Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Glia ; 69(9): 2199-2214, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33991013

RESUMEN

High-grade gliomas (HGGs) are aggressive, treatment-resistant, and often fatal human brain cancers. The TNF-like weak inducer of apoptosis (TWEAK)/fibroblast growth factor-inducible 14 (Fn14) signaling axis is involved in tissue repair after injury and constitutive signaling has been implicated in the pathogenesis of numerous solid cancers. The Fn14 gene is expressed at low levels in the normal, uninjured brain but is highly expressed in primary isocitrate dehydrogenase wild-type and recurrent HGGs. Fn14 signaling is implicated in numerous aspects of glioma biology including brain invasion and chemotherapy resistance, but whether Fn14 overexpression can directly promote tumor malignancy has not been reported. Here, we used the replication-competent avian sarcoma-leukosis virus/tumor virus A system to examine the impact of Fn14 expression on glioma development and pathobiology. We found that the sole addition of Fn14 to an established oncogenic cocktail previously shown to generate proneural-like gliomas led to the development of highly invasive and lethal brain cancer with striking biological features including extensive pseudopalisading necrosis, constitutive canonical and noncanonical NF-κB pathway signaling, and high plasminogen activator inhibitor-1 (PAI-1) expression. Analyses of HGG patient datasets revealed that high human PAI-1 gene (SERPINE1) expression correlates with shorter patient survival, and that the SERPINE1 and Fn14 (TNFRSF12A) genes are frequently co-expressed in bulk tumor tissues, in tumor subregions, and in malignant cells residing in the tumor microenvironment. These findings provide new insights into the potential importance of Fn14 in human HGG pathobiology and designate both the NF-κB signaling node and PAI-1 as potential targets for therapeutic intervention. MAIN POINTS: This work demonstrates that elevated levels of the TWEAK receptor Fn14 in tumor-initiating, neural progenitor cells leads to the transformation of proneural-like gliomas into more aggressive and lethal tumors that exhibit constitutive NF-κB pathway activation and plasminogen activator inhibitor-1 overexpression.


Asunto(s)
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Factores de Crecimiento de Fibroblastos , Glioma/patología , Humanos , Invasividad Neoplásica , Receptores del Factor de Necrosis Tumoral/genética , Receptores del Factor de Necrosis Tumoral/metabolismo , Receptor de TWEAK , Microambiente Tumoral
2.
Glia ; 69(9): 2059-2076, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33638562

RESUMEN

Gliomas are the most common primary intrinsic brain tumors occurring in adults. Of all malignant gliomas, glioblastoma (GBM) is considered the deadliest tumor type due to diffuse brain invasion, immune evasion, cellular, and molecular heterogeneity, and resistance to treatments resulting in high rates of recurrence. An extensive understanding of the genomic and microenvironmental landscape of gliomas gathered over the past decade has renewed interest in pursuing novel therapeutics, including immune checkpoint inhibitors, glioma-associated macrophage/microglia (GAMs) modulators, and others. In light of this, predictive animal models that closely recreate the conditions and findings found in human gliomas will serve an increasingly important role in identifying new, effective therapeutic strategies. Although numerous syngeneic, xenograft, and transgenic rodent models have been developed, few include the full complement of pathobiological features found in human tumors, and therefore few accurately predict bench-to-bedside success. This review provides an update on how genetically engineered rodent models based on the replication-competent avian-like sarcoma (RCAS) virus/tumor virus receptor-A (tv-a) system have been used to recapitulate key elements of human gliomas in an immunologically intact host microenvironment and highlights new approaches using this model system as a predictive tool for advancing translational glioma research.


Asunto(s)
Neoplasias Encefálicas , Modelos Animales de Enfermedad , Glioma , Sarcoma , Animales , Virus del Sarcoma Aviar/genética , Neoplasias Encefálicas/patología , Glioma/patología , Humanos , Virus Oncogénicos , Receptores Virales , Microambiente Tumoral
3.
Sci Adv ; 6(3): eaax3931, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31998833

RESUMEN

Development of effective tumor cell-targeted nanodrug formulations has been quite challenging, as many nanocarriers and targeting moieties exhibit nonspecific binding to cellular, extracellular, and intravascular components. We have developed a therapeutic nanoparticle formulation approach that balances cell surface receptor-specific binding affinity while maintaining minimal interactions with blood and tumor tissue components (termed "DART" nanoparticles), thereby improving blood circulation time, biodistribution, and tumor cell-specific uptake. Here, we report that paclitaxel (PTX)-DART nanoparticles directed to the cell surface receptor fibroblast growth factor-inducible 14 (Fn14) outperformed both the corresponding PTX-loaded, nontargeted nanoparticles and Abraxane, an FDA-approved PTX nanoformulation, in both a primary triple-negative breast cancer (TNBC) model and an intracranial model reflecting TNBC growth following metastatic dissemination to the brain. These results provide new insights into methods for effective development of therapeutic nanoparticles as well as support the continued development of the DART platform for primary and metastatic tumors.


Asunto(s)
Antineoplásicos/administración & dosificación , Biomarcadores de Tumor , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Terapia Molecular Dirigida , Nanopartículas , Nanomedicina Teranóstica , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/mortalidad , Modelos Animales de Enfermedad , Matriz Extracelular , Femenino , Expresión Génica , Humanos , Ratones , Terapia Molecular Dirigida/efectos adversos , Terapia Molecular Dirigida/métodos , Metástasis de la Neoplasia , Estadificación de Neoplasias , Pronóstico , ARN Mensajero , Receptor de TWEAK/genética , Distribución Tisular , Resultado del Tratamiento , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/etiología , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Photochem Photobiol ; 96(2): 301-309, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31441057

RESUMEN

Fluorescence-guided surgery (FGS) is routinely utilized in clinical centers around the world, whereas the combination of FGS and photodynamic therapy (PDT) has yet to reach clinical implementation and remains an active area of translational investigations. Two significant challenges to the clinical translation of PDT for brain cancer are as follows: (1) Limited light penetration depth in brain tissues and (2) Poor selectivity and delivery of the appropriate photosensitizers. To address these shortcomings, we developed nanoliposomal protoporphyrin IX (Nal-PpIX) and nanoliposomal benzoporphyrin derivative (Nal-BPD) and then evaluated their photodynamic effects as a function of depth in tissue and light fluence using rat brains. Although red light penetration depth (defined as the depth at which the incident optical energy drops to 1/e, ~37%) is typically a few millimeters in tissues, we demonstrated that the remaining optical energy could induce PDT effects up to 2 cm within brain tissues. Photobleaching and singlet oxygen yield studies between Nal-BPD and Nal-PpIX suggest that deep-tissue PDT (>1 cm) is more effective when using Nal-BPD. These findings indicate that Nal-BPD-PDT is more likely to generate cytotoxic effects deep within the brain and allow for the treatment of brain invading tumor cells centimeters away from the main, resectable tumor mass.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacocinética , Animales , Neoplasias Encefálicas/metabolismo , Fármacos Fotosensibilizantes/uso terapéutico , Ratas , Espectrometría de Fluorescencia
5.
Sci Rep ; 8(1): 1180, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29352201

RESUMEN

Glioma is a unique neoplastic disease that develops exclusively in the central nervous system (CNS) and rarely metastasizes to other tissues. This feature strongly implicates the tumor-host CNS microenvironment in gliomagenesis and tumor progression. We investigated the differences and similarities in glioma biology as conveyed by transcriptomic patterns across four mammalian hosts: rats, mice, dogs, and humans. Given the inherent intra-tumoral molecular heterogeneity of human glioma, we focused this study on tumors with upregulation of the platelet-derived growth factor signaling axis, a common and early alteration in human gliomagenesis. The results reveal core neoplastic alterations in mammalian glioma, as well as unique contributions of the tumor host to neoplastic processes. Notable differences were observed in gene expression patterns as well as related biological pathways and cell populations known to mediate key elements of glioma biology, including angiogenesis, immune evasion, and brain invasion. These data provide new insights regarding mammalian models of human glioma, and how these insights and models relate to our current understanding of the human disease.


Asunto(s)
Neoplasias Encefálicas/genética , Transformación Celular Neoplásica/genética , Perfilación de la Expresión Génica , Glioma/genética , Transcriptoma , Animales , Neoplasias Encefálicas/patología , Biología Computacional/métodos , Perros , Regulación Neoplásica de la Expresión Génica , Glioma/patología , Ratones , Ratas , Reproducibilidad de los Resultados , Especificidad de la Especie
6.
J Control Release ; 267: 144-153, 2017 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-28887134

RESUMEN

The most common and deadly form of primary brain cancer, glioblastoma (GBM), is characterized by significant intratumoral heterogeneity, microvascular proliferation, immune system suppression, and brain tissue invasion. Delivering effective and sustained treatments to the invasive GBM cells intermixed with functioning neural elements is a major goal of advanced therapeutic systems for brain cancer. Previously, we investigated the nanoparticle characteristics that enable targeting of invasive GBM cells. This revealed the importance of minimizing non-specific binding within the relatively adhesive, 'sticky' microenvironment of the brain and brain tumors in particular. We refer to such nanoformulations with decreased non-specific adhesivity and receptor targeting as 'DART' therapeutics. In this work, we applied this information toward the design and characterization of biodegradable nanocarriers, and in vivo testing in orthotopic experimental gliomas. We formulated particulate nanocarriers using poly(lactic-co-glycolic acid) (PLGA) and PLGA-polyethylene glycol (PLGA-PEG) polymers to generate sub-100nm nanoparticles with minimal binding to extracellular brain components and strong binding to the Fn14 receptor - an upregulated, conserved component in invasive GBM. Multiple particle tracking in brain tissue slices and in vivo testing in orthotopic murine malignant glioma revealed preserved nanoparticle diffusivity and increased uptake in brain tumor cells. These combined characteristics also resulted in longer retention of the DART nanoparticles within the orthotopic tumors compared to non-targeted versions. Taken together, these results and nanoparticle design considerations offer promising new methods to optimize therapeutic nanocarriers for improving drug delivery and treatment for invasive brain tumors.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Portadores de Fármacos/administración & dosificación , Glioma/tratamiento farmacológico , Nanopartículas/administración & dosificación , Receptor de TWEAK/metabolismo , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/farmacocinética , Encéfalo/metabolismo , Línea Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Proteínas de la Matriz Extracelular/metabolismo , Glioma/metabolismo , Ratones Endogámicos C57BL , Nanopartículas/química , Poliésteres/administración & dosificación , Poliésteres/química , Poliésteres/farmacocinética , Polietilenglicoles/administración & dosificación , Polietilenglicoles/química , Polietilenglicoles/farmacocinética
7.
PLoS One ; 12(3): e0174557, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28358926

RESUMEN

Previously rodent preclinical research in gliomas frequently involved implantation of cell lines such as C6 and 9L into the rat brain. More recently, mouse models have taken over, the genetic manipulability of the mouse allowing the creation of genetically accurate models outweighed the disadvantage of its smaller brain size that limited time allowed for tumor progression. Here we illustrate a method that allows glioma formation in the rat using the replication competent avian-like sarcoma (RCAS) virus / tumor virus receptor-A (tv-a) transgenic system of post-natal cell type-specific gene transfer. The RCAS/tv-a model has emerged as a particularly versatile and accurate modeling technology by enabling spatial, temporal, and cell type-specific control of individual gene transformations and providing de novo formed glial tumors with distinct molecular subtypes mirroring human GBM. Nestin promoter-driven tv-a (Ntv-a) transgenic Sprague-Dawley rat founder lines were created and RCAS PDGFA and p53 shRNA constructs were used to initiate intracranial brain tumor formation. Tumor formation and progression were confirmed and visualized by magnetic resonance imaging (MRI) and spectroscopy. The tumors were analyzed using histopathological and immunofluorescent techniques. All experimental animals developed large, heterogeneous brain tumors that closely resembled human GBM. Median survival was 92 days from tumor initiation and 62 days from the first point of tumor visualization on MRI. Each tumor-bearing animal showed time dependent evidence of malignant progression to high-grade glioma by MRI and neurological examination. Post-mortem tumor analysis demonstrated the presence of several key characteristics of human GBM, including high levels of tumor cell proliferation, pseudopalisading necrosis, microvascular proliferation, invasion of tumor cells into surrounding tissues, peri-tumoral reactive astrogliosis, lymphocyte infiltration, presence of numerous tumor-associated microglia- and bone marrow-derived macrophages, and the formation of stem-like cell niches within the tumor. This transgenic rat model may enable detailed interspecies comparisons of fundamental cancer pathways and clinically relevant experimental imaging procedures and interventions that are limited by the smaller size of the mouse brain.


Asunto(s)
Encéfalo/diagnóstico por imagen , Glioma/genética , Nestina/genética , Factor de Crecimiento Derivado de Plaquetas/genética , Proteína p53 Supresora de Tumor/genética , Animales , Virus del Sarcoma Aviar/genética , Virus del Sarcoma Aviar/patogenicidad , Encéfalo/patología , Encéfalo/virología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Modelos Animales de Enfermedad , Ingeniería Genética , Glioma/diagnóstico por imagen , Glioma/patología , Glioma/virología , Humanos , Macrófagos/patología , Imagen por Resonancia Magnética , Ratones , Ratas , Ratas Transgénicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA