Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Food Chem Toxicol ; 160: 112780, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34965465

RESUMEN

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is one of the key tobacco-specific nitrosamines that plays an important role in human lung carcinogenesis. Repeated dose inhalation toxicity data on NNK, particularly relevant to cigarette smoking, however, is surprisingly limited. Hence, there is a lack of direct information available on the carcinogenic and potential non-carcinogenic effects of NNK via inhalational route exposure. In the present study, the subchronic inhalation toxicity of NNK was evaluated in Sprague Dawley rats. Both sexes (9-10 weeks age; 23 rats/sex/group) were exposed by nose-only inhalation to air, vehicle control (75% propylene glycol), or 0.2, 0.8, 3.2, or 7.8 mg/kg body weight (BW)/day of NNK (NNK aerosol concentrations: 0, 0, 0.0066, 0.026, 0.11, or 0.26 mg/L air) for 1 h/day for 90 consecutive days. Toxicity was evaluated by assessing body weights; food consumption; clinical pathology; histopathology; organ weights; blood, urine, and tissue levels of NNK, its major metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), and their glucuronides (reported as total NNK, tNNK, and total NNAL, tNNAL, respectively); tissue levels of the DNA adduct O6-methylguanine; blood and bone marrow micronucleus (MN) frequency; and bone marrow DNA strand breaks (comet assay). The results showed that NNK exposure caused multiple significant adverse effects, with the most sensitive endpoint being non-neoplastic lesions in the nose. Although the genotoxic biomarker O6-methylguanine was detected, genotoxicity from NNK exposure was negative in the MN and comet assays. The Lowest-Observed-Adverse-Effect-Level (LOAEL) was 0.8 mg/kg BW/day or 0.026 mg/L air of NNK for 1 h/day for both sexes. The No-Observed-Adverse-Effect-Level (NOAEL) was 0.2 mg/kg BW/day or 0.0066 mg/L air of NNK for 1 h/day for both sexes. The results of this study provide new information relevant to assessing the human exposure hazard of NNK.


Asunto(s)
Exposición por Inhalación/efectos adversos , Nicotiana/toxicidad , Nitrosaminas/toxicidad , Animales , Fumar Cigarrillos/efectos adversos , Aductos de ADN/genética , Daño del ADN/efectos de los fármacos , Femenino , Humanos , Masculino , Pruebas de Micronúcleos , Nivel sin Efectos Adversos Observados , Nariz/efectos de los fármacos , Nariz/patología , Ratas , Ratas Sprague-Dawley , Humo/efectos adversos , Nicotiana/química
2.
Toxicol Sci ; 183(2): 319-337, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34329464

RESUMEN

4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is one of the key tobacco-specific nitrosamines that plays an important role in human lung carcinogenesis. However, repeated inhalation toxicity data on NNK, which is more directly relevant to cigarette smoking, are currently limited. In the present study, the subacute inhalation toxicity of NNK was evaluated in Sprague Dawley rats. Both sexes (9-10 weeks age; 16 rats/sex/group) were exposed by nose-only inhalation to air, vehicle control (75% propylene glycol), or 0.8, 3.2, 12.5, or 50 mg/kg body weight (BW)/day of NNK (NNK aerosol concentrations: 0, 0, 0.03, 0.11, 0.41, or 1.65 mg/L air) for 1 h/day for 14 consecutive days. Toxicity was evaluated by assessing body and organ weights; food consumption; clinical pathology; histopathology observations; blood, urine, and tissue levels of NNK, its major metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), and their glucuronides (reported as total NNK, tNNK, and total NNAL, tNNAL, respectively); O6-methylguanine DNA adduct formation; and blood and bone marrow micronucleus frequency. Whether the subacute inhalation toxicity of NNK followed Haber's Rule was also determined using additional animals exposed 4 h/day. The results showed that NNK exposure caused multiple significant adverse effects, with the most sensitive endpoint being non-neoplastic histopathological lesions in the nose. The lowest-observed-adverse-effect level (LOAEL) was 0.8 mg/kg BW/day or 0.03 mg/L air for 1 h/day for both sexes. An assessment of Haber's Rule indicated that 14-day inhalation exposure to the same dose at a lower concentration of NNK aerosol for a longer time (4 h daily) resulted in greater adverse effects than exposure to a higher concentration of NNK aerosol for a shorter time (1 h daily).


Asunto(s)
Nitrosaminas , Animales , Carcinógenos/toxicidad , Cromatografía Líquida de Alta Presión , Femenino , Pulmón , Masculino , Nitrosaminas/toxicidad , Ratas , Ratas Endogámicas F344 , Ratas Sprague-Dawley
3.
Toxicol Sci ; 182(1): 10-28, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-33944952

RESUMEN

The tobacco-specific nitrosamine NNK [4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone] is found in tobacco products and tobacco smoke. NNK is a potent genotoxin and human lung carcinogen; however, there are limited inhalation data for the toxicokinetics (TK) and genotoxicity of NNK in vivo. In the present study, a single dose of 5 × 10-5, 5 × 10-3, 0.1, or 50 mg/kg body weight (BW) of NNK, 75% propylene glycol (vehicle control), or air (sham control) was administered to male Sprague-Dawley (SD) rats (9-10 weeks age) via nose-only inhalation (INH) exposure for 1 h. For comparison, the same doses of NNK were administered to male SD rats via intraperitoneal injection (IP) and oral gavage (PO). Plasma, urine, and tissue specimens were collected at designated time points and analyzed for levels of NNK and its major metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and tissue levels of DNA adduct O6-methylguanine by LC/MS/MS. TK data analysis was performed using a non-linear regression program. For the genotoxicity subgroup, tissues were collected at 3 h post-dosing for comet assay analysis. Overall, the TK data indicated that NNK was rapidly absorbed and metabolized extensively to NNAL after NNK administration via the three routes. The IP route had the greatest systemic exposure to NNK. NNK metabolism to NNAL appeared to be more efficient via INH than IP or PO. NNK induced significant increases in DNA damage in multiple tissues via the three routes. The results of this study provide new information and understanding of the TK and genotoxicity of NNK.


Asunto(s)
Nitrosaminas , Espectrometría de Masas en Tándem , Animales , Carcinógenos , Cromatografía Líquida de Alta Presión , Daño del ADN , Exposición por Inhalación , Inyecciones Intraperitoneales , Masculino , Nitrosaminas/toxicidad , Ratas , Ratas Endogámicas F344 , Ratas Sprague-Dawley , Toxicocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA