Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Intervalo de año de publicación
1.
ACS Omega ; 9(20): 22031-22042, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38799315

RESUMEN

Microfluidic models have become essential instruments for studying enhanced oil recovery techniques through fluid and chemical injection into micromodels to observe interactions with pore structures and resident fluids. The widespread use of cost-effective lab-on-a-chip devices, known for efficient data extraction and minimal reagent usage, has driven demand for efficient data management methods crucial for high-performance data and image analyses. This article introduces a semiautomatic method for calculating oil recovery in polymeric nanofluid flooding experiments based on the background subtraction (BSEO). It employs the background subtraction technique, generating a foreground binary mask to detect injected fluids represented as pixel areas. The pixel difference is then compared to a threshold value to determine whether the given pixel is foreground or background. Moreover, the proposed method compares its performance with two other representative methods: the ground truth (manual segmentation) and Fiji-ImageJ software. The experiments yielded promising results. Low values of mean-squared error (MSE), mean absolute error (MAE), and root-mean-squared error (RMSE) indicate minimal prediction errors, while a substantial coefficient of determination (R2) of 98% highlights the strong correlation between the method's predictions and the observed outcomes. In conclusion, the presented method emphasizes the viability of BSEO as a robust alternative, offering the advantages of reduced computational resource usage and faster processing times.

2.
Sci Rep ; 14(1): 7468, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553487

RESUMEN

Among the Enhanced Oil Recovery (EOR) methods, gas-based EOR methods are very popular all over the world. The gas injection has a high ability to increase microscopic sweep efficiency and can increase production efficiency well. However, it should be noted that in addition to all the advantages of these methods, they have disadvantages such as damage due to asphaltene deposition, unfavorable mobility ratio, and reduced efficiency of macroscopic displacement. In this paper, the gas injection process and its challenges were investigated. Then the overcoming methods of these challenges were investigated. To inhibit asphaltene deposition during gas injection, the use of nanoparticles was proposed, which were examined in two categories: liquid-soluble and gas-soluble, and the limitations of each were examined. Various methods were used to overcome the problem of unfavorable mobility ratio and their advantages and disadvantages were discussed. Gas-phase modification has the potential to reduce the challenges and limitations of direct gas injection and significantly increase recovery efficiency. In the first part, the introduction of gas injection and the enhanced oil recovery mechanisms during gas injection were mentioned. In the next part, the challenges of gas injection, which included unfavorable mobility ratio and asphaltene deposition, were investigated. In the third step, gas-phase mobility control methods investigate, emphasizing thickeners, thickening mechanisms, and field applications of mobility control methods. In the last part, to investigate the effect of nanoparticles on asphaltene deposition and reducing the minimum miscible pressure in two main subsets: 1- use of nanoparticles indirectly to prevent asphaltene deposition and reduce surface tension and 2- use of nanoparticles as a direct asphaltene inhibitor and Reduce MMP of the gas phase in crude oil was investigated.

3.
Nanomaterials (Basel) ; 14(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38251121

RESUMEN

Biopolymers emerge as promising candidates for enhanced oil recovery (EOR) applications due to their molecular structures, which exhibit better stability than polyacrylamides under harsh conditions. Nonetheless, biopolymers are susceptible to oxidation and biological degradation. Biopolymers reinforced with nanoparticles could be a potential solution to the issue. The nanofluids' stability and performance depend on the nanoparticles' properties and the preparation method. The primary objective of this study was to evaluate the effect of the preparation method and the nanoparticle type (SiO2, Al2O3, and TiO2) on the viscosity and stability of the scleroglucan (SG). The thickening effect of the SG solution was improved by adding all NPs due to the formation of three-dimensional structures between the NPs and the SG chains. The stability test showed that the SG + Al2O3 and SG + TiO2 nanofluids are highly unstable, but the SG + SiO2 nanofluids are highly stable (regardless of the preparation method). According to the ANOVA results, the preparation method and standing time influence the nanofluid viscosity with a statistical significance of 95%. On the contrary, the heating temperature and NP type are insignificant. Finally, the nanofluid with the best performance was 1000 ppm of SG + 100 ppm of SiO2_120 NPs prepared by method II.

4.
ACS Omega ; 8(46): 43698-43707, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38027358

RESUMEN

Cannabidiol (CBD) has significant therapeutic potential; nevertheless, its advance as an effective drug by the pharmaceutical business is hindered by its inherent characteristics, such as low bioavailability, low water solubility, and variable pharmacokinetic profiles. This research aimed to develop nanoliposomes using an easy and low-cost method to improve the hydrosolubility of CBD and achieve a controlled delivery of the active principle under relevant physiological conditions from the mouth to the intestine; the cytotoxic and antitumor activities were also evaluated. To achieve the objective, core-shell nanoliposomes based on CBD were synthesized in three easy steps and characterized in terms of shape, size, surface chemistry, thermal capacity, and surface charge density through transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and potential charge (PZ), respectively. CBD-controlled delivery trials were carried out under simulated mouth-duodenal conditions and fitted to Korsmeyer-Peppas and Noyes-Whitney models to conclude about the pharmacokinetics of CBD from nano-CBD. Cytotoxicity studies on nonmalignant human keratinocytes (HaCaT) were carried out to evaluate its safety and the recommended consumption dose, and finally, the antiproliferative capacity of nano-CBD on human colon carcinoma cells (SW480) was determined as beginning proposal for cancer treatment. The characterization results verified the water solubility for the CBD nanoencapsulated, the core-shell structure, the size in the nanometric regime, and the presence of the synthesis components. The dissolution rate at duodenal conditions was higher than that in buccal and stomach environments, respectively, and this behavior was associated with the shell (lecithin) chemical structure, which destabilizes at pH above 7.2, allowing the release by non-Fickian diffusion of CBD as corroborated by the Korsmeyer-Peppas model. In vitro biological tests revealed the innocuousness and cyto-security of nano-CBD up to 1000 mg·L-1 when evaluated on HaCaT cells and concentrations higher than 1000 mg·L-1 showed antitumor activity against human colon carcinoma cells (SW480) taking the first step as a chemotherapeutic proposal. These results are unprecedented and propose a selective delivery system based on nano-CBD at low cost and that provides a new form of administration and chemo treatment.

5.
Sci Rep ; 13(1): 6573, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085713

RESUMEN

Gas injection is one of the most common enhanced oil recovery techniques in oil reservoirs. In this regard, pure gas, such as carbon dioxide (CO2), nitrogen (N2), and methane (CH4) was employed in EOR process. The performance of pure gases in EOR have been investigated numerically, but till now, numerical simulation of injection of rich gases has been scared. As rich gases are more economical and can result in acceptable oil recovery, numerical study of the performance of rich gases in EOR can be an interesting subject. Accordingly, in the present work the performance of rich gases in the gas injection process was investigated. Methane has been riched in liquefied petroleum gas (LPG), natural gas liquid (NGL), and Naphtha. Afterwards, the process of gas injection was simulated and the effect of injection fluids on the relative permeability, saturation profile of gas, and fractional flow of gas was studied. Our results showed that as naphtha is a heavier gas than the two other ones, IFT of oil-rich gas with naphtha is lower than other two systems. Based our results, gas oil ratio (GOR) and injection pressure did not affect the final performance of injection gas that has been riched in NGL and LPG. However, when GOR was 1.25 MSCF/STB, rich gas with naphtha moved with a higher speed in the domain and the relative permeability of each fluid and fractional flow of gas were affected. The same result was achieved at higher injection pressure. When injection pressure was 2000 psi, movement of gas with higher speed in the domain, alteration of relative permeability and changes in the fractional flow of gas were obvious. Therefore, based on our result, injection of naphtha with low pressure and high GOR was suggested for considered oil.

6.
ACS Omega ; 7(45): 40603-40624, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36406557

RESUMEN

The increase in the global demand for energy and fossil fuel dependency is hindering efforts to reduce greenhouse gas (GHG) emissions. Geothermal resources supplement this increase in energy demand with reduced emissions because of their availability, base-load production profile, and climatic independence. Despite these advantages, the development of geothermal energy is limited because of different reasons such as subsurface exploration risk and high upfront capital cost for drilling and facility construction. However, similarities in infrastructure and operations between the oil and gas industry and the geothermal industry can optimize expense and development when exploiting geothermal resources. Thus, in this review, we present recent advances and applications of geothermal power systems in the oil and gas industry starting from the fundamentals and basic principles of geothermal energy and the organic Rankine cycle (ORC). These applications include the use of geothermal resources via abandoned wells, active wells, and paired thermal enhanced oil recovery processes with injection for fluid heating and energy production. Abandoned wells are alternatives that reduce costs in geothermal energy-use projects. The use of geothermal resources via active wells allows the valorization of a resource, such as the production of water, which is considered a byproduct of production activities in an oilfield. The use of thermally enhanced oil recovery processes enhances the energy conditions of fluids produced in the field, improving geothermal systems with fluids at higher temperatures. Finally, an overview is presented of the challenges and opportunities of geothermal energy in the oil industry where the requirement to improve the usage of technologies, such as the ORCs, with the working fluids used in the cycles, is highlighted. Furthermore, the importance of environmental studies and use of novel tools, such as nanotechnology, to improve the efficiency of geothermal energy usage is highlighted.

7.
Nanomaterials (Basel) ; 12(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36145002

RESUMEN

This study aimed to develop novel bio-nanofluids using Solanum torvum extracts in synergy with nanoparticles of different chemical nature as a proposal sustainable for enhanced oil recovery (EOR) applications. For this, saponin-rich extracts (SRE) were obtained from Solanum torvum fruit using ultrasound-assisted and Soxhlet extraction. The results revealed that Soxhlet is more efficient for obtaining SRE from Solanum torvum and that degreasing does not generate additional yields. SRE was characterized by Fourier transformed infrared spectrophotometry, thermogravimetric analysis, hydrophilic-lipophilic balance, and critical micelle concentration analyses. Bio-nanofluids based on SiO2 (strong acid), ZrO2 (acid), Al2O3 (neutral), and MgO (basic) nanoparticles and SRE were designed to evaluate the effect of the chemical nature of the nanoparticles on the SRE performance. The results show that 100 mg L-1 MgO nanoparticles improved the interfacial tension up to 57% and the capillary number increased by two orders of magnitude using this bio-nanofluid. SRE solutions enhanced with MgO recovered about 21% more than the system in the absence of nanoparticles. The addition of MgO nanoparticles did not cause a loss of injectivity. This is the first study on the surface-active properties of Solanum torvum enhanced with nanomaterials as an environmentally friendly EOR process.

8.
Nanomaterials (Basel) ; 12(13)2022 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-35808033

RESUMEN

This study aims to develop and evaluate fracturing nanofluids from the laboratory to the field trial with the dual purpose of increasing heavy crude oil mobility and reducing formation damage caused by the remaining fracturing fluid (FF). Two fumed silica nanoparticles of different sizes, and alumina nanoparticles were modified on the surface through basic and acidic treatments. The nanoparticles were characterized by transmission electron microscopy, dynamic light scattering, zeta potential and total acidity. The rheological behavior of the linear gel and the heavy crude oil after adding different chemical nature nanoparticles were measured at two concentrations of 100 and 1000 mg/L. Also, the contact angle assessed the alteration of the rock wettability. The nanoparticle with better performance was the raw fumed silica of 7 nm at 1000 mg/L. These were employed to prepare a fracturing nanofluid from a commercial FF. Both fluids were evaluated through their rheological behavior as a function of time at high pressure following the API RP39 test, and spontaneous imbibition tests were carried out to assess the FF's capacity to modify the wettability of the porous media. It was possible to conclude that the inclusion of 7 nm commercial silica nanoparticles allowed obtaining a reduction of 10 and 20% in the two breakers used in the commercial fracture fluid formulation without altering the rheological properties of the system. Displacement tests were also performed on proppant and rock samples at reservoir conditions of overburden and pore pressures of 3200 and 1200 psi, respectively, while the temperature was set at 77 °C and the flow rate at 0.3 cm3/min. According to the effective oil permeability, a decrease of 31% in the damage was obtained. Based on these results, the fracturing nanofluid was selected and used in the first worldwide field application in a Colombian oil field with a basic sediment and water (BSW%) of 100 and without oil production. After two weeks of the hydraulic fracture operation, crude oil was produced. Finally, one year after this work, crude oil viscosity and BSW% kept showing reductions near 75% and 33%, respectively; and having passed two years, the cumulative incremental oil production is around 120,000 barrels.

9.
Sci Rep ; 12(1): 9628, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35688917

RESUMEN

High water production in oil fields is an area of concern due to economic issues and borehole/wellhead damages. Colloidal gels can be a good alternative to polymers to address this as they can tolerate harsh oil reservoir conditions. A series of bottle tests with different silica and NaCl concentrations were first conducted. The gelation time, cation valence, rheology, and viscosity were investigated to characterize the gels. The applicability of solid gels in porous media was finally inspected in a dual-patterned glass micromodel. Bottle test results showed that increasing NaCl concentration at a constant silica concentration can convert solid gels into two-phase gels and then viscous suspensions. Na+ replacement with Mg2+ resulted a distinctive behaviour probably due to higher coagulating ability of Mg2+. Rheology and viscosity results agreed with gelation times: gel with shortest gelation time had the highest viscosity and storage/loss modulus but was not the most elastic one. Water injection into glass micromodel half-saturated with crude oil and solid gel proved that the gel is strong against pressure gradients applied by injected phase which is promising for water conformance controls. The diverted injected phase recorded an oil recovery of 53% which was not feasible without blocking the water zone.

10.
ACS Omega ; 5(43): 27800-27810, 2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33163763

RESUMEN

This study aims to evaluate the behavior of Cardanol/SiO2 nanocomposites in the inhibition of the asphaltene damage based on the coreflooding test at reservoir conditions. The nanocomposite design was performed in Part I (https://doi.org/10.1021/acs.energyfuels.0c01114), leading to SiO2 nanoparticles functionalized with different mass fractions of cardanol on the surface of 5 (5CSN), 7 (7CSN), and 9% (9CSN). In this part of the study, the nanocomposite/reservoir fluid interactions were evaluated through interfacial tension measurements and nanocomposite/rock surface interactions using water imbibition and contact angle measurements. Results showed that the designed nanocomposite leads to a reduction of interfacial tension of 82.6, 61.7, and 51.4% for 5CSN, 7CSN, and 9CSN regarding silica support (SN). Whereas, the reduction of the Si-OH functional groups from SiO2 nanoparticles due to the increase of the cardanol content affects the effectiveness of the wettability alteration for 7CSN and 9CSN. Nevertheless, when 5CSN is evaluated, the system is altered from an oil-wet to a mixed-wet state. Coreflooding tests at reservoir conditions were performed to evaluate the oil recovery after asphaltene damage, after damage removal and nanofluid injection, and after induction of a second asphaltene damage to check inhibition. Results show that the selected nanocomposites at a dosage of 300 mg·L-1 enhance the oil recovery in comparison with the baseline conditions via the reduction of the interfacial/surface forces at the pore scale and wettability alteration. It is worth to remark that this improvement remains after the second asphaltene damage induction, which proves the high inhibitory capacity of the designed nanocomposite for the asphaltene precipitation/deposition. Also, the use of the nanocomposites favors the oil recovery more than 50% compared to the asphaltene damage scenario.

11.
Nanomaterials (Basel) ; 10(8)2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32796762

RESUMEN

The primary objective of this study is to develop a novel experimental nanofluid based on surfactant-nanoparticle-brine tuning, subsequently evaluate its performance in the laboratory under reservoir conditions, then upscale the design for a field trial of the nanotechnology-enhanced surfactant injection process. Two different mixtures of commercial anionic surfactants (SA and SB) were characterized by their critical micelle concentration (CMC), density, and Fourier transform infrared (FTIR) spectra. Two types of commercial nanoparticles (CNA and CNB) were utilized, and they were characterized by SBET, FTIR spectra, hydrodynamic mean sizes (dp50), isoelectric points (pHIEP), and functional groups. The evaluation of both surfactant-nanoparticle systems demonstrated that the best performance was obtained with a total dissolved solid (TDS) of 0.75% with the SA surfactant and the CNA nanoparticles. A nanofluid formulation with 100 mg·L-1 of CNA provided suitable interfacial tension (IFT) values between 0.18 and 0.15 mN·m-1 for a surfactant dosage range of 750-1000 mg·L-1. Results obtained from adsorption tests indicated that the surfactant adsorption on the rock would be reduced by at least 40% under static and dynamic conditions due to nanoparticle addition. Moreover, during core flooding tests, it was observed that the recovery factor was increased by 22% for the nanofluid usage in contrast with a 17% increase with only the use of the surfactant. These results are related to the estimated capillary number of 3 × 10-5, 3 × 10-4, and 5 × 10-4 for the brine, the surfactant, and the nanofluid, respectively, as well as to the reduction in the surfactant adsorption on the rock which enhances the efficiency of the process. The field trial application was performed with the same nanofluid formulation in the two different injection patterns of a Colombian oil field and represented the first application worldwide of nanoparticles/nanofluids in enhanced oil recovery (EOR) processes. The cumulative incremental oil production was nearly 30,035 Bbls for both injection patterns by May 19, 2020. The decline rate was estimated through an exponential model to be -0.104 month-1 before the intervention, to -0.016 month-1 after the nanofluid injection. The pilot was designed based on a production increment of 3.5%, which was successfully surpassed with this field test with an increment of 27.3%. This application is the first, worldwide, to demonstrate surfactant flooding assisted by nanotechnology in a chemical enhanced oil recovery (CEOR) process in a low interfacial tension region.

12.
Nanomaterials (Basel) ; 10(5)2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32443703

RESUMEN

It is possible to take advantage of shallow reservoirs (<300 m) for CO2 capture and storage in the post-combustion process. This process is called enhanced carbon capture and storage (e-CCS). In this process, it is necessary to use a nano-modifying agent to improve the chemical-physical properties of geological media, which allows the performance of CO2 selective adsorption to be enhanced. Therefore, this study presents the development and evaluation of carbon sphere molecular nano-sieves (CSMNS) from cane molasses for e-CSS. This is the first report in the scientific literature on CSMNS, due to their size and structure. In this study, sandstone was used as geological media, and was functionalized using a nanofluid, which was composed of CNMNS dispersed in deionized water. Finally, CO2 or N2 streams were used for evaluating the adsorption process at different conditions of pressure and temperature. As the main result, the nanomaterial allowed a natural selectivity towards CO2, and the sandstone enhanced the adsorption capacity by an incremental factor of 730 at reservoir conditions (50 °C and 2.5 MPa) using a nanoparticle mass fraction of 20%. These nanofluids applied to a new concept of carbon capture and storage for shallow reservoirs present a novel landscape for the control of industrial CO2 emissions.

13.
ACS Omega ; 5(10): 5085-5097, 2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32201795

RESUMEN

The main objective of this study is to evaluate the effect of the textural properties and surface chemical nature of silica nanoparticles obtained from different synthesis routes and silicon precursors, on their interactions with asphaltenes and further viscosity reduction of heavy crude oil (HO). Four different SiO2 nanoparticles were used, namely, commercial fumed silica nanoparticles (CSNs) and three in-house-synthesized nanoparticles (named based on the silicon source) modifying the silicon precursor: sodium silicate (SNSS), tetraethylorthosilicate (TEOS) (SNT), and rice husk (SNRH). The nanomaterials were characterized through dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, N2 physisorption (S BET), atomic force microscopy (AFM), and X-ray photoelectron (XP) spectroscopy (XPS). The adsorption of asphaltenes over the different nanoparticles was evaluated at a concentration of 1000 mg·L-1 in toluene. The asphaltene-nanoparticle interactions are closely related to several textural properties, such as roughness, surface area, and hydrodynamic diameter, as well as the surface chemical nature of the materials. The results in the textural characterization exhibited that the sizes of the nanoparticles from TEM ranged between 6.9 and 11.5 nm. Nevertheless, the standard deviation of the measurements showed that the sizes are statistically similar. Inversely, the hydrodynamic diameter changed, affecting the surface silanol group's availability due to a hindering effect on functional groups as the hydrodynamic size of the material increased. The rheological measurements were performed at a fixed nanoparticle dosage of 1000 mg·L-1 and showed that the trend of the degree of viscosity reduction (DVR) was CSN > SNT > SNSS > SNRH with the highest value yielding at 30%. The results of DVR are in accordance with the nanoparticles' adsorptive capacity as higher values were obtained with the material that leads to a higher amount of adsorbed asphaltenes. Also, the oxygen amount related to silanol groups, estimated by the XPS analysis, showed a direct relation regarding adsorption capacity and further HO viscosity reduction.

14.
ACS Appl Mater Interfaces ; 12(11): 13510-13520, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32092269

RESUMEN

A promising alternative to improve the ultra-gas-wet alteration process by the addition of nanoparticles was developed. This study is focused on studying the functionalization process of nanoparticles of γ-alumina (γ-Al2O3) and magnesia (MgO) using a commercial fluorocarbon surfactant (SYLNYL-FSJ), from an experimental and theoretical approach. Different fluorocarbon surfactant concentrations were used in the functionalization process of the nanoparticles, and the materials obtained were characterized by Fourier-transform infrared spectroscopy (FTIR) and dynamic light scattering (DLS). The experimental setup of the interaction between the surfactant and nanoparticles was reproduced by molecular simulations in order to obtain physical insights into the adsorption process. Experimental results show a suitable functionalization for both nanoparticles with the fluorocarbon surfactant. The γ-Al2O3 nanoparticles showed better behavior based on the obtained nonfrictional conditions, which lead the water and n-decane droplets to slide on the rock surface coated with the functionalized nanoparticles. The experimental contact angles on the functionalized γ-Al2O3 nanoparticles were reproduced by molecular dynamics simulations. From the interaction energies' evaluation, it was also determined that alumina nanoparticles could reduce the adhesive energy to 0.01 kcal mol-1, regarding magnesia nanoparticles. Also, a significant difference was obtained for the surfactant-liquid interactions between the two nanoparticles evaluated, with changes of 17% for surfactant-water interactions and 28% for the surfactant-n-decane. The obtained results explain the pronounced increase for the contact angles of n-decane on the functionalized γ-Al2O3 nanoparticles.

15.
ACS Omega ; 4(14): 16171-16180, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31592484

RESUMEN

The main objective of this study is to evaluate the effect of the preparation of the nanofluids based on the interactions between the surfactants, nanoparticles, and brine for being applied in ultra-low interfacial tension (IFT) for an enhanced oil recovery process. Three methodologies for the addition of the salt-surfactant-nanoparticle components for the formulation of an efficient injection fluid were evaluated: order of addition (i) salts, nanoparticles, and surfactants, (ii) salts, surfactants, and then nanoparticles, (iii) surfactants, nanoparticles, and then salts. Also, the effects of the total dissolved solids and the surfactant concentration were evaluated in the interfacial tension for selecting the better formulation of the surfactant solution. Three nanoparticles of different chemical natures were studied: silica gel (SiO2), alumina (γ-Al2O3), and magnetic iron core-carbon shell nanoparticles. The nanoparticles were characterized using dynamic light scattering, zeta-potential, N2 physisorption at -196 °C, and Fourier transform infrared spectroscopy. In addition, the interactions between the surfactant, different types of nanoparticles, and brine were investigated through adsorption isotherms for the three methodologies. The nanofluids based on the different nanoparticles were evaluated through IFT measurements using the spinning drop method. The adsorbed amount of surfactant mixture on nanoparticles decreased in the order of alumina > silica gel > magnetic iron core-carbon shell nanoparticles. The minimum IFT achieved was 1 × 10-4 mN m-1 following the methodology II at a core-shell nanoparticle dosage of 100 mg L-1.

16.
Food Chem ; 294: 503-517, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31126493

RESUMEN

Nanocellulose obtained from banana rachis (NCBR) was loaded (through simple impregnation) with a polyphenolic-rich extract (PRE) of Andean berries (Vaccinium meridionale). The adsorption/desorption of polyphenols onto NCBR and the thermal stability and antioxidant activity of the polyphenolic-NCBR nanocomplex (NCX) was studied. Thermodynamic properties (ΔH°ads, ΔS°ads and ΔG°ads) showed that polyphenols interact with NCBR by physisorption through a spontaneous and exothermic process. The NCX kept the original color of PRE (magenta) and released polyphenols in aqueous medium (80% of phenolic compounds in the first hour and 50% of anthocyanins in the first few minutes). The NCX showed high antioxidant activity, as evidenced by traditional assays, and inhibited the peroxyl radicals mediated oxidation of a tryptophan-containing peptide. Additionally, NCX inhibited lipid peroxidation in an emulsified system of Sacha inchi oil exposed to accelerated oxidative conditions. In conclusion, the NCX showed good properties as an antioxidant with potential use as a food additive.


Asunto(s)
Antioxidantes/química , Celulosa/química , Aditivos Alimentarios/química , Musa/química , Nanoestructuras/química , Polifenoles/química , Vaccinium/química , Adsorción , Antocianinas/análisis , Antocianinas/química , Colorimetría , Frutas/química , Frutas/metabolismo , Musa/metabolismo , Temperatura , Termodinámica , Vaccinium/metabolismo
17.
Nanomaterials (Basel) ; 9(4)2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30939741

RESUMEN

Production water is the largest byproduct of the oil industry and must be treated before disposal, either by reinjection or shedding processes, with the purpose of eliminating emulsified crude oil and avoiding the operational and toxic problems associated with it. The objective of this work was to immobilize a hydrocarbon-degrading strain on activated carbons, to evaluate the biocomplex's capacity for catalyzing hydrocarbons from Oil in Brine emulsions (O/W) simulating produced waters. Activated carbons were prepared and their chemical and porous properties were estimated by XPS, pHPZC and SEM, N2 adsorption, and mercury porosimetry. Biomaterials were synthesized and hydrocarbon removal tests were performed. The basic and neutral carbons immobilized Pseudomonas stutzeri by physisorption in the macroporous space and electrostatic interactions (108⁻108 UFC∙g-1), while acid materials inhibited bacterial growth. Removal of aromatic hydrocarbons was more efficient using materials (60%⁻93%) and biomaterials (16%⁻84%) than using free P. stutzeri (1%⁻47%), and the removal efficiencies of crude oil were 22%, 48% and 37% for P. stutzeri and two biomaterials, respectively. The presence of minor hydrocarbons only when P. stutzeri was present confirmed the biotransformation process.

18.
Molecules ; 23(7)2018 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-29937532

RESUMEN

The primary objective of this study is the synthesis of nanocapsules (NC) that allow the reduction of the adsorption process of surfactant over the porous media in enhanced oil recovery processes. Nanocapsules were synthesized through the nanoprecipitation method by encapsulating commercial surfactants Span 20 and Petro 50, and using type II resins isolated from vacuum residue as a shell. The NC were characterized using dynamic light scattering, transmission electron microscopy, Fourier transform infrared, solvency tests, softening point measurements and entrapment efficiency. The obtained NC showed spherical geometry with sizes of 71 and 120 nm for encapsulated Span 20 (NCS20), and Petro 50 surfactant (NCP50), respectively. Also, the NCS20 is composed of 90% of surfactant and 10% of type II resins, while the NCP50 material is 94% of surfactant and 6% of the shell. Nanofluids of nanocapsules dispersed in deionized water were prepared for evaluating the nanofluid­sandstone interaction from adsorption phenomena using a batch-mode method, contact angle measurements, and FTIR analysis. The results showed that NC adsorption was null at the different conditions of temperatures evaluated of 25, 50, and 70 °C, and stirring velocities up to 10,000 rpm. IFT measurements showed a reduction from 18 to 1.62 and 0.15 mN/m for the nanofluids with 10 mg/L of NCS20, and NCP50 materials, respectively. Displacements tests were conducted using a 20 °API crude oil in a quarter five-spot pattern micromodel and showed an additional oil recovery of 23% in comparison with that of waterflooding, with fewer pore volumes injected than when using a dissolved surfactant.


Asunto(s)
Aceites Industriales/análisis , Nanocápsulas/química , Yacimiento de Petróleo y Gas , Resinas Sintéticas/química , Tensoactivos/química , Adsorción , Composición de Medicamentos/métodos , Humanos , Ensayo de Materiales , Nanocápsulas/ultraestructura , Porosidad , Extracción en Fase Sólida/instrumentación , Extracción en Fase Sólida/métodos , Temperatura , Agua/química
19.
J Colloid Interface Sci ; 433: 58-67, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25112913

RESUMEN

Formation water from oilfields is one of the major environmental issues related to the oil industry. This research investigated oil adsorption onto nanoparticles of hydrophobic alumina and alumina nanoparticles functionalized with a petroleum vacuum residue (VR) at 2 and 4wt% to reduce the amount of oil in oil-saltwater emulsions at different pH values (5, 7 and 9). The initial concentration of crude oil in water ranged from 100 to 500mg/L. The change in oil concentration after adsorption was determined using a UV-vis spectrophotometer. The results indicated that all of the systems performed more effectively at a pH of 7 and using Al/4VR material. The oil adsorption was higher for neutral and acid systems compared with basic ones, and it was improved by increasing the amount of VR on the surface of the alumina. Additionally, the amount of NaCl adsorbed onto nanoparticles was estimated for different mixtures. The adsorption equilibrium and kinetics were evaluated using the Dubinin-Astakhov model, the Brunauer-Emmet-Teller model, and pseudo-first- and pseudo-second-order models, with a better fitting to the Brunauer-Emmet-Teller model and pseudo-second-order model.

20.
J Colloid Interface Sci ; 425: 168-77, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24776679

RESUMEN

Oil spills on fresh water can cause serious environmental and economic impacts onshore activities affecting those who exploit freshwater resources and grassland. Alumina nanoparticles functionalized with vacuum residue (VR) were used as a low-cost and high hydrophobic nanosorbents. The nanomaterial resulting showed high adsorption affinity and capacity of oil from oil-in-freshwater emulsion. The effects of the following variables on oil removal were investigated, namely: contact times, solution pH, initial oil concentrations, temperature, VR loadings and salinity. Kinetic studies showed that adsorption was fast and equilibrium was achieved in less than 30 min. The amount adsorbed of oil was higher for neutral system compared to acidic or basic medium. Increasing the VR loading on nanoparticle surface favored the adsorption. Results of this study showed that oil removal for all systems evaluated had better performance at pH value of 7 using nano-alumina functionalized with 4 wt% VR. Adsorption equilibrium and kinetics were evaluated using the Polanyi theory-based Dubinin-Ashtakhov (DA) model, and pseudo-first and pseudo-second order-models, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA