Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Clin Invest ; 133(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37104037

RESUMEN

Although a disease-modifying therapy for classic late infantile neuronal ceroid lipofuscinosis (CLN2 disease) exists, poor understanding of cellular pathophysiology has hampered the development of more effective and persistent therapies. Here, we investigated the nature and progression of neurological and underlying neuropathological changes in Cln2R207X mice, which carry one of the most common pathogenic mutations in human patients but are yet to be fully characterized. Long-term electroencephalography recordings revealed progressive epileptiform abnormalities, including spontaneous seizures, providing a robust, quantifiable, and clinically relevant phenotype. These seizures were accompanied by the loss of multiple cortical neuron populations, including those stained for interneuron markers. Further histological analysis revealed early localized microglial activation months before neuron loss started in the thalamocortical system and spinal cord, which was accompanied by astrogliosis. This pathology was more pronounced and occurred in the cortex before the thalamus or spinal cord and differed markedly from the staging seen in mouse models of other forms of neuronal ceroid lipofuscinosis. Neonatal administration of adeno-associated virus serotype 9-mediated gene therapy ameliorated the seizure and gait phenotypes and prolonged the life span of Cln2R207X mice, attenuating most pathological changes. Our findings highlight the importance of clinically relevant outcome measures for judging preclinical efficacy of therapeutic interventions for CLN2 disease.


Asunto(s)
Neuronas , Convulsiones , Animales , Humanos , Ratones , Neuronas/patología , Convulsiones/genética , Convulsiones/terapia , Convulsiones/patología , Gliosis/patología , Interneuronas/patología , Tálamo/patología , Modelos Animales de Enfermedad
2.
Mol Ther Methods Clin Dev ; 27: 452-463, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36419468

RESUMEN

Sanfilippo syndrome type B (mucopolysaccharidosis type IIIB) is a recessive genetic disorder that severely affects the brain due to a deficiency in the enzyme α-N-acetylglucosaminidase (NAGLU), leading to intra-lysosomal accumulation of partially degraded heparan sulfate. There are no effective treatments for this disorder. In this project, we carried out an ex vivo correction of neural stem cells derived from Naglu -/- mice (iNSCs) induced pluripotent stem cells (iPSC) using a modified enzyme in which human NAGLU is fused to an insulin-like growth factor II receptor binding peptide in order to improve enzyme uptake. After brain transplantation of corrected iNSCs into Naglu -/- mice and long-term evaluation of their impact, we successfully detected NAGLU-IGFII activity in all transplanted animals. We found decreased lysosomal accumulation and reduced astrocytosis and microglial activation throughout transplanted brains. We also identified a novel neuropathological phenotype in untreated Naglu -/- brains with decreased levels of the neuronal marker Map2 and accumulation of synaptophysin-positive aggregates. Upon transplantation, we restored levels of Map2 expression and significantly reduced formation of synaptophysin-positive aggregates. Our findings suggest that genetically engineered iNSCs can be used to effectively deliver the missing enzyme to the brain and treat Sanfilippo type B-associated neuropathology.

3.
Sci Rep ; 10(1): 2121, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32034258

RESUMEN

We have previously designed a library of lentiviral vectors to generate somatic-transgenic rodents to monitor signalling pathways in diseased organs using whole-body bioluminescence imaging, in conscious, freely moving rodents. We have now expanded this technology to adeno-associated viral vectors. We first explored bio-distribution by assessing GFP expression after neonatal intravenous delivery of AAV8. We observed widespread gene expression in, central and peripheral nervous system, liver, kidney and skeletal muscle. Next, we selected a constitutive SFFV promoter and NFκB binding sequence for bioluminescence and biosensor evaluation. An intravenous injection of AAV8 containing firefly luciferase and eGFP under transcriptional control of either element resulted in strong and persistent widespread luciferase expression. A single dose of LPS-induced a 10-fold increase in luciferase expression in AAV8-NFκB mice and immunohistochemistry revealed GFP expression in cells of astrocytic and neuronal morphology. Importantly, whole-body bioluminescence persisted up to 240 days. We have validated a novel biosensor technology in an AAV system by using an NFκB response element and revealed its potential to monitor signalling pathway in a non-invasive manner in a model of LPS-induced inflammation. This technology complements existing germline-transgenic models and may be applicable to other rodent disease models.


Asunto(s)
Dependovirus/genética , Vectores Genéticos/genética , Ratones Transgénicos/genética , Animales , Técnicas Biosensibles/métodos , Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Inflamación/genética , Luciferasas de Luciérnaga/genética , Ratones , FN-kappa B/genética , Regiones Promotoras Genéticas/genética , Transducción de Señal/genética , Virus Formadores de Foco en el Bazo/genética , Transcripción Genética/genética
4.
Mol Ther Methods Clin Dev ; 10: 113-127, 2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-30101150

RESUMEN

Sanfilippo syndrome type B (mucopolysaccharidosis type IIIB [MPS IIIB]) is a lysosomal storage disorder primarily affecting the brain that is caused by a deficiency in the enzyme α-N-acetylglucosaminidase (NAGLU), leading to intralysosomal accumulation of heparan sulfate. There are currently no treatments for this disorder. Here we report that, ex vivo, lentiviral correction of Naglu-/- neural stem cells derived from Naglu-/- mice (iNSCs) corrected their lysosomal pathology and allowed them to secrete a functional NAGLU enzyme that could be taken up by deficient cells. Following long-term transplantation of these corrected iNSCs into Naglu-/- mice, we detected NAGLU activity in the majority of engrafted animals. Successfully transplanted Naglu-/- mice showed a significant decrease in storage material, a reduction in astrocyte activation, and complete prevention of microglial activation within the area of engrafted cells and neighboring regions, with beneficial effects extending partway along the rostrocaudal axis of the brain. Our results demonstrate long-term engraftment of iNSCs in the brain that are capable of cross-correcting pathology in Naglu-/- mice. Our findings suggest that genetically engineered iNSCs could potentially be used to deliver enzymes and treat MPS IIIB.

5.
Nat Med ; 24(9): 1317-1323, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30013199

RESUMEN

For inherited genetic diseases, fetal gene therapy offers the potential of prophylaxis against early, irreversible and lethal pathological change. To explore this, we studied neuronopathic Gaucher disease (nGD), caused by mutations in GBA. In adult patients, the milder form presents with hepatomegaly, splenomegaly and occasional lung and bone disease; this is managed, symptomatically, by enzyme replacement therapy. The acute childhood lethal form of nGD is untreatable since enzyme cannot cross the blood-brain barrier. Patients with nGD exhibit signs consistent with hindbrain neurodegeneration, including neck hyperextension, strabismus and, often, fatal apnea1. We selected a mouse model of nGD carrying a loxP-flanked neomycin disruption of Gba plus Cre recombinase regulated by the keratinocyte-specific K14 promoter. Exclusive skin expression of Gba prevents fatal neonatal dehydration. Instead, mice develop fatal neurodegeneration within 15 days2. Using this model, fetal intracranial injection of adeno-associated virus (AAV) vector reconstituted neuronal glucocerebrosidase expression. Mice lived for up to at least 18 weeks, were fertile and fully mobile. Neurodegeneration was abolished and neuroinflammation ameliorated. Neonatal intervention also rescued mice but less effectively. As the next step to clinical translation, we also demonstrated the feasibility of ultrasound-guided global AAV gene transfer to fetal macaque brains.


Asunto(s)
Feto/metabolismo , Terapia Genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/terapia , Animales , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/terapia , Humanos , Lactante , Inyecciones Intravenosas , Inyecciones Intraventriculares , Ratones Endogámicos C57BL
6.
Autophagy ; 14(8): 1419-1434, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29916295

RESUMEN

The accumulation of undegraded molecular material leads to progressive neurodegeneration in a number of lysosomal storage disorders (LSDs) that are caused by functional deficiencies of lysosomal hydrolases. To determine whether inducing macroautophagy/autophagy via small-molecule therapy would be effective for neuropathic LSDs due to enzyme deficiency, we treated a mouse model of mucopolysaccharidosis IIIB (MPS IIIB), a storage disorder caused by deficiency of the enzyme NAGLU (alpha-N-acetylglucosaminidase [Sanfilippo disease IIIB]), with the autophagy-inducing compound trehalose. Treated naglu-/ - mice lived longer, displayed less hyperactivity and anxiety, retained their vision (and retinal photoreceptors), and showed reduced inflammation in the brain and retina. Treated mice also showed improved clearance of autophagic vacuoles in neuronal and glial cells, accompanied by activation of the TFEB transcriptional network that controls lysosomal biogenesis and autophagic flux. Therefore, small-molecule-induced autophagy enhancement can improve the neurological symptoms associated with a lysosomal enzyme deficiency and could provide a viable therapeutic approach to neuropathic LSDs. ABBREVIATIONS: ANOVA: analysis of variance; Atg7: autophagy related 7; AV: autophagic vacuoles; CD68: cd68 antigen; ERG: electroretinogram; ERT: enzyme replacement therapy; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFAP: glial fibrillary acidic protein; GNAT2: guanine nucleotide binding protein, alpha transducing 2; HSCT: hematopoietic stem cell transplantation; INL: inner nuclear layer; LC3: microtubule-associated protein 1 light chain 3 alpha; MPS: mucopolysaccharidoses; NAGLU: alpha-N-acetylglucosaminidase (Sanfilippo disease IIIB); ONL: outer nuclear layer; PBS: phosphate-buffered saline; PRKCA/PKCα: protein kinase C, alpha; S1BF: somatosensory cortex; SQSTM1: sequestosome 1; TEM: transmission electron microscopy; TFEB: transcription factor EB; VMP/VPL: ventral posterior nuclei of the thalamus.


Asunto(s)
Acetilglucosaminidasa/deficiencia , Encéfalo/patología , Progresión de la Enfermedad , Inflamación/patología , Degeneración Retiniana/tratamiento farmacológico , Degeneración Retiniana/enzimología , Trehalosa/uso terapéutico , Acetilglucosaminidasa/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Autofagia/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Redes Reguladoras de Genes/efectos de los fármacos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Mucopolisacaridosis III/enzimología , Mucopolisacaridosis III/patología , Células Bipolares de la Retina/efectos de los fármacos , Células Bipolares de la Retina/metabolismo , Células Fotorreceptoras Retinianas Bastones/efectos de los fármacos , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/patología , Análisis de Supervivencia , Activación Transcripcional/efectos de los fármacos , Trehalosa/farmacología , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo , Vacuolas/ultraestructura
7.
Hum Mol Genet ; 27(6): 954-968, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29325092

RESUMEN

Sandhoff disease (SD) is a rare inherited disorder caused by a deficiency of ß-hexosaminidase activity which is fatal because no effective treatment is available. A mouse model of Hexb deficiency reproduces the key pathognomonic features of SD patients with severe ubiquitous lysosomal dysfunction, GM2 accumulation, neuroinflammation and neurodegeneration, culminating in death at 4 months. Here, we show that a single intravenous neonatal administration of a self-complementary adeno-associated virus 9 vector (scAAV9) expressing the Hexb cDNA in SD mice is safe and sufficient to prevent disease development. Importantly, we demonstrate for the first time that this treatment results in a normal lifespan (over 700 days) and normalizes motor function assessed by a battery of behavioral tests, with scAAV9-treated SD mice being indistinguishable from wild-type littermates. Biochemical analyses in multiple tissues showed a significant increase in hexosaminidase A activity, which reached 10-15% of normal levels. AAV9 treatment was sufficient to prevent GM2 and GA2 storage almost completely in the cerebrum (less so in the cerebellum), as well as thalamic reactive gliosis and thalamocortical neuron loss in treated Hexb-/- mice. In summary, this study demonstrated a widespread protective effect throughout the entire CNS after a single intravenous administration of the scAAV9-Hexb vector to neonatal SD mice.


Asunto(s)
Hexosaminidasa B/farmacología , Enfermedad de Sandhoff/tratamiento farmacológico , Enfermedad de Sandhoff/patología , Administración Intravenosa , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Gangliósido G(M2)/metabolismo , Gangliósidos/metabolismo , Hexosaminidasa B/genética , Hexosaminidasa B/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad de Sandhoff/metabolismo
8.
Acta Neuropathol Commun ; 5(1): 74, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-29041969

RESUMEN

The neuronal ceroid lipofuscinoses (NCLs or Batten disease) are a group of inherited, fatal neurodegenerative disorders of childhood. In these disorders, glial (microglial and astrocyte) activation typically occurs early in disease progression and predicts where neuron loss subsequently occurs. We have found that in the most common juvenile form of NCL (CLN3 disease or JNCL) this glial response is less pronounced in both mouse models and human autopsy material, with the morphological transformation of both astrocytes and microglia severely attenuated or delayed. To investigate their properties, we isolated glia and neurons from Cln3-deficient mice and studied their basic biology in culture. Upon stimulation, both Cln3-deficient astrocytes and microglia also showed an attenuated ability to transform morphologically, and an altered protein secretion profile. These defects were more pronounced in astrocytes, including the reduced secretion of a range of neuroprotective factors, mitogens, chemokines and cytokines, in addition to impaired calcium signalling and glutamate clearance. Cln3-deficient neurons also displayed an abnormal organization of their neurites. Most importantly, using a co-culture system, Cln3-deficient astrocytes and microglia had a negative impact on the survival and morphology of both Cln3-deficient and wildtype neurons, but these effects were largely reversed by growing mutant neurons with healthy glia. These data provide evidence that CLN3 disease astrocytes are functionally compromised. Together with microglia, they may play an active role in neuron loss in this disorder and can be considered as potential targets for therapeutic interventions.


Asunto(s)
Encéfalo/fisiopatología , Neuroglía/fisiología , Lipofuscinosis Ceroideas Neuronales/fisiopatología , Neuronas/fisiología , Adulto , Aminopeptidasas/deficiencia , Aminopeptidasas/genética , Animales , Encéfalo/patología , Movimiento Celular/fisiología , Supervivencia Celular/fisiología , Células Cultivadas , Niño , Técnicas de Cocultivo , Citoesqueleto/metabolismo , Citoesqueleto/patología , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/deficiencia , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Femenino , Glutatión/metabolismo , Humanos , Masculino , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Chaperonas Moleculares/genética , Neuroglía/patología , Lipofuscinosis Ceroideas Neuronales/patología , Neuronas/patología , Serina Proteasas/deficiencia , Serina Proteasas/genética , Tripeptidil Peptidasa 1 , Adulto Joven
9.
Proc Natl Acad Sci U S A ; 114(29): E5920-E5929, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28673981

RESUMEN

Infantile neuronal ceroid lipofuscinosis (INCL, or CLN1 disease) is an inherited neurodegenerative storage disorder caused by a deficiency of the lysosomal enzyme palmitoyl protein thioesterase 1 (PPT1). It was widely believed that the pathology associated with INCL was limited to the brain, but we have now found unexpectedly profound pathology in the human INCL spinal cord. Similar pathological changes also occur at every level of the spinal cord of PPT1-deficient (Ppt1-/- ) mice before the onset of neuropathology in the brain. Various forebrain-directed gene therapy approaches have only had limited success in Ppt1-/- mice. Targeting the spinal cord via intrathecal administration of an adeno-associated virus (AAV) gene transfer vector significantly prevented pathology and produced significant improvements in life span and motor function in Ppt1-/- mice. Surprisingly, forebrain-directed gene therapy resulted in essentially no PPT1 activity in the spinal cord, and vice versa. This leads to a reciprocal pattern of histological correction in the respective tissues when comparing intracranial with intrathecal injections. However, the characteristic pathological features of INCL were almost completely absent in both the brain and spinal cord when intracranial and intrathecal injections of the same AAV vector were combined. Targeting both the brain and spinal cord also produced dramatic and synergistic improvements in motor function with an unprecedented increase in life span. These data show that spinal cord pathology significantly contributes to the clinical progression of INCL and can be effectively targeted therapeutically. This has important implications for the delivery of therapies in INCL, and potentially in other similar disorders.


Asunto(s)
Encéfalo/patología , Terapia Genética/métodos , Proteínas de la Membrana/farmacología , Lipofuscinosis Ceroideas Neuronales/terapia , Médula Espinal/patología , Tioléster Hidrolasas/farmacología , Animales , Encéfalo/efectos de los fármacos , Niño , Modelos Animales de Enfermedad , Vectores Genéticos/administración & dosificación , Vectores Genéticos/farmacología , Humanos , Inyecciones Intraventriculares/métodos , Inyecciones Espinales , Proteínas de la Membrana/administración & dosificación , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Mutantes , Neuroglía/patología , Lipofuscinosis Ceroideas Neuronales/patología , Neuronas/patología , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Médula Espinal/efectos de los fármacos , Tioléster Hidrolasas/administración & dosificación , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo
10.
Nat Commun ; 8: 14338, 2017 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-28165011

RESUMEN

Neurodegenerative diseases characterized by aberrant accumulation of undigested cellular components represent unmet medical conditions for which the identification of actionable targets is urgently needed. Here we identify a pharmacologically actionable pathway that controls cellular clearance via Akt modulation of transcription factor EB (TFEB), a master regulator of lysosomal pathways. We show that Akt phosphorylates TFEB at Ser467 and represses TFEB nuclear translocation independently of mechanistic target of rapamycin complex 1 (mTORC1), a known TFEB inhibitor. The autophagy enhancer trehalose activates TFEB by diminishing Akt activity. Administration of trehalose to a mouse model of Batten disease, a prototypical neurodegenerative disease presenting with intralysosomal storage, enhances clearance of proteolipid aggregates, reduces neuropathology and prolongs survival of diseased mice. Pharmacological inhibition of Akt promotes cellular clearance in cells from patients with a variety of lysosomal diseases, thus suggesting broad applicability of this approach. These findings open new perspectives for the clinical translation of TFEB-mediated enhancement of cellular clearance in neurodegenerative storage diseases.


Asunto(s)
Autofagia/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Trehalosa/farmacología , Animales , Astrocitos , Autofagia/fisiología , Encéfalo/citología , Encéfalo/efectos de los fármacos , Encéfalo/patología , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Modelos Animales de Enfermedad , Fibroblastos , Técnicas de Silenciamiento del Gen , Células HeLa , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Ratones Transgénicos , Chaperonas Moleculares/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Neuronas , Fármacos Neuroprotectores/uso terapéutico , Fosforilación , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Trehalosa/uso terapéutico
11.
Ann Neurol ; 80(6): 909-923, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27804148

RESUMEN

OBJECTIVE: Juvenile neuronal ceroid lipofuscinosis (JNCL), or juvenile Batten disease, is a pediatric lysosomal storage disease caused by autosomal recessive mutations in CLN3, typified by blindness, seizures, progressive cognitive and motor decline, and premature death. Currently, there is no treatment for JNCL that slows disease progression, which highlights the need to explore novel strategies to extend the survival and quality of life of afflicted children. Cyclic adenosine monophosphate (cAMP) is a second messenger with pleiotropic effects, including regulating neuroinflammation and neuronal survival. Here we investigated whether 3 phosphodiesterase-4 (PDE4) inhibitors (rolipram, roflumilast, and PF-06266047) could mitigate behavioral deficits and cell-specific pathology in the Cln3Δex7/8 mouse model of JNCL. METHODS: In a randomized, blinded study, wild-type (WT) and Cln3Δex7/8 mice received PDE4 inhibitors daily beginning at 1 or 3 months of age and continuing for 6 to 9 months, with motor deficits assessed by accelerating rotarod testing. The effect of PDE4 inhibitors on cAMP levels, astrocyte and microglial activation (glial fibrillary acidic protein and CD68, respectively), lysosomal pathology (lysosomal-associated membrane protein 1), and astrocyte glutamate transporter expression (glutamate/aspartate transporter) were also examined in WT and Cln3Δex7/8 animals. RESULTS: cAMP levels were significantly reduced in the Cln3Δex7/8 brain, and were restored by PF-06266047. PDE4 inhibitors significantly improved motor function in Cln3Δex7/8 mice, attenuated glial activation and lysosomal pathology, and restored glutamate transporter expression to levels observed in WT animals, with no evidence of toxicity as revealed by blood chemistry analysis. INTERPRETATION: These studies reveal neuroprotective effects for PDE4 inhibitors in Cln3Δex7/8 mice and support their therapeutic potential in JNCL patients. Ann Neurol 2016;80:909-923.


Asunto(s)
Lipofuscinosis Ceroideas Neuronales/tratamiento farmacológico , Inhibidores de Fosfodiesterasa 4/farmacología , Inhibidores de Fosfodiesterasa 4/uso terapéutico , Sistema de Transporte de Aminoácidos X-AG/biosíntesis , Aminopiridinas/uso terapéutico , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Benzamidas/uso terapéutico , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , AMP Cíclico/metabolismo , Ciclopropanos/uso terapéutico , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Ratones , Chaperonas Moleculares/genética , Destreza Motora/efectos de los fármacos , Lipofuscinosis Ceroideas Neuronales/genética , Fármacos Neuroprotectores/farmacología , Rolipram/uso terapéutico , Prueba de Desempeño de Rotación con Aceleración Constante
12.
Eur Neuropsychopharmacol ; 25(12): 2210-20, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26475576

RESUMEN

Proton magnetic resonance spectroscopy ((1)H MRS) studies in schizophrenia patients generally report decreased levels of N-acetyl-aspartate (NAA), glutamate and glutathione, particularly in frontal cortex. However, these data are inconsistent in part due to confounds associated with clinical samples. The lack of validated diagnostic biomarkers also hampers analysis of the neurodevelopmental trajectory of neurochemical abnormalities. Rodent models are powerful tools to address these issues, particularly when combined with (1)H MRS (clinically comparable technology). We investigated the trajectory of metabolic changes in the prefrontal cortex during brain maturation from adolescence to adulthood in vivo using (1)H MRS in rats exposed prenatally to polyinosinic-polycytidylic acid (POL), a rodent model of maternal immune activation (MIA), an epidemiological risk factor for several psychiatric disorders with a neurodevelopmental origin. Longitudinal in vivo (1)H MRS revealed a significant decrease in PFC levels of GSH and taurine in adult, but not adolescent rats. Significant age×MIA interactions for PFC levels of NAA were also observed. These data replicate some deficits observed in the PFC of patients with schizophrenia. There were no significant changes in the levels of glutamate or any other metabolite. These data suggest prenatal exposure to POL leads to subtle metabolic perturbations of the normal maturing PFC, which may be related to subsequent behavioural abnormalities. Further work is however required to examine any potential confound of shipping stress on the presumed imbalances in PFC metabolites in POL-exposed offspring. Testing the interactions between MIA with stress or genetic risk variants will also be an important advance.


Asunto(s)
Ácido Aspártico/análogos & derivados , Glutatión/metabolismo , Inductores de Interferón/toxicidad , Poli I-C/toxicidad , Corteza Prefrontal/metabolismo , Efectos Tardíos de la Exposición Prenatal , Factores de Edad , Animales , Ácido Aspártico/metabolismo , Femenino , Edad Gestacional , Ácido Glutámico , Estudios Longitudinales , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Masculino , Corteza Prefrontal/patología , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/patología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Protones , Ratas , Ratas Sprague-Dawley , Reconocimiento en Psicología/efectos de los fármacos , Taurina/metabolismo
13.
Mol Ther Methods Clin Dev ; 2: 14068, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26052536

RESUMEN

Mucopolysaccharidosis type I (MPS I) is an inherited α-L-iduronidase (IDUA, I) deficiency in which glycosaminoglycan (GAG) accumulation causes progressive multisystem organ dysfunction, neurological impairment, and death. Current MPS I mouse models, based on a NOD/SCID (NS) background, are short-lived, providing a very narrow window to assess the long-term efficacy of therapeutic interventions. They also develop thymic lymphomas, making the assessment of potential tumorigenicity of human stem cell transplantation problematic. We therefore developed a new MPS I model based on a NOD/SCID/Il2rγ (NSG) background. This model lives longer than 1 year and is tumor-free during that time. NSG MPS I (NSGI) mice exhibit the typical phenotypic features of MPS I including coarsened fur and facial features, reduced/abnormal gait, kyphosis, and corneal clouding. IDUA is undetectable in all tissues examined while GAG levels are dramatically higher in most tissues. NSGI brain shows a significant inflammatory response and prominent gliosis. Neurological MPS I manifestations are evidenced by impaired performance in behavioral tests. Human neural and hematopoietic stem cells were found to readily engraft, with human cells detectable for at least 1 year posttransplantation. This new MPS I model is thus suitable for preclinical testing of novel pluripotent stem cell-based therapy approaches.

14.
FASEB J ; 29(9): 3876-88, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26062602

RESUMEN

Several acute monogenic diseases affect multiple body systems, causing death in childhood. The development of novel therapies for such conditions is challenging. However, improvements in gene delivery technology mean that gene therapy has the potential to treat such disorders. We evaluated the ability of the AAV9 vector to mediate systemic gene delivery after intravenous administration to perinatal mice and late-gestation nonhuman primates (NHPs). Titer-matched single-stranded (ss) and self-complementary (sc) AAV9 carrying the green fluorescent protein (GFP) reporter gene were intravenously administered to fetal and neonatal mice, with noninjected age-matched mice used as the control. Extensive GFP expression was observed in organs throughout the body, with the epithelial and muscle cells being particularly well transduced. ssAAV9 carrying the WPRE sequence mediated significantly more gene expression than its sc counterpart, which lacked the woodchuck hepatitis virus posttranscriptional regulatory element (WPRE) sequence. To examine a realistic scale-up to larger models or potentially patients for such an approach, AAV9 was intravenously administered to late-gestation NHPs by using a clinically relevant protocol. Widespread systemic gene expression was measured throughout the body, with cellular tropisms similar to those observed in the mouse studies and no observable adverse events. This study confirms that AAV9 can safely mediate systemic gene delivery in small and large animal models and supports its potential use in clinical systemic gene therapy protocols.


Asunto(s)
Dependovirus , Feto , Vectores Genéticos , Proteínas Fluorescentes Verdes , Transducción Genética/métodos , Tropismo Viral , Animales , Femenino , Feto/citología , Feto/embriología , Feto/metabolismo , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Vectores Genéticos/farmacología , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Haplorrinos , Ratones , Embarazo
15.
J Neurosci ; 34(39): 13077-82, 2014 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-25253854

RESUMEN

Infantile neuronal ceroid lipofuscinosis (INCL) is an inherited neurodegenerative lysosomal storage disease (LSD) caused by a deficiency in palmitoyl protein thioesterase-1 (PPT1). Studies in Ppt1(-/-) mice demonstrate that glial activation is central to the pathogenesis of INCL. Astrocyte activation precedes neuronal loss, while cytokine upregulation associated with microglial reactivity occurs before and concurrent with neurodegeneration. Therefore, we hypothesized that cytokine cascades associated with neuroinflammation are important therapeutic targets for the treatment of INCL. MW01-2-151SRM (MW151) is a blood-brain barrier penetrant, small-molecule anti-neuroinflammatory that attenuates glial cytokine upregulation in models of neuroinflammation such as traumatic brain injury, Alzheimer's disease, and kainic acid toxicity. Thus, we used MW151, alone and in combination with CNS-directed, AAV-mediated gene therapy, as a possible treatment for INCL. MW151 alone decreased seizure susceptibility. When combined with AAV-mediated gene therapy, treated INCL mice had increased life spans, improved motor performance, and eradication of seizures. Combination-treated INCL mice also had decreased brain atrophy, astrocytosis, and microglial activation, as well as intermediary effects on cytokine upregulation. These data suggest that MW151 can attenuate seizure susceptibility but is most effective when used in conjunction with a therapy that targets the primary genetic defect.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Terapia Genética , Microglía/metabolismo , Lipofuscinosis Ceroideas Neuronales/terapia , Tioléster Hidrolasas/genética , Animales , Antiinflamatorios/farmacocinética , Antiinflamatorios/uso terapéutico , Barrera Hematoencefálica/efectos de los fármacos , Citocinas/genética , Citocinas/metabolismo , Dependovirus/genética , Locomoción , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Piridazinas/farmacocinética , Piridazinas/uso terapéutico , Pirimidinas/farmacocinética , Pirimidinas/uso terapéutico , Convulsiones/terapia , Tioléster Hidrolasas/metabolismo
16.
Hum Gene Ther ; 25(3): 223-39, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24372003

RESUMEN

Juvenile neuronal ceroid lipofuscinosis (JNCL or CLN3 disease) is an autosomal recessive lysosomal storage disease resulting from mutations in the CLN3 gene that encodes a lysosomal membrane protein. The disease primarily affects the brain with widespread intralysosomal accumulation of autofluorescent material and fibrillary gliosis, as well as the loss of specific neuronal populations. As an experimental treatment for the CNS manifestations of JNCL, we have developed a serotype rh.10 adeno-associated virus vector expressing the human CLN3 cDNA (AAVrh.10hCLN3). We hypothesized that administration of AAVrh.10hCLN3 to the Cln3(Δex7/8) knock-in mouse model of JNCL would reverse the lysosomal storage defect, as well as have a therapeutic effect on gliosis and neuron loss. Newborn Cln3(Δex7/8) mice were administered 3 × 10(10) genome copies of AAVrh.10hCLN3 to the brain, with control groups including untreated Cln3(Δex7/8) mice and wild-type littermate mice. After 18 months, CLN3 transgene expression was detected in various locations throughout the brain, particularly in the hippocampus and deep anterior cortical regions. Changes in the CNS neuronal lysosomal accumulation of storage material were assessed by immunodetection of subunit C of ATP synthase, luxol fast blue staining, and periodic acid-Schiff staining. For all parameters, Cln3(Δex7/8) mice exhibited abnormal lysosomal accumulation, but AAVrh.10hCLN3 administration resulted in significant reductions in storage material burden. There was also a significant decrease in gliosis in AAVrh.10hCLN3-treated Cln3(Δex7/8) mice, and a trend toward improved neuron counts, compared with their untreated counterparts. These data demonstrate that AAVrh.10 delivery of a wild-type cDNA to the CNS is not harmful and instead provides a partial correction of the neurological lysosomal storage defect of a disease caused by a lysosomal membrane protein, indicating that this may be an effective therapeutic strategy for JNCL and other diseases in this category.


Asunto(s)
Dependovirus/genética , Expresión Génica , Vectores Genéticos/genética , Glicoproteínas de Membrana/genética , Chaperonas Moleculares/genética , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/terapia , Animales , Animales Recién Nacidos , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Vectores Genéticos/administración & dosificación , Vectores Genéticos/efectos adversos , Humanos , Inmunohistoquímica , Inyecciones , Interneuronas/metabolismo , Lisosomas/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Chaperonas Moleculares/metabolismo , Neuroglía/inmunología , Neuroglía/metabolismo , Neuronas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transgenes
17.
Hum Mol Genet ; 22(7): 1417-23, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23297359

RESUMEN

Kufs disease, an adult-onset neuronal ceroid lipofuscinosis, is challenging to diagnose and genetically heterogeneous. Mutations in CLN6 were recently identified in recessive Kufs disease presenting as progressive myoclonus epilepsy (Type A), whereas the molecular basis of cases presenting with dementia and motor features (Type B) is unknown. We performed genome-wide linkage mapping of two families with recessive Type B Kufs disease and identified a single region on chromosome 11 to which both families showed linkage. Exome sequencing of five samples from the two families identified homozygous and compound heterozygous missense mutations in CTSF within this linkage region. We subsequently sequenced CTSF in 22 unrelated individuals with suspected recessive Kufs disease, and identified an additional patient with compound heterozygous mutations. CTSF encodes cathepsin F, a lysosomal cysteine protease, dysfunction of which is a highly plausible candidate mechanism for a storage disorder like ceroid lipofuscinosis. In silico modeling suggested the missense mutations would alter protein structure and function. Moreover, re-examination of a previously published mouse knockout of Ctsf shows that it recapitulates the light and electron-microscopic pathological features of Kufs disease. Although CTSF mutations account for a minority of cases of type B Kufs, CTSF screening should be considered in cases with early-onset dementia and may avoid the need for invasive biopsies.


Asunto(s)
Catepsina F/genética , Mutación Missense , Lipofuscinosis Ceroideas Neuronales/genética , Adulto , Animales , Células del Asta Anterior/patología , Estudios de Casos y Controles , Catepsina F/metabolismo , Mapeo Cromosómico , Consanguinidad , Análisis Mutacional de ADN , Exoma , Femenino , Estudios de Asociación Genética , Humanos , Escala de Lod , Ratones , Ratones Noqueados , Persona de Mediana Edad , Modelos Moleculares , Lipofuscinosis Ceroideas Neuronales/enzimología , Lipofuscinosis Ceroideas Neuronales/patología , Linaje , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Análisis de Secuencia de ARN
18.
Acta Neuropathol ; 125(2): 273-88, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22961620

RESUMEN

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are relentlessly progressive neurodegenerative disorders with overlapping clinical, genetic and pathological features. Cytoplasmic inclusions of fused in sarcoma (FUS) are the hallmark of several forms of FTLD and ALS patients with mutations in the FUS gene. FUS is a multifunctional, predominantly nuclear, DNA and RNA binding protein. Here, we report that transgenic mice overexpressing wild-type human FUS develop an aggressive phenotype with an early onset tremor followed by progressive hind limb paralysis and death by 12 weeks in homozygous animals. Large motor neurons were lost from the spinal cord accompanied by neurophysiological evidence of denervation and focal muscle atrophy. Surviving motor neurons in the spinal cord had greatly increased cytoplasmic expression of FUS, with globular and skein-like FUS-positive and ubiquitin-negative inclusions associated with astroglial and microglial reactivity. Cytoplasmic FUS inclusions were also detected in the brain of transgenic mice without apparent neuronal loss and little astroglial or microglial activation. Hemizygous FUS overexpressing mice showed no evidence of a motor phenotype or pathology. These findings recapitulate several pathological features seen in human ALS and FTLD patients, and suggest that overexpression of wild-type FUS in vulnerable neurons may be one of the root causes of disease. Furthermore, these mice will provide a new model to study disease mechanism, and test therapies.


Asunto(s)
Envejecimiento/fisiología , Enfermedad de la Neurona Motora/genética , Enfermedad de la Neurona Motora/patología , Proteína FUS de Unión a ARN/fisiología , Animales , Western Blotting , Supervivencia Celular , Citoplasma/metabolismo , Dosificación de Gen , Regulación de la Expresión Génica/genética , Humanos , Inmunohistoquímica , Cuerpos de Inclusión/patología , Contracción Isométrica/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/fisiología , Fibras Musculares Esqueléticas/fisiología , Parálisis/genética , Parálisis/patología , Proteína FUS de Unión a ARN/genética , Médula Espinal/patología
19.
Ann Neurol ; 71(6): 797-804, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22368049

RESUMEN

OBJECTIVE: Infantile neuronal ceroid lipofuscinosis (INCL) is an inherited childhood neurodegenerative disorder caused by the loss of palmitoyl protein thioesterase-1 (PPT1) activity. Affected children suffer from blindness, epilepsy, motor dysfunction, cognitive decline, and premature death. The Ppt1(-/-) mouse shares the histological and clinical features of INCL. Previous single-therapy approaches using small molecule drugs, gene therapy, or neuronal stem cells resulted in partial histological correction, with minimal improvements in motor function or lifespan. Here, we combined central nervous system (CNS)-directed adeno-associated virus (AAV)2/5-mediated gene therapy with bone marrow transplantation (BMT) in the INCL mouse. METHODS: At birth, Ppt1(-/-) and wild-type mice were given either intracranial injections of AAV2/5-PPT1 or bone marrow transplantation, separately as well as in combination. To assess function, we measured rotorod performance monthly as well as lifespan. At terminal time points, we evaluated the therapeutic effects on several INCL-specific parameters, such as cortical thickness, autofluorescent accumulation, and glial activation. Finally, we determined levels of PPT1 enzyme activity and bone marrow engraftment in treated mice. RESULTS: AAV2/5-mediated gene therapy alone resulted in significant histological correction, improved motor function, and increased lifespan. Interestingly, the addition of BMT further increased the lifespan of treated mice and led to dramatic, sustained improvements in motor function. These data are truly striking, given that BMT alone is ineffective, yet it synergizes with CNS-directed gene therapy to dramatically increase efficacy and lifespan. INTERPRETATION: AAV2/5-mediated gene therapy in combination with BMT provides an unprecedented increase in lifespan as well as dramatic improvement on functional and histological parameters.


Asunto(s)
Trasplante de Médula Ósea/métodos , Terapia Genética/métodos , Lipofuscinosis Ceroideas Neuronales/terapia , Tioléster Hidrolasas/biosíntesis , Factores de Edad , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Encéfalo/patología , Dependovirus/genética , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos/administración & dosificación , Masculino , Ratones , Ratones Noqueados , Actividad Motora , Lipofuscinosis Ceroideas Neuronales/patología , Lipofuscinosis Ceroideas Neuronales/fisiopatología , Prueba de Desempeño de Rotación con Aceleración Constante , Tioléster Hidrolasas/deficiencia , Tioléster Hidrolasas/uso terapéutico
20.
J Inherit Metab Dis ; 35(5): 847-57, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22310926

RESUMEN

Infantile neuronal ceroid lipofuscinosis (INCL) is a profoundly neurodegenerative disease of children caused by a deficiency in the lysosomal enzyme palmitoyl protein thioesterase-1 (PPT1). There is currently no effective therapy for this invariably fatal disease. To date, preclinical experiments using single treatments have resulted in incremental clinical improvements. Therefore, we determined the efficacy of CNS-directed AAV2/5-mediated gene therapy alone and in combination with the systemic delivery of the lysosomotropic PPT1 mimetic phosphocysteamine. Since CNS-directed gene therapy provides relatively high levels of PPT1 activity to specific regions of the brain, we hypothesized that phosphocysteamine would complement that activity in regions expressing subtherapeutic levels of the enzyme. Results indicate that CNS-directed gene therapy alone provided the greatest improvements in biochemical and histological measures as well as motor function and life span. Phosphocysteamine alone resulted in only minor improvements in motor function and no increase in lifespan. Interestingly, phosphocysteamine did not increase the biochemical and histological response when combined with AAV2/5-mediated gene therapy, but it did result in an additional improvement in motor function. These data suggest that a CNS-directed gene therapy approach provides significant clinical benefit, and the addition of the small molecule PPT1 mimetic can further increase that response.


Asunto(s)
Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/terapia , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/terapia , Tioléster Hidrolasas/genética , Animales , Materiales Biomiméticos/farmacología , Encéfalo/metabolismo , Encéfalo/patología , Sistema Nervioso Central/patología , Cistafos/metabolismo , Femenino , Terapia Genética/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Lipofuscinosis Ceroideas Neuronales/metabolismo , Lipofuscinosis Ceroideas Neuronales/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA