Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
EMBO Rep ; 24(2): e54977, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36416237

RESUMEN

High-risk neuroblastoma patients have poor survival rates and require better therapeutic options. High expression of a multifunctional DNA and RNA-binding protein, NONO, in neuroblastoma is associated with poor patient outcome; however, there is little understanding of the mechanism of NONO-dependent oncogenic gene regulatory activity in neuroblastoma. Here, we used cell imaging, biochemical and genome-wide molecular analysis to reveal complex NONO-dependent regulation of gene expression. NONO forms RNA- and DNA-tethered condensates throughout the nucleus and undergoes phase separation in vitro, modulated by nucleic acid binding. CLIP analyses show that NONO mainly binds to the 5' end of pre-mRNAs and modulates pre-mRNA processing, dependent on its RNA-binding activity. NONO regulates super-enhancer-associated genes, including HAND2 and GATA2. Abrogating NONO RNA binding, or phase separation activity, results in decreased expression of HAND2 and GATA2. Thus, future development of agents that target RNA-binding activity of NONO may have therapeutic potential in this cancer context.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proteínas de Unión al ADN , Neuroblastoma , Humanos , ADN/metabolismo , Proteínas de Unión al ADN/genética , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Factores de Transcripción/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
2.
Cancer Cell ; 39(11): 1445-1447, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34678151
3.
Lancet Oncol ; 22(6): 765-778, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33930323

RESUMEN

BACKGROUND: The efficacy and safety profiles of vaccines against SARS-CoV-2 in patients with cancer is unknown. We aimed to assess the safety and immunogenicity of the BNT162b2 (Pfizer-BioNTech) vaccine in patients with cancer. METHODS: For this prospective observational study, we recruited patients with cancer and healthy controls (mostly health-care workers) from three London hospitals between Dec 8, 2020, and Feb 18, 2021. Participants who were vaccinated between Dec 8 and Dec 29, 2020, received two 30 µg doses of BNT162b2 administered intramuscularly 21 days apart; patients vaccinated after this date received only one 30 µg dose with a planned follow-up boost at 12 weeks. Blood samples were taken before vaccination and at 3 weeks and 5 weeks after the first vaccination. Where possible, serial nasopharyngeal real-time RT-PCR (rRT-PCR) swab tests were done every 10 days or in cases of symptomatic COVID-19. The coprimary endpoints were seroconversion to SARS-CoV-2 spike (S) protein in patients with cancer following the first vaccination with the BNT162b2 vaccine and the effect of vaccine boosting after 21 days on seroconversion. All participants with available data were included in the safety and immunogenicity analyses. Ongoing follow-up is underway for further blood sampling after the delayed (12-week) vaccine boost. This study is registered with the NHS Health Research Authority and Health and Care Research Wales (REC ID 20/HRA/2031). FINDINGS: 151 patients with cancer (95 patients with solid cancer and 56 patients with haematological cancer) and 54 healthy controls were enrolled. For this interim data analysis of the safety and immunogenicity of vaccinated patients with cancer, samples and data obtained up to March 19, 2021, were analysed. After exclusion of 17 patients who had been exposed to SARS-CoV-2 (detected by either antibody seroconversion or a positive rRT-PCR COVID-19 swab test) from the immunogenicity analysis, the proportion of positive anti-S IgG titres at approximately 21 days following a single vaccine inoculum across the three cohorts were 32 (94%; 95% CI 81-98) of 34 healthy controls; 21 (38%; 26-51) of 56 patients with solid cancer, and eight (18%; 10-32) of 44 patients with haematological cancer. 16 healthy controls, 25 patients with solid cancer, and six patients with haematological cancer received a second dose on day 21. Of the patients with available blood samples 2 weeks following a 21-day vaccine boost, and excluding 17 participants with evidence of previous natural SARS-CoV-2 exposure, 18 (95%; 95% CI 75-99) of 19 patients with solid cancer, 12 (100%; 76-100) of 12 healthy controls, and three (60%; 23-88) of five patients with haematological cancers were seropositive, compared with ten (30%; 17-47) of 33, 18 (86%; 65-95) of 21, and four (11%; 4-25) of 36, respectively, who did not receive a boost. The vaccine was well tolerated; no toxicities were reported in 75 (54%) of 140 patients with cancer following the first dose of BNT162b2, and in 22 (71%) of 31 patients with cancer following the second dose. Similarly, no toxicities were reported in 15 (38%) of 40 healthy controls after the first dose and in five (31%) of 16 after the second dose. Injection-site pain within 7 days following the first dose was the most commonly reported local reaction (23 [35%] of 65 patients with cancer; 12 [48%] of 25 healthy controls). No vaccine-related deaths were reported. INTERPRETATION: In patients with cancer, one dose of the BNT162b2 vaccine yields poor efficacy. Immunogenicity increased significantly in patients with solid cancer within 2 weeks of a vaccine boost at day 21 after the first dose. These data support prioritisation of patients with cancer for an early (day 21) second dose of the BNT162b2 vaccine. FUNDING: King's College London, Cancer Research UK, Wellcome Trust, Rosetrees Trust, and Francis Crick Institute.


Asunto(s)
Vacunas contra la COVID-19/uso terapéutico , COVID-19/inmunología , Neoplasias/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales/sangre , Vacuna BNT162 , COVID-19/sangre , COVID-19/complicaciones , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Relación Dosis-Respuesta Inmunológica , Femenino , Humanos , Inmunogenicidad Vacunal/inmunología , Londres/epidemiología , Masculino , Persona de Mediana Edad , Neoplasias/sangre , Neoplasias/complicaciones , Neoplasias/virología , Estudios Prospectivos , SARS-CoV-2 , Gales
4.
Cell Mol Life Sci ; 78(5): 2213-2230, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32914209

RESUMEN

Many long non-coding RNAs (lncRNA) are highly dysregulated in cancer and are emerging as therapeutic targets. One example is NEAT1, which consists of two overlapping lncRNA isoforms, NEAT1_1 (3.7 kb) and NEAT1_2 (23 kb), that are functionally distinct. The longer NEAT1_2 is responsible for scaffolding gene-regulatory nuclear bodies termed paraspeckles, whereas NEAT1_1 is involved in paraspeckle-independent function. The NEAT1 isoform ratio is dependent on the efficient cleavage and polyadenylation of NEAT1_1 at the expense of NEAT1_2. Here, we developed a targeted antisense oligonucleotide (ASO) approach to sterically block NEAT1_1 polyadenylation processing, achieving upregulation of NEAT1_2 and abundant paraspeckles. We have applied these ASOs to cells of the heterogeneous infant cancer, neuroblastoma, as we found higher NEAT1_1:NEAT1_2 ratio and lack of paraspeckles in high-risk neuroblastoma cells. These ASOs decrease NEAT1_1 levels, increase NEAT1_2/paraspeckles and concomitantly reduce cell viability in high-risk neuroblastoma specifically. In contrast, overexpression of NEAT1_1 has the opposite effect, increasing cell proliferation. Transcriptomic analyses of high-risk neuroblastoma cells with altered NEAT1 ratios and increased paraspeckle abundance after ASO treatment showed an upregulation of differentiation pathways, as opposed to the usual aggressive neuroblastic phenotype. Thus, we have developed potential anti-cancer ASO drugs that can transiently increase growth-inhibiting NEAT1_2 RNA at the expense of growth-promoting NEAT1_1 RNA. These ASOs, unlike others that degrade lncRNAs, provide insights into the importance of altering lncRNA polyadenylation events to suppress tumorigenesis as a strategy to combat cancer.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neuroblastoma/genética , Oligonucleótidos Antisentido/genética , Poli A/genética , ARN Largo no Codificante/genética , Línea Celular Tumoral , Estudios de Cohortes , Perfilación de la Expresión Génica/métodos , Humanos , Estimación de Kaplan-Meier , Neuroblastoma/metabolismo , Neuroblastoma/patología , Poli A/metabolismo , Isoformas de ARN/genética , Isoformas de ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA