty acid partitioning into cellular lipids. Thus, rosiglitazone inhibits ACSL activity and fatty acid partitioning in human and murine SMCs and in human macrophages through a PPAR-gamma-independent mechanism likely to be mediated by ACSL4 inhibition. Therefore, rosiglitazone might alter the biological effects of fatty acids in these cells and in atherosclerosis.


Asunto(s)
Coenzima A Ligasas/antagonistas & inhibidores , Diglicéridos/metabolismo , Ácidos Grasos/metabolismo , Macrófagos/fisiología , Músculo Liso Vascular/fisiología , PPAR gamma/fisiología , Tiazolidinedionas/farmacología , Triglicéridos/metabolismo , Secuencia de Aminoácidos , Animales , Aorta , Coenzima A Ligasas/genética , Cartilla de ADN , Humanos , Hipoglucemiantes/farmacología , Macrófagos/efectos de los fármacos , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Monocitos/fisiología , Músculo Liso Vascular/efectos de los fármacos , Fragmentos de Péptidos/química , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rosiglitazona
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA