Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
2.
Cell Chem Biol ; 31(4): 683-698.e7, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38151019

RESUMEN

Mycobacterial bioenergetics is a validated target space for antitubercular drug development. Here, we identify BB2-50F, a 6-substituted 5-(N,N-hexamethylene)amiloride derivative as a potent, multi-targeting bioenergetic inhibitor of Mycobacterium tuberculosis. We show that BB2-50F rapidly sterilizes both replicating and non-replicating cultures of M. tuberculosis and synergizes with several tuberculosis drugs. Target identification experiments, supported by docking studies, showed that BB2-50F targets the membrane-embedded c-ring of the F1Fo-ATP synthase and the catalytic subunit (substrate-binding site) of succinate dehydrogenase. Biochemical assays and metabolomic profiling showed that BB2-50F inhibits succinate oxidation, decreases the activity of the tricarboxylic acid (TCA) cycle, and results in succinate secretion from M. tuberculosis. Moreover, we show that the lethality of BB2-50F under aerobic conditions involves the accumulation of reactive oxygen species. Overall, this study identifies BB2-50F as an effective inhibitor of M. tuberculosis and highlights that targeting multiple components of the mycobacterial respiratory chain can produce fast-acting antimicrobials.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Succinato Deshidrogenasa/metabolismo , Succinato Deshidrogenasa/farmacología , Antituberculosos/química , Tuberculosis/tratamiento farmacológico , Adenosina Trifosfato , Inhibidores Enzimáticos/farmacología , Succinatos
3.
Cell Rep ; 42(5): 112444, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37115669

RESUMEN

The bioenergetic mechanisms by which Mycobacterium tuberculosis survives hypoxia are poorly understood. Current models assume that the bacterium shifts to an alternate electron acceptor or fermentation to maintain membrane potential and ATP synthesis. Counterintuitively, we find here that oxygen itself is the principal terminal electron acceptor during hypoxic dormancy. M. tuberculosis can metabolize oxygen efficiently at least two orders of magnitude below the concentration predicted to occur in hypoxic lung granulomas. Despite a difference in apparent affinity for oxygen, both the cytochrome bcc:aa3 and cytochrome bd oxidase respiratory branches are required for hypoxic respiration. Simultaneous inhibition of both oxidases blocks oxygen consumption, reduces ATP levels, and kills M. tuberculosis under hypoxia. The capacity of mycobacteria to scavenge trace levels of oxygen, coupled with the absence of complex regulatory mechanisms to achieve hierarchal control of the terminal oxidases, may be a key determinant of long-term M. tuberculosis survival in hypoxic lung granulomas.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Mycobacterium tuberculosis/metabolismo , Oxígeno/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Oxidorreductasas/metabolismo , Homeostasis , Tuberculosis/microbiología , Hipoxia , Adenosina Trifosfato/metabolismo , Citocromos/metabolismo
4.
Commun Biol ; 5(1): 166, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35210534

RESUMEN

Increasing antimicrobial resistance compels the search for next-generation inhibitors with differing or multiple molecular targets. In this regard, energy conservation in Mycobacterium tuberculosis has been clinically validated as a promising new drug target for combatting drug-resistant strains of M. tuberculosis. Here, we show that HM2-16F, a 6-substituted derivative of the FDA-approved drug amiloride, is an anti-tubercular inhibitor with bactericidal properties comparable to the FDA-approved drug bedaquiline (BDQ; Sirturo®) and inhibits the growth of bedaquiline-resistant mutants. We show that HM2-16F weakly inhibits the F1Fo-ATP synthase, depletes ATP, and affects the entry of acetyl-CoA into the Krebs cycle. HM2-16F synergizes with the cytochrome bcc-aa3 oxidase inhibitor Q203 (Telacebec) and co-administration with Q203 sterilizes in vitro cultures in 14 days. Synergy with Q203 occurs via direct inhibition of the cytochrome bd oxidase by HM2-16F. This study shows that amiloride derivatives represent a promising discovery platform for targeting energy generation in drug-resistant tuberculosis.


Asunto(s)
Mycobacterium tuberculosis , Adenosina Trifosfato , Amilorida/farmacología , Antituberculosos/farmacología , Citocromos , Complejo IV de Transporte de Electrones/metabolismo , Mycobacterium tuberculosis/metabolismo , Oxidorreductasas
5.
J Antimicrob Chemother ; 77(3): 615-619, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34850009

RESUMEN

OBJECTIVES: There is an urgent need for novel drugs that target unique cellular pathways to combat infections caused by Mycobacterium tuberculosis. CRISPR interference (CRISPRi)-mediated transcriptional repression has recently been developed for use in mycobacteria as a genetic tool for identifying and validating essential genes as novel drug targets. Whilst CRISPRi has been applied to extracellular bacteria, no studies to date have determined whether CRISPRi can be used in M. tuberculosis infection models. METHODS: Using the human monocytic macrophage-like THP-1 cell line as a model for M. tuberculosis infection we investigated if CRISPRi can be activated within intracellular M. tuberculosis. RESULTS: The transcriptional repression of two candidate M. tuberculosis genes, i.e. mmpL3 and qcrB, leads to a reduction in viable M. tuberculosis within infected THP-1 cells. The reduction in viable colonies is dependent on both the level of CRISPRi-mediated repression and the duration of repression. CONCLUSIONS: These results highlight the utility of CRISPRi in exploring mycobacterial gene function and essentiality under a variety of conditions pertinent to host infection.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Expresión Génica , Humanos , Macrófagos , Mycobacterium tuberculosis/genética , Tuberculosis/microbiología
6.
ACS Infect Dis ; 7(8): 2285-2298, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34259502

RESUMEN

The Gram-negative anaerobe Fusobacterium nucleatum is an opportunistic human pathogen, most frequently associated with periodontal disease through dental biofilm formation and, increasingly, with colorectal cancer development and progression. F. nucleatum infections are routinely treated by broad-spectrum ß-lactam antibiotics and metronidazole. However, these antibiotics can negatively impact the normal microflora. Therefore, the development of novel narrow-spectrum antimicrobials active against anaerobic pathogens is of great interest. Here, we examined the antimicrobial Zn ionophore PBT2, an 8-hydroxyquinoline analogue with metal chelating properties, against a single type isolate F. nucleatum ATCC 25586. PBT2-Zn was a potent inhibitor of growth and exhibited synergistic bactericidal (>3-log10 killing) activity at 5× MIC in planktonic cells, and at the MIC in biofilms grown in vitro. Physiological and transcriptional analyses uncovered a strong cellular response relating to Zn and Fe homeostasis in PBT2-Zn treated cells across subinhibitory and inhibitory concentrations. At 1× MIC, PBT2 alone induced a 3.75-fold increase in intracellular Zn, whereas PBT2-Zn challenge induced a 19-fold accumulation of intracellular Zn after 2 h. A corresponding 2.1-fold loss of Fe was observed at 1× MIC. Transcriptional analyses after subinhibitory PBT2-Zn challenge (0.125 µg/mL and 200 µM ZnSO4) revealed significant differential expression of 15 genes at 0.5 h, and 12 genes at 1 h. Upregulated genes included those with roles in Zn homeostasis (e.g., a Zn-transporting ATPase and the Zn-sensing transcriptional regulator, smtB) and hemin transport (hmuTUV) to re-establish Fe homeostasis. A concentration-dependent protective effect was observed for cells pretreated with hemin (50 µg/mL) prior to PBT2-Zn challenge. The data presented here supports our proposal that targeting the disruption of metallostasis by Zn-translocating ionophores is a strategy worth investigating further for the treatment of Gram-negative anaerobic pathogens.


Asunto(s)
Fusobacterium nucleatum , Zinc , Anaerobiosis , Biopelículas , Humanos , Ionóforos
7.
Bioorg Med Chem ; 37: 116116, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33799173

RESUMEN

The K+-sparing diuretic amiloride elicits anticancer activities in multiple animal models. During our recent medicinal chemistry campaign aiming to identify amiloride analogs with improved properties for potential use in cancer, we discovered novel 6-(hetero)aryl-substituted amiloride and 5-(N,N-hexamethylene)amiloride (HMA) analogs with up to 100-fold higher potencies than the parent compounds against urokinase plasminogen activator (uPA), one of amiloride's putative anticancer targets, and no diuretic or antikaliuretic effects. Here, we report the systematic evaluation of structure-property relationships (lipophilicity, aqueous solubility and in vitro metabolic stability in human and mouse liver microsomes) in twelve matched pair analogs selected from our 6-substituted amiloride and HMA libraries. Mouse plasma stability, plasma protein binding, Caco-2 cell permeability, cardiac ion channel activity and pharmacokinetics in mice (PO and IV) and rats (IV) are described alongside amiloride and HMA comparators for a subset of the four most promising matched-pair analogs. The findings combined with earlier uPA activity/selectivity and other data ultimately drove selection of two analogs (AA1-39 and AA1-41) that showed efficacy in separate mouse cancer metastasis studies.


Asunto(s)
Amilorida/análogos & derivados , Amilorida/farmacología , Antineoplásicos/farmacología , Amilorida/farmacocinética , Animales , Antineoplásicos/síntesis química , Antineoplásicos/farmacocinética , Células CACO-2 , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Masculino , Ratones Endogámicos BALB C , Microsomas Hepáticos/efectos de los fármacos , Estructura Molecular , Ratas Sprague-Dawley , Relación Estructura-Actividad
8.
J Immunol ; 206(8): 1901-1912, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33753427

RESUMEN

Neutrophils are often the major leukocyte at sites of mycobacterial infection, yet little is known about their ability to kill mycobacteria. In this study we have investigated whether the potent antibacterial oxidant hypochlorous acid (HOCl) contributes to killing of Mycobacterium smegmatis when this bacterium is phagocytosed by human neutrophils. We found that M. smegmatis were ingested by neutrophils into intracellular phagosomes but were killed slowly. We measured a t 1/2 of 30 min for the survival of M. smegmatis inside neutrophils, which is 5 times longer than that reported for Staphylococcus aureus and 15 times longer than Escherichia coli Live-cell imaging indicated that neutrophils generated HOCl in phagosomes containing M. smegmatis; however, inhibition of HOCl production did not alter the rate of bacterial killing. Also, the doses of HOCl that are likely to be produced inside phagosomes failed to kill isolated bacteria. Lethal doses of reagent HOCl caused oxidation of mycothiol, the main low-m.w. thiol in this bacterium. In contrast, phagocytosed M. smegmatis maintained their original level of reduced mycothiol. Collectively, these findings suggest that M. smegmatis can cope with the HOCl that is produced inside neutrophil phagosomes. A mycothiol-deficient mutant was killed by neutrophils at the same rate as wild-type bacteria, indicating that mycothiol itself is not the main driver of M. smegmatis resistance. Understanding how M. smegmatis avoids killing by phagosomal HOCl could provide new opportunities to sensitize pathogenic mycobacteria to destruction by the innate immune system.


Asunto(s)
Antibacterianos/metabolismo , Ácido Hipocloroso/metabolismo , Infecciones por Mycobacterium no Tuberculosas/inmunología , Mycobacterium smegmatis/fisiología , Neutrófilos/metabolismo , Fagosomas/metabolismo , Células Cultivadas , Cisteína/metabolismo , Glicopéptidos/metabolismo , Humanos , Evasión Inmune , Inmunidad Innata , Inositol/metabolismo , Infecciones por Mycobacterium no Tuberculosas/microbiología , Neutrófilos/inmunología , Fagocitosis
9.
ChemMedChem ; 16(8): 1308-1315, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33320428

RESUMEN

A second-generation enantiospecific synthesis of spiroleucettadine is described. The original reported antibacterial activity was not observed when the experiment was repeated on the synthetic samples; however, significant anti-proliferative activity was uncovered for both enantiomers of spiroleucettadine. Comparison of the optical rotational data and ORD-CD spectra of both enantiomers and the reported spectrum from the natural source have not provided a definitive answer regarding the absolute stereochemistry of naturally occurring spiroleucettadine. Efforts then focussed on alteration at the C-4 and C-5 positions of the slightly more active (-)-spiroleucettadine. Ten analogues were synthesised, with three analogues found to possess similar anti-proliferative profiles to spiroleucettadine against the H522 lung cancer cell line.


Asunto(s)
Antineoplásicos/farmacología , Imidazoles/farmacología , Compuestos de Espiro/farmacología , Antineoplásicos/síntesis química , Línea Celular Tumoral , Humanos , Imidazoles/síntesis química , Compuestos de Espiro/síntesis química , Estereoisomerismo
10.
Org Biomol Chem ; 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32469029

RESUMEN

We herein report the synthesis of analogues of the antimicrobial lipopeptide, paenipeptin C', by installing varying lipid moieties using thiol-ene CLipPA (Cysteine Lipidation on a Peptide or Amino Acid) chemistry. Biological evaluation against both Gram-negative and Gram-positive strains indicated that several analogues possessed potent broad-spectrum antimicrobial activity.

11.
Artículo en Inglés | MEDLINE | ID: mdl-32423951

RESUMEN

Bedaquiline, an inhibitor of the mycobacterial ATP synthase, has revolutionized the treatment of Mycobacterium tuberculosis infection. Although a potent inhibitor, it is characterized by poorly understood delayed time-dependent bactericidal activity. Here, we demonstrate that in contrast to bedaquiline, the transcriptional inhibition of the ATP synthase in M. tuberculosis and Mycobacterium smegmatis has rapid bactericidal activity. These results validate the mycobacterial ATP synthase as a drug target with the potential for rapid bactericidal activity.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Adenosina Trifosfato , Antituberculosos/farmacología , Humanos , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética
12.
ACS Infect Dis ; 6(6): 1460-1479, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32329596

RESUMEN

The formation of biofilms provides a formidable defense for many bacteria against antibiotics and host immune responses. As a consequence, biofilms are thought to be the root cause of most chronic infections, including those occurring on medical indwelling devices, endocarditis, urinary tract infections, diabetic and burn wounds, and bone and joint infections. In cystic fibrosis (CF), chronic Pseudomonas aeruginosa (P. aeruginosa) respiratory infections are the leading cause of morbidity and mortality in adults. Previous studies have shown that many bacteria can undergo a coordinated dispersal event in the presence of low concentrations of nitric oxide (NO), suggesting that NO could be used to initiate biofilm dispersal in chronic infections, enabling clearance of the more vulnerable planktonic cells. In this study, we describe efforts to create "all-in-one" cephalosporin-based NO donor prodrugs (cephalosporin-3'-diazeniumdiolates, C3Ds) that show both direct ß-lactam mediated antibacterial activity and antibiofilm effects. Twelve novel C3Ds were synthesized and screened against a panel of P. aeruginosa CF clinical isolates and other human pathogens. The most active compound, AMINOPIP2 ((Z)-1-(4-(2-aminoethyl)piperidin-1-yl)-2-(((6R,7R)-7-((Z)-2-(2-aminothiazol-4-yl)-2-(((2-carboxypropan-2-yl)oxy)imino)acetamido)-2-carboxy-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-en-3-yl)methoxy)diazene 1-oxide)-ceftazidime 12, showed higher antibacterial potency than its parent cephalosporin and front-line antipseudomonal antibiotic ceftazidime, good stability against ß-lactamases, activity against ceftazidime-resistant P. aeruginosa in vitro biofilms, and efficacy equivalent to ceftazidime in a murine P. aeruginosa respiratory infection model. The results support further evaluation of AMINOPIP2-ceftazidime 12 for P. aeruginosa lung infections in CF and a broader study of "all-in-one" C3Ds for other chronic infections.


Asunto(s)
Fibrosis Quística , Infecciones del Sistema Respiratorio , Adulto , Animales , Antibacterianos/farmacología , Compuestos Azo , Biopelículas , Cefalosporinas/farmacología , Humanos , Ratones , Pseudomonas aeruginosa
13.
ACS Infect Dis ; 6(4): 725-737, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32092260

RESUMEN

The ability to respire and generate adenosine triphosphate (ATP) is essential for the physiology, persistence, and pathogenicity of Mycobacterium tuberculosis, which causes tuberculosis. By employing a lead repurposing strategy, the malarial cytochrome bc1 inhibitor SCR0911 was tested against mycobacteria. Docking studies were carried out to reveal potential binding and to understand the binding interactions with the target, cytochrome bcc. Whole-cell-based and in vitro assays demonstrated the potency of SCR0911 by inhibiting cell growth and ATP synthesis in both the fast- and slow-growing M. smegmatis and M. bovis bacillus Calmette-Guérin, respectively. The variety of biochemical assays and the use of a cytochrome bcc deficient mutant strain validated the cytochrome bcc oxidase as the direct target of the drug. The data demonstrate the broad-spectrum activity of SCR0911 and open the door for structure-activity relationship studies to improve the potency of new mycobacteria specific SCR0911 analogues.


Asunto(s)
Antimaláricos/farmacología , Antituberculosos/farmacología , Reposicionamiento de Medicamentos , Complejo IV de Transporte de Electrones/antagonistas & inhibidores , Mycobacterium/efectos de los fármacos , Adenosina Trifosfato/biosíntesis , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana Múltiple , Simulación del Acoplamiento Molecular
14.
Chem Sci ; 11(22): 5759-5765, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34094080

RESUMEN

We herein report the synthesis and biological and computational evaluation of 12 linear analogues of the cyclic lipopeptide battacin, enabled by Cysteine Lipidation on a Peptide or Amino Acid (CLipPA) technology. Several of the novel "CLipP"ed lipopeptides exhibited low micromolar MICs and MBCs against both Gram-negative and Gram-positive bacteria. The mechanism of action was then simulated with the MIC data using computational methods.

15.
Prog Biophys Mol Biol ; 152: 35-44, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31733221

RESUMEN

Cellular bioenergetics is an area showing promise for the development of new antimicrobials, antimalarials and cancer therapy. Enzymes involved in central carbon metabolism and energy generation are essential mediators of bacterial physiology, persistence and pathogenicity, lending themselves natural interest for drug discovery. In particular, succinate and malate are two major focal points in both the central carbon metabolism and the respiratory chain of Mycobacterium tuberculosis. Both serve as direct links between the citric acid cycle and the respiratory chain due to the quinone-linked reactions of succinate dehydrogenase, fumarate reductase and malate:quinone oxidoreductase. Inhibitors against these enzymes therefore hold the promise of disrupting two distinct, but essential, cellular processes at the same time. In this review, we discuss the roles and unique adaptations of these enzymes and critically evaluate the role that future inhibitors of these complexes could play in the bioenergetics target space.


Asunto(s)
Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , NAD(P)H Deshidrogenasa (Quinona)/farmacología , Succinato Deshidrogenasa/farmacología , Tuberculosis/tratamiento farmacológico , Benzoquinonas/metabolismo , Ciclo del Ácido Cítrico/efectos de los fármacos , Descubrimiento de Drogas , Humanos , Malatos/metabolismo , Oxidación-Reducción , Unión Proteica , Ácido Succínico/metabolismo
16.
Sci Rep ; 9(1): 16759, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31727946

RESUMEN

The dynamic interaction of the N- and C-terminal domains of mycobacterial F-ATP synthase subunit ε is proposed to contribute to efficient coupling of H+-translocation and ATP synthesis. Here, we investigate crosstalk between both subunit ε domains by introducing chromosomal atpC missense mutations in the C-terminal helix 2 of ε predicted to disrupt inter domain and subunit ε-α crosstalk and therefore coupling. The ε mutant εR105A,R111A,R113A,R115A (ε4A) showed decreased intracellular ATP, slower growth rates and lower molar growth yields on non-fermentable carbon sources. Cellular respiration and metabolism were all accelerated in the mutant strain indicative of dysregulated oxidative phosphorylation. The ε4A mutant exhibited an altered colony morphology and was hypersusceptible to cell wall-acting antimicrobials suggesting defective cell wall biosynthesis. In silico screening identified a novel mycobacterial F-ATP synthase inhibitor disrupting ε's coupling activity demonstrating the potential to advance this regulation as a new area for mycobacterial F-ATP synthase inhibitor development.


Asunto(s)
Adenosina Trifosfato/metabolismo , Mutación , Mycobacterium/crecimiento & desarrollo , ATPasas de Translocación de Protón/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pared Celular , Simulación por Computador , Metabolismo Energético , Modelos Moleculares , Mycobacterium/enzimología , Mycobacterium/genética , Conformación Proteica , Estructura Secundaria de Proteína , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/genética
17.
Bioorg Med Chem Lett ; 29(24): 126753, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31679971

RESUMEN

The oral K+-sparing diuretic amiloride shows anti-cancer side-activities in multiple rodent models. These effects appear to arise, at least in part, through moderate inhibition of the urokinase-type plasminogen activator (uPA, Ki = 2.4 µM), a pro-metastatic trypsin-like serine protease that is upregulated in many aggressive solid malignancies. In applying the selective optimization of side-activity (SOSA) approach, a focused library of twenty two 6-substituted amiloride derivatives were prepared, with multiple examples displaying uPA inhibitory potencies in the nM range. X-ray co-crystal structures revealed that the potency increases relative to amiloride arise from increased occupancy of uPA's S1ß subsite by the appended 6-substituents. Leading compounds were shown to have high selectivity over related trypsin-like serine proteases and no diuretic or anti-kaliuretic effects in rats. Compound 15 showed anti-metastatic effects in a xenografted mouse model of late-stage lung metastasis.


Asunto(s)
Amilorida/análogos & derivados , Amilorida/uso terapéutico , Diuréticos/uso terapéutico , Metástasis de la Neoplasia/tratamiento farmacológico , Activador de Plasminógeno de Tipo Uroquinasa/antagonistas & inhibidores , Amilorida/farmacología , Diuréticos/farmacología , Humanos , Relación Estructura-Actividad
18.
Open Biol ; 9(6): 190066, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31238823

RESUMEN

The crystal structure of the F1-catalytic domain of the adenosine triphosphate (ATP) synthase has been determined from the pathogenic anaerobic bacterium Fusobacterium nucleatum. The enzyme can hydrolyse ATP but is partially inhibited. The structure is similar to those of the F1-ATPases from Caldalkalibacillus thermarum, which is more strongly inhibited in ATP hydrolysis, and in Mycobacterium smegmatis, which has a very low ATP hydrolytic activity. The ßE-subunits in all three enzymes are in the conventional 'open' state, and in the case of C. thermarum and M. smegmatis, they are occupied by an ADP and phosphate (or sulfate), but in F. nucleatum, the occupancy by ADP appears to be partial. It is likely that the hydrolytic activity of the F. nucleatum enzyme is regulated by the concentration of ADP, as in mitochondria.


Asunto(s)
Adenosina Difosfato/metabolismo , Fusobacterium nucleatum/enzimología , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/metabolismo , Proteínas Bacterianas/química , Cristalografía por Rayos X , Fusobacterium nucleatum/química , Hidrólisis , Modelos Moleculares , Conformación Molecular , Dominios Proteicos
19.
Proc Natl Acad Sci U S A ; 116(10): 4206-4211, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30683723

RESUMEN

The crystal structure of the F1-catalytic domain of the adenosine triphosphate (ATP) synthase has been determined from Mycobacterium smegmatis which hydrolyzes ATP very poorly. The structure of the α3ß3-component of the catalytic domain is similar to those in active F1-ATPases in Escherichia coli and Geobacillus stearothermophilus However, its ε-subunit differs from those in these two active bacterial F1-ATPases as an ATP molecule is not bound to the two α-helices forming its C-terminal domain, probably because they are shorter than those in active enzymes and they lack an amino acid that contributes to the ATP binding site in active enzymes. In E. coli and G. stearothermophilus, the α-helices adopt an "up" state where the α-helices enter the α3ß3-domain and prevent the rotor from turning. The mycobacterial F1-ATPase is most similar to the F1-ATPase from Caldalkalibacillus thermarum, which also hydrolyzes ATP poorly. The ßE-subunits in both enzymes are in the usual "open" conformation but appear to be occupied uniquely by the combination of an adenosine 5'-diphosphate molecule with no magnesium ion plus phosphate. This occupation is consistent with the finding that their rotors have been arrested at the same point in their rotary catalytic cycles. These bound hydrolytic products are probably the basis of the inhibition of ATP hydrolysis. It can be envisaged that specific as yet unidentified small molecules might bind to the F1 domain in Mycobacterium tuberculosis, prevent ATP synthesis, and inhibit the growth of the pathogen.


Asunto(s)
Complejos de ATP Sintetasa/antagonistas & inhibidores , Antituberculosos , Proteínas Bacterianas/antagonistas & inhibidores , Diarilquinolinas/química , Farmacorresistencia Bacteriana Múltiple , Mycobacterium smegmatis/enzimología , Mycobacterium tuberculosis/enzimología , Complejos de ATP Sintetasa/química , Antituberculosos/química , Antituberculosos/farmacología , Proteínas Bacterianas/química , Humanos , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
20.
J Med Chem ; 61(18): 8299-8320, 2018 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-30130401

RESUMEN

Metastasis is the cause of death in the majority (∼90%) of malignant cancers. The oral potassium-sparing diuretic amiloride and its 5-substituted derivative 5 -N, N-(hexamethylene)amiloride (HMA) reportedly show robust antitumor/metastasis effects in multiple in vitro and animal models. These effects are likely due, at least in part, to inhibition of the urokinase plasminogen activator (uPA), a key protease determinant of cell invasiveness and metastasis. This study reports the discovery of 6-substituted HMA analogs that show nanomolar potency against uPA, high selectivity over related trypsin-like serine proteases, and minimal inhibitory effects against epithelial sodium channels (ENaC), the diuretic and antikaliuretic target of amiloride. Reductions in lung metastases were demonstrated for two analogs in a late-stage experimental mouse metastasis model, and one analog completely inhibited formation of liver metastases in an orthotopic xenograft mouse model of pancreatic cancer. The results support further evaluation of 6-substituted HMA derivatives as uPA-targeting anticancer drugs.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Diuresis/efectos de los fármacos , Descubrimiento de Drogas , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pancreáticas/tratamiento farmacológico , Activador de Plasminógeno de Tipo Uroquinasa/antagonistas & inhibidores , Amilorida/química , Animales , Movimiento Celular , Proliferación Celular , Cristalografía por Rayos X , Diuréticos/química , Diuréticos/farmacología , Femenino , Humanos , Neoplasias Pulmonares/secundario , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Modelos Moleculares , Estructura Molecular , Neoplasias Pancreáticas/patología , Potasio/metabolismo , Conformación Proteica , Sodio/metabolismo , Relación Estructura-Actividad , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA