Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Cell Death Dis ; 15(5): 328, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734740

RESUMEN

We created valrubicin-loaded immunoliposomes (Val-ILs) using the antitumor prodrug valrubicin, a hydrophobic analog of daunorubicin. Being lipophilic, valrubicin readily incorporated Val-lLs that were loaded with specific antibodies. Val-ILs injected intravenously rapidly reached the bone marrow and spleen, indicating their potential to effectively target cancer cells in these areas. Following the transplantation of human pediatric B-cell acute lymphoblastic leukemia (B-ALL), T-cell acute lymphoblastic leukemia (T-ALL), or acute myeloid leukemia (AML) in immunodeficient NSG mice, we generated patient-derived xenograft (PDX) models, which were treated with Val-ILs loaded with antibodies to target CD19, CD7 or CD33. Only a small amount of valrubicin incorporated into Val-ILs was needed to induce leukemia cell death in vivo, suggesting that this approach could be used to efficiently treat acute leukemia cells. We also demonstrated that Val-ILs could reduce the risk of contamination of CD34+ hematopoietic stem cells by acute leukemia cells during autologous peripheral blood stem cell transplantation, which is a significant advantage for clinical applications. Using EL4 lymphoma cells on immunocompetent C57BL/6 mice, we also highlighted the potential of Val-ILs to target immunosuppressive cell populations in the spleen, which could be valuable in impairing cancer cell expansion, particularly in lymphoma cases. The most efficient Val-ILs were found to be those loaded with CD11b or CD223 antibodies, which, respectively, target the myeloid-derived suppressor cells (MDSC) or the lymphocyte-activation gene 3 (LAG-3 or CD223) on T4 lymphocytes. This study provides a promising preclinical demonstration of the effectiveness and ease of preparation of Val-ILs as a novel nanoparticle technology. In the context of hematological cancers, Val-ILs have the potential to be used as a precise and effective therapy based on targeted vesicle-mediated cell death.


Asunto(s)
Liposomas , Animales , Humanos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Muerte Celular/efectos de los fármacos , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/patología , Neoplasias Hematológicas/terapia , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/inmunología , Línea Celular Tumoral , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología
2.
J Med Chem ; 67(3): 2188-2201, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38270503

RESUMEN

Detection of biomarkers to diagnose, treat, and predict the efficacy of cancer therapies is a major clinical challenge. Currently, biomarkers such as PD-L1 are commonly detected from biopsies, but this approach does not take into account the spatiotemporal heterogeneity of their expression in tumors. A solution consists in conjugating monoclonal antibodies (mAbs) targeting these biomarkers with multimodal imaging probes. In this study, a bimodal [111In]-DOTA-aza-BODIPY probe emitting in the near-infrared (NIR) was grafted onto mAbs targeting murine or human PD-L1 either in a site-specific or random manner. In vitro, these bimodal mAbs showed a good stability and affinity for PD-L1. In vivo, they targeted specifically PD-L1 and were detected by both fluorescence and SPECT imaging. A significant benefit of site-specific conjugation on glycans was observed compared to random conjugation on lysine. The potential of this bimodal agent was also highlighted, thanks to a proof of concept of fluorescence-guided surgery in a human PD-L1+ tumor model.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Humanos , Animales , Ratones , Antígeno B7-H1/metabolismo , Anticuerpos Monoclonales , Neoplasias/diagnóstico por imagen , Tomografía Computarizada de Emisión de Fotón Único , Biomarcadores , Línea Celular Tumoral
3.
Photodiagnosis Photodyn Ther ; 44: 103816, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37783257

RESUMEN

CONTEXT: Old-generation photosensitizers are minimally used in current photodynamic therapy (PDT) because they absorb in the UV/blue/green region of the spectrum where biological tissues are generally highly absorbing. The UV/blue light of Cherenkov Radiation (CR) from nuclear disintegration of beta-emitter radionuclides shows promise as an internal light source to activate these photosensitizers within tissue. Outline of the study: 1) radionuclide choice and Cherenkov Radiation, 2) Photosensitizer choice, synthesis and radiolabeling, 3) CR-induced fluorescence, 4) Verification of ROS formation, 5) CR-induced PDT with either free eosine and free CR emitter, or with radiolabelled eosin. RESULTS: Cherenkov Radiation Energy Transfer (CRET) from therapeutic radionuclides (90Y) and PET imaging radionuclides (18F, 68Ga) to eosin was shown by spectrofluorimetry and in vitro, and was shown to result in a PDT process. The feasibility of CR-induced PDT (CR-PDT) was demonstrated in vitro on B16F10 murine melanoma cells mixing free eosin (λabs = 524 nm, ΦΔ 0.67) with free CR-emitter [18F]-FDG under their respective intrinsic toxicity levels (0.5 mM/8 MBq) and by trapping singlet oxygen with diphenylisobenzofuran (DPBF). An eosin-DOTAGA-chelate conjugate 1 was synthesized and radiometallated with CR-emitter [68Ga] allowed to reach 25 % cell toxicity at 0.125 mM/2 MBq, i.e. below the toxicity threshold of each component measured on controls. Incubation time was carefully examined, especially for CR emitters, in light of its toxicity, and its CR-emitting yield expected to be 3 times as much for 68Ga than 18F (considering their ß particle energy) per radionuclide decay, while its half-life is about twice as small. PERSPECTIVE: This study showed that in complete darkness, as it is at depth in tissues, PDT could proceed relying on CR emission from radionuclides only. Interestingly, this study also repurposed PET imaging radionuclides, such as 68Ga, to trigger a therapeutic event (PDT), albeit in a modest extent. Moreover, although it remains modest, such a PDT approach may be used to achieve additional tumoricidal effect to RIT treatment, where radionuclides, such as 90Y, are strong CR emitters, i.e. very potent light source for photosensitizer activation.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes , Animales , Ratones , Fármacos Fotosensibilizantes/farmacología , Fotoquimioterapia/métodos , Radioisótopos de Galio , Eosina Amarillenta-(YS) , Radioisótopos
4.
Molecules ; 28(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37298806

RESUMEN

In the field of research on medicinal plants from the Armenian flora, the phytochemical study of two Scabiosa L. species, S. caucasica M. Bieb. and S. ochroleuca L. (Caprifoliaceae), has led to the isolation of five previously undescribed oleanolic acid glycosides from an aqueous-ethanolic extract of the roots: 3-O-α-L-rhamnopyranosyl-(1→3)-ß-D-glucopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28-O-ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranosyl ester, 3-O-ß-D-xylopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-ß-D-glucopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28-O-ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranosyl ester, 3-O-ß-D-xylopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-ß-D-glucopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid, 3-O-ß-D-xylopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-ß-D-xylopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28-O-ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranosyl ester, 3-O-α-L-rhamnopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28-O-ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranosyl ester. Their full structural elucidation required extensive 1D and 2D NMR experiments, as well as mass spectrometry analysis. For the biological activity of the bidesmosidic saponins and the monodesmosidic saponin, their cytotoxicity on a mouse colon cancer cell line (MC-38) was evaluated.


Asunto(s)
Caprifoliaceae , Dipsacaceae , Ácido Oleanólico , Saponinas , Triterpenos , Animales , Ratones , Glicósidos/farmacología , Glicósidos/química , Ácido Oleanólico/farmacología , Ácido Oleanólico/química , Saponinas/química , Caprifoliaceae/química , Triterpenos/farmacología , Triterpenos/química
5.
Mol Pharm ; 20(7): 3613-3622, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37307296

RESUMEN

Noninvasive imaging of idiopathic pulmonary fibrosis (IPF) remains a challenge. The aim of this study was to develop an antibody-based radiotracer targeting Lysyl Oxidase-like 2 (LOXL2), an enzyme involved in the fibrogenesis process, for SPECT/CT imaging of pulmonary fibrosis. The bifunctional chelator DOTAGA-PEG4-NH2 was chemoenzymatically conjugated to the murine antibody AB0023 using microbial transglutaminase, resulting in a degree of labeling (number of chelators per antibody) of 2.3. Biolayer interferometry confirmed that the binding affinity of DOTAGA-AB0023 to LOXL2 was preserved with a dissociation constant of 2.45 ± 0.04 nM. DOTAGA-AB0023 was then labeled with 111In and in vivo experiments were carried out in a mice model of progressive pulmonary fibrosis induced by intratracheal administration of bleomycin. [111In]In-DOTAGA-AB0023 was injected in three groups of mice (control, fibrotic, and treated with nintedanib). SPECT/CT images were recorded over 4 days p.i. and an ex vivo biodistribution study was performed by gamma counting. A significant accumulation of the tracer in the lungs of the fibrotic mice was observed at D18 post-bleomycin. Interestingly, the tracer uptake was found selectively upregulated in fibrotic lesions observed on CT scans. Images of mice that received the antifibrotic drug nintedanib from D8 up to D18 showed a decrease in [111In]In-DOTAGA-AB0023 lung uptake associated with a decrease in pulmonary fibrosis measured by CT scan. In conclusion, we report the first radioimmunotracer targeting the protein LOXL2 for nuclear imaging of IPF. The tracer showed promising results in a preclinical model of bleomycin-induced pulmonary fibrosis, with high lung uptake in fibrotic areas, and accounted for the antifibrotic activity of nintedanib.


Asunto(s)
Fibrosis Pulmonar Idiopática , Proteína-Lisina 6-Oxidasa , Animales , Ratones , Proteína-Lisina 6-Oxidasa/metabolismo , Distribución Tisular , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/diagnóstico por imagen , Pulmón/metabolismo , Fibrosis , Tomografía Computarizada de Emisión de Fotón Único , Bleomicina , Anticuerpos/metabolismo
6.
Bioconjug Chem ; 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36971386

RESUMEN

Among all approaches in molecular imaging, the combination of near-infrared fluorescence imaging (NIRF) with radioisotopic imaging (PET or SPECT) allows one to benefit from the advantages of each of the imaging techniques, which are very complementary and of comparable sensitivity. To this end, the construction of monomolecular multimodal probes (MOMIP) has made it possible to combine the two imaging modalities within the same molecule, thus limiting the number of bioconjugation sites and yielding more homogeneous conjugates compared with those prepared through sequential conjugation. However, in order to optimize the bioconjugation strategy and, at the same time, the pharmacokinetic and biodistribution properties of the resulting imaging agent, a site-specific approach may be preferred. To further investigate this hypothesis, random and glycan-based site-specific bioconjugation approaches were compared thanks to a SPECT/NIRF bimodal probe based on an aza-BODIPY fluorophore. The overall experiments conducted in vitro and in vivo on HER2-expressing tumors demonstrated a clear superiority of the site-specific approach to improve affinity, specificity, and biodistribution of the bioconjugates.

7.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36499246

RESUMEN

Cancer is a major cause of death worldwide and especially in high- and upper-middle-income countries. Despite recent progress in cancer therapies, such as chimeric antigen receptor T (CAR-T) cells or antibody-drug conjugate (ADC), new targets expressed by the tumor cells need to be identified in order to selectively drive these innovative therapies to tumors. In this context, IL-1RAP recently showed great potential to become one of these new targets for cancer therapy. IL-1RAP is highly involved in the inflammation process through the interleukins 1, 33, and 36 (IL-1, IL-33, IL-36) signaling pathways. Inflammation is now recognized as a hallmark of carcinogenesis, suggesting that IL-1RAP could play a role in cancer development and progression. Furthermore, IL-1RAP was found overexpressed on tumor cells from several hematological and solid cancers, thus confirming its potential involvement in carcinogenesis. This review will first describe the structure and genetics of IL-1RAP as well as its role in tumor development. Finally, a focus will be made on the therapies based on IL-1RAP targeting, which are now under preclinical or clinical development.


Asunto(s)
Neoplasias , Humanos , Neoplasias/metabolismo , Interleucina-1
8.
Pharmaceutics ; 14(11)2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36365207

RESUMEN

Cancer immunotherapy has tremendous promise, but it has yet to be clinically applied in a wider variety of tumor situations. Many therapeutic combinations are envisaged to improve their effectiveness. In this way, strategies capable of inducing immunogenic cell death (e.g., doxorubicin, radiotherapy, hyperthermia) and the reprogramming of the immunosuppressive tumor microenvironment (TME) (e.g., M2-to-M1-like macrophages repolarization of tumor-associated macrophages (TAMs)) are particularly appealing to enhance the efficacy of approved immunotherapies (e.g., immune checkpoint inhibitors, ICIs). Due to their modular construction and versatility, iron oxide-based nanomedicines such as superparamagnetic iron oxide nanoparticles (SPIONs) can combine these different approaches in a single agent. SPIONs have already shown their safety and biocompatibility and possess both drug-delivery (e.g., chemotherapy, ICIs) and magnetic capabilities (e.g., magnetic hyperthermia (MHT), magnetic resonance imaging). In this review, we will discuss the multiple applications of SPIONs in cancer immunotherapy, focusing on their theranostic properties to target TAMs and to generate MHT. The first section of this review will briefly describe immune targets for NPs. The following sections will deal with the overall properties of SPIONs (including MHT). The last section is dedicated to the SPION-induced immune response through its effects on TAMs and MHT.

9.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36293532

RESUMEN

The human leucine-rich repeat-containing protein 15 (LRRC15) is a membrane protein identified as a marker of CAF (cancer-associated fibroblast) cells whose overexpression is positively correlated with cancer grade and outcome. Nuclear molecular imaging (i.e., SPECT and PET) to track LRRC15 expression could be very useful in guiding further therapeutic strategies. In this study, we developed an ScFv mouse phage-display library to obtain small fragment antibodies against human LRRC15 for molecular imaging purposes. Mice were immunized with recombinant human LRRC15 (hLRRC15), and lymph node cells were harvested for ScFv (single-chain variable fragment) phage-display analysis. The built library was used for panning on cell lines with constitutive or induced expression after transfection. The choice of best candidates was performed by screening various other cell lines, using flow cytometry. The selected candidates were reformatted into Cys-ScFv or Cys-diabody by addition of cysteine, and cloned in mammalian expression vectors to obtain batches of small fragments that were further used in site-specific radiolabeling tests. The obtained library was 1.2 × 107 cfu/µg with an insertion rate >95%. The two panning rounds performed on cells permittedenrichment of 2 × 10−3. Screening with flow cytometry allowed us to identify 28 specific hLRRC15 candidates. Among these, two also recognized murine LRCC15 and were reformatted into Cys-ScFv and Cys-diabody. They were expressed transiently in a mammalian system to obtain 1.0 to 4.5 mg of Cys fragments ready for bioconjugation and radiolabeling. Thus, in this paper, we demonstrate the relevance of the phage-display ScFv library approach for the fast-track development of small antibodies for imaging and/or immunotherapy purposes.


Asunto(s)
Bacteriófagos , Anticuerpos de Cadena Única , Humanos , Ratones , Animales , Biblioteca de Péptidos , Cisteína , Leucina , Ensayo de Inmunoadsorción Enzimática , Proteínas de la Membrana , Bacteriófagos/metabolismo , Mamíferos/metabolismo
10.
Cancer Cell ; 40(2): 136-152.e12, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35051357

RESUMEN

Chemotherapy with anti PD-1/PD-L1 antibodies has become the standard of care for patients with metastatic non-small cell lung cancer (mNSCLC). Using lung tumor models, where pemetrexed and cisplatin (PEM/CDDP) chemotherapy remains unable to synergize with immune checkpoint inhibitors (ICIs), we linked the failure of this treatment with its inability to induce CXCL10 expression and CD8+ T cell recruitment. Using drug screening, we showed that combining a MEK inhibitor (MEKi) with PEM/CDDP triggers CXCL10 secretion by cancer cells and CD8+ T cell recruitment, sensitizing it to ICIs. PEM/CDDP plus a MEKi promotes optineurin (OPTN)-dependent mitophagy, resulting in CXCL10 production in a mitochondrial DNA- and TLR9-dependent manner. TLR9 or autophagy/mitophagy inhibition abolishes the anti-tumor efficacy of PEM/CDDP plus MEKi/anti-PD-L1 therapy. In human NSCLCs, high OPTN, TLR9, and CXCL10 expression is associated with a better response to ICIs. Our results underline the role of TLR9- and OPTN-dependent mitophagy in enhancing chemoimmunotherapy efficacy.


Asunto(s)
Quimiocina CXCL10/genética , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Autofagia/efectos de los fármacos , Autofagia/genética , Antígeno B7-H1/antagonistas & inhibidores , Biomarcadores de Tumor , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/patología , Línea Celular Tumoral , Quimiocina CXCL10/metabolismo , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Humanos , Proteínas de Punto de Control Inmunitario/genética , Proteínas de Punto de Control Inmunitario/metabolismo , Ratones , Mitofagia/genética , Mitofagia/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Unión Proteica , Inhibidores de Proteínas Quinasas/uso terapéutico , Transducción de Señal , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Cells ; 10(12)2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34943901

RESUMEN

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancers and is not eligible for hormone and anti-HER2 therapies. Identifying therapeutic targets and associated biomarkers in TNBC is a clinical challenge to improve patients' outcome and management. High infiltration of CD206+ M2-like macrophages in the tumor microenvironment (TME) indicates poor prognosis and survival in TNBC patients. As we previously showed that membrane expression of GRP94, an endoplasmic reticulum chaperone, was associated with the anti-inflammatory profile of human PBMC-derived M2 macrophages, we hypothesized that intra-tumoral CD206+ M2 macrophages expressing GRP94 may represent innovative targets in TNBC for theranostic purposes. We demonstrate in a preclinical model of 4T1 breast tumor-bearing BALB/c mice that (i) CD206-expressing M2-like macrophages in the TME of TNBC can be specifically detected and quantified using in vivo SPECT imaging with 99mTc-Tilmanocept, and (ii) the inhibition of GRP94 with the chemical inhibitor PU-WS13 induces a decrease in CD206-expressing M2-like macrophages in TME. This result correlated with reduced tumor growth and collagen content, as well as an increase in CD8+ cells in the TME. 99mTc-Tilmanocept SPECT imaging might represent an innovative non-invasive strategy to quantify CD206+ tumor-associated macrophages as a biomarker of anti-GRP94 therapy efficacy and TNBC tumor aggressiveness.


Asunto(s)
Receptor de Manosa/genética , Glicoproteínas de Membrana/genética , Neoplasias de la Mama Triple Negativas/genética , Microambiente Tumoral/genética , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Línea Celular Tumoral , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Dextranos/farmacología , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Macrófagos/metabolismo , Macrófagos/patología , Mananos/farmacología , Glicoproteínas de Membrana/antagonistas & inhibidores , Ratones , Transducción de Señal/efectos de los fármacos , Pentetato de Tecnecio Tc 99m/análogos & derivados , Pentetato de Tecnecio Tc 99m/farmacología , Tomografía Computarizada de Emisión de Fotón Único , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología
13.
Biology (Basel) ; 10(9)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34571713

RESUMEN

Glycoprotein-A repetitions predominant (GARP) is the docking receptor for latent transforming growth factor (LTGF-ß) and promotes its activation. In cancer, increased GARP expression has been found in many types of cancer. GARP is expressed by regulatory T cells and platelets in the tumor microenvironment (TME) and can be also expressed by tumor cells themselves. Thus, GARP can be widely present in tumors in which it plays a major role in the production of active TGF-ß, contributing to immune evasion and cancer progression via the GARP-TGF-ß pathway. The objective of this review is to highlight GARP expression and function in cancer and to evaluate the potential of membrane GARP as a predictive and therapeutic follow-up biomarker that could be assessed, in real time, by molecular imaging. Moreover, as GARP can be secreted, a focus will also be made on soluble GARP as a circulating biomarker.

14.
EJNMMI Res ; 11(1): 92, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34542689

RESUMEN

BACKGROUND: During anthracycline treatment of cancer, there is a lack for biomarkers of cardiotoxicity besides the cardiac dysfunction. The objective of the present study was to compare [18F]FDG and [123I]MIBG (metaiodobenzylguanidine) in a longitudinal study in a doxorubicin-induced cardiotoxicity rat model. METHODS: Male Wistar Han rats were intravenously administered 3 times at 10 days' interval with saline or doxorubicin (5 mg/kg). [123I]MIBG SPECT/CT (single photon emission computed tomography-computed tomography) and simultaneous [18F]FDG PET (positron emission tomography)/7 Tesla cardiac MR (magnetic resonance) imaging acquisitions were performed at 24 h interval before first doxorubicin / saline injection and every 2 weeks during 6 weeks. At 6 weeks, the heart tissue was collected for histomorphometry measurements. RESULTS: At week 4, left ventricle (LV) end-diastolic volume was significantly reduced in the doxorubicin group. At week 6, the decreased LV end-diastolic volume was maintained, and LV end-systolic volume was increased resulting in a significant reduction of LV ejection fraction (47 ± 6% vs. 70 ± 3%). At weeks 4 and 6, but not at week 2, myocardial [18F]FDG uptake was decreased compared with the control group (respectively, 4.2 ± 0.5%ID/g and 9.2 ± 0.8%ID/g at week 6). Moreover, [18F]FDG cardiac uptake correlated with cardiac function impairment. In contrast, from week 2, a significant decrease of myocardial [123I]MIBG heart to mediastinum ratio was detected in the doxorubicin group and was maintained at weeks 4 and 6 with a 45.6% decrease at week 6. CONCLUSION: This longitudinal study precises that after doxorubicin treatment, cardiac [123I]MIBG uptake is significantly reduced as early as 2 weeks followed by the decrease of the LV end-diastolic volume and [18F]FDG uptake at 4 weeks and finally by the increase of LV end-systolic volume and decrease of LV ejection fraction at 6 weeks. Cardiac innervation imaging should thus be considered as an early key feature of anthracycline cardiac toxicity.

15.
J Med Chem ; 64(15): 11063-11073, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34338511

RESUMEN

A water-soluble fluorescent aza-BODIPY platform (Wazaby) was prepared and functionalized by a polyazamacrocycle agent and a bioconjugable arm. The resulting fluorescent derivative was characterized and bioconjugated onto a trastuzumab monoclonal antibody as a vector. After bioconjugation, the imaging agent appeared to be stable in serum (>72 h at 37 °C) and specifically labeled HER-2-positive breast tumors slices. The bioconjugate was radiolabeled with [111In] indium and studied in vivo. The developed monomolecular multimodal imaging probe (MOMIP) is water-soluble and chemically and photochemically stable, emits in the near infrared (NIR) region (734 nm in aqueous media), and displays a good quantum yield of fluorescence (around 15%). Single-photon emission-computed tomography and fluorescence imaging have been performed in nude mice bearing HER2-overexpressing HCC1954 human breast cancer xenografts and have evidenced the good tumor targeting of the [111In] In bimodal agent. Finally, the proof of concept of using it as a new tool for fluorescence-guided surgery has been shown.


Asunto(s)
Compuestos de Boro/química , Neoplasias de la Mama/diagnóstico por imagen , Desarrollo de Medicamentos , Colorantes Fluorescentes/química , Imagen Óptica , Tomografía Computarizada de Emisión de Fotón Único , Animales , Anticuerpos Monoclonales/química , Compuestos de Boro/síntesis química , Relación Dosis-Respuesta a Droga , Femenino , Colorantes Fluorescentes/síntesis química , Células Hep G2 , Humanos , Neoplasias Mamarias Experimentales/diagnóstico por imagen , Ratones , Ratones Desnudos , Estructura Molecular , Solubilidad , Relación Estructura-Actividad , Agua/química
16.
J Med Chem ; 64(12): 8564-8578, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34107209

RESUMEN

Neurotensin receptor 1 (NTS1) is involved in the development and progression of numerous cancers, which makes it an interesting target for the development of diagnostic and therapeutic agents. A small molecule NTS1 antagonist, named [177Lu]Lu-IPN01087, is currently evaluated in phase I/II clinical trials for the targeted therapy of neurotensin receptor-positive cancers. In this study, we synthesized seven compounds based on the structure of NTS1 antagonists, bearing different chelating agents, and radiolabeled them with gallium-68 for PET imaging. These compounds were evaluated in vitro and in vivo in mice bearing a HT-29 xenograft. The compound [68Ga]Ga-bisNODAGA-16 showed a promising biodistribution profile with mainly signal in tumor (4.917 ± 0.776%ID/g, 2 h post-injection). Its rapid clearance from healthy tissues led to high tumor-to-organ ratios, resulting in highly contrasted PET images. These results were confirmed on subcutaneous xenografts of AsPC-1 tumor cells, a model of NTS1-positive human pancreatic adenocarcinoma.


Asunto(s)
Adamantano/análogos & derivados , Quelantes/química , Imidazoles/química , Neoplasias/diagnóstico por imagen , Radiofármacos/química , Receptores de Neurotensina/metabolismo , Adamantano/síntesis química , Adamantano/química , Adamantano/farmacocinética , Animales , Línea Celular Tumoral , Quelantes/síntesis química , Quelantes/farmacocinética , Radioisótopos de Galio/química , Humanos , Imidazoles/síntesis química , Imidazoles/farmacocinética , Ratones , Neoplasias/metabolismo , Tomografía de Emisión de Positrones , Radiofármacos/síntesis química , Radiofármacos/farmacocinética
17.
Eur J Med Chem ; 220: 113483, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-33915372

RESUMEN

Three near-infrared (NIR-I) optical theranostic systems were synthesized, characterized and studied in vitro and in vivo. These original homo-bimetallic gold(I)-based aza-BODIPY complexes proved to be trackable through near-infrared optical imaging in cells and in mice. They display anti-proliferative properties in micromolar range against human and murine cancer cell lines (4T1, MDA-MB-231, CT26, and SW480). Moreover, the injection of the most promising theranostic agent in CT26 tumor-bearing BALB/c mice induced a significant anti-cancer activity.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Colorantes Fluorescentes/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Compuestos Aza/química , Compuestos Aza/farmacología , Compuestos de Boro/química , Compuestos de Boro/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Oro/química , Oro/farmacología , Humanos , Rayos Infrarrojos , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Imagen Óptica , Relación Estructura-Actividad , Células Tumorales Cultivadas
18.
Eur J Nucl Med Mol Imaging ; 48(10): 3058-3074, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33580818

RESUMEN

PURPOSE: Idiopathic pulmonary fibrosis (IPF) is a progressive disease with poor outcome and limited therapeutic options. Imaging of IPF is limited to high-resolution computed tomography (HRCT) which is often not sufficient for a definite diagnosis and has a limited impact on therapeutic decision and patient management. Hypoxia of the lung is a significant feature of IPF but its role on disease progression remains elusive. Thus, the aim of our study was to evaluate hypoxia imaging with [18F]FMISO as a predictive biomarker of disease progression and therapy efficacy in preclinical models of lung fibrosis in comparison with [18F]FDG. METHODS: Eight-week-old C57/BL6 mice received an intratracheal administration of bleomycin (BLM) at day (D) 0 to initiate lung fibrosis. Mice received pirfenidone (300 mg/kg) or nintedanib (60 mg/kg) by daily gavage from D9 to D23. Mice underwent successive PET/CT imaging at several stages of the disease (baseline, D8/D9, D15/D16, D22/D23) with [18F]FDG and [18F]FMISO. Histological determination of the lung expression of HIF-1α and GLUT-1 was performed at D23. RESULTS: We demonstrate that mean lung density on CT as well as [18F]FDG and [18F]FMISO uptakes are upregulated in established lung fibrosis (1.4-, 2.6- and 3.2-fold increase respectively). At early stages, lung areas with [18F]FMISO uptake are still appearing normal on CT scans and correspond to areas which will deteriorate towards fibrotic lesions at later timepoints. Nintedanib and pirfenidone dramatically and rapidly decreased mean lung density on CT as well as [18F]FDG and [18F]FMISO lung uptakes (pirfenidone: 1.2-, 2.9- and 2.6-fold decrease; nintedanib: 1.2-, 2.3- and 2.5-fold decrease respectively). Early [18F]FMISO lung uptake was correlated with aggressive disease progression and better nintedanib efficacy. CONCLUSION: [18F]FMISO PET imaging is a promising tool to early detect and monitor lung fibrosis progression and therapy efficacy.


Asunto(s)
Fluorodesoxiglucosa F18 , Fibrosis Pulmonar Idiopática , Animales , Biomarcadores , Progresión de la Enfermedad , Humanos , Hipoxia , Fibrosis Pulmonar Idiopática/diagnóstico por imagen , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Ratones , Misonidazol/análogos & derivados , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones , Radiofármacos
19.
Cell Death Dis ; 12(1): 114, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33483465

RESUMEN

The role of GRP94, an endoplasmic reticulum (ER) stress protein with both pro- and anti-inflammatory functions, has not been investigated in macrophages during ER stress, whereas ER stress has been reported in many diseases involving macrophages. In this work, we studied GRP94 in M1/LPS + IFNγ and M2/IL-4 primary macrophages derived from human monocytes (isolated from buffy coats), in basal and ER stress conditions induced by thapsigargin (Tg), an inducer of ER calcium depletion and tunicamycin (Tm), an inhibitor of N-glycosylation. We found that GRP94 was expressed on the membrane of M2 but not M1 macrophages. In M2, Tg, but not Tm, while decreased GRP94 content in the membrane, it induced its secretion. This correlated with the induction of a pro-inflammatory profile, which was dependent on the UPR IRE1α arm activation and on a functional GRP94. As we previously reported that GRP94 associated with complement C3 at the extracellular level, we analyzed C3 and confirmed GRP94-C3 interaction in our experimental model. Further, Tg increased this interaction and, in these conditions, C3b and cathepsin L were detected in the extracellular medium where GRP94 co-immunoprecipitated with C3 and C3b. Finally, we showed that the C3b inactivated fragment, iC3b, only present on non-stressed M2, depended on functional GRP94, making both GRP94 and iC3b potential markers of M2 cells. In conclusion, our results show that GRP94 is co-secreted with C3 under ER stress conditions which may facilitate its cleavage by cathepsin L, thus contributing to the pro-inflammatory profile observed in stressed M2 macrophages.


Asunto(s)
Complemento C3/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Inmunidad Innata/inmunología , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Humanos
20.
Int J Cancer ; 148(12): 3019-3031, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33506516

RESUMEN

The presence of an inactivating heat shock protein 110 (HSP110) mutation in colorectal cancers has been correlated with an excellent prognosis and with the ability of HSP110 to favor the formation of tolerogenic (M2-like) macrophages. These clinical and experimental results suggest a potentially powerful new strategy against colorectal cancer: the inhibition of HSP110. In this work, as an alternative to neutralizing antibodies, Nanofitins (scaffold ~7 kDa proteins) targeting HSP110 were isolated from the screening of a synthetic Nanofitin library, and their capacity to bind (immunoprecipitation, biolayer interferometry) and to inhibit HSP110 was analyzed in vitro and in vivo. Three Nanofitins were found to inhibit HSP110 chaperone activity. Interestingly, they share a high degree of homology in their variable domain and target the peptide-binding domain of HSP110. In vitro, they inhibited the ability of HSP110 to favor M2-like macrophages. The Nanofitin with the highest affinity, A-C2, was studied in the CT26 colorectal cancer mice model. Our PET/scan experiments demonstrate that A-C2 may be localized within the tumor area, in accordance with the reported HSP110 abundance in the tumor microenvironment. A-C2 treatment reduced tumor growth and was associated with an increase in immune cells infiltrating the tumor and particularly cytotoxic macrophages. These results were confirmed in a chicken chorioallantoic membrane tumor model. Finally, we showed the complementarity between A-C2 and an anti-PD-L1 strategy in the in vivo and in ovo tumor models. Overall, Nanofitins appear to be promising new immunotherapeutic lead compounds.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Proteínas del Choque Térmico HSP110/antagonistas & inhibidores , Macrófagos/metabolismo , Fragmentos de Péptidos/administración & dosificación , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/metabolismo , Femenino , Humanos , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ratones , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Biblioteca de Péptidos , Tomografía de Emisión de Positrones , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA